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Abstract—We present simple approximation formulae for the
distribution of the packet waiting time of multiplexed periodic
traffic. The multiplexed streams may have different periods and
packet sizes. We show by extensive simulations the accuracy
of the proposed methods. They are simpler than other existing
formulae which make them attractive for engineers, applicable in
practice, and easy to implement in switching devices. Packetized
speech traffic has a periodic flow structure. Many compression
techniques preserve it during talk phases but suppress the
generation of packets during silence phases. When such on/off
streams are multiplexed, advantage can be taken of their reduced
flow rates by overbooking the link bandwidth. We adapt the
proposed formulae to cope with on/off traffic and overbooking
and validate them by extensive simulations. They can be applied
for admission control in networks carrying different types of
real-time traffic.

Index Terms—waiting time distribution; on/off streams; mul-
tiplexing; overbooking.

I. I NTRODUCTION

Realtime applications usually create data packets in short
periodic intervals to minimize the packetization delay. For
instance, the G.711 voice codec [1] generates packets of 172
bytes every 20 ms leading to a rate of 68.8 kbit/s. Other codecs
produce smaller packets at the same period, e.g., the G.729.1
codec [2] produces 38 bytes every 20 ms. The duration of
the periods can often be configured so that other periods like
10 or 30 ms also exist. Constant bitrate circuit-switched data
emulation services in UMTS also lead to strongly periodic
streams. Although these data do not contribute the major
traffic in today’s communication networks, they still yield
the major revenues. However, the major part of the traffic
in the terrestrial access network of cellular communication
systems like GSM or UMTS has realtime requirements and it
is carried over low bitrate links of 1–4 Mbit/s due to the small
traffic aggregation level. These links usually are leased lines
and expensive so that operators wish to use them efficiently
but without degrading the quality of service of the carried
traffic. To that end, admission control (AC) is performed on
the links and new connections are blocked if they would lead
to extensive packet delay due to the multiplexing process on
the link. Thus, the AC decision requires queuing formulae
that predict the expected delay if another flow is admitted.
The AC decision is based on statistical criteria, e.g., 0.01% of
the packets may have a delay of 5 ms or longer. Therefore,
the complementary cumulative distribution function (CCDF)
of the packet waiting time caused by the multiplexing delay
is of interest.

In [3, Chapter 15.2] a very accurate approximation for the
CCDF of the packet waiting time of multiplexed homogeneous
periodic flows is presented as well as a simpler exponential
but less accurate approximation. For heterogeneous flows,
i.e. for those with different periods or packet sizes, rather
complex and numerically demanding expressions are provided
in [3, Chapter 15.3] that we failed to implement correctly.
As a consequence, we developed simple approximations and
validated their accuracy by extensive simulations. They are
very simple and easy to implement in switching devices.

Voice over IP (VoIP) applications and also wireless phones
use more efficient codecs like iLBC [4], G.723.1 [5], or GSM
06.10 [6] that collect speech samples from periodic intervals
and compress them. Most of them use silence detection to
avoid the generation of data packets during silence phases.
This reduces the flow rate and makes the effective output
an on/off stream. The above mentioned formulae are not
applicable for multiplexed on/off streams. In [3, Chapter 15.3]
a method is presented to calculate the CCDF of homogeneous
on/off sources if the sum of their peak rates does not exceed
the link bandwidth, thus, it is not applicable in the presence of
overbooking. We add some minor modifications to the method
of [3, Chapter 15.3] and show by simulations that it leads
to reasonable results that can be used for AC purposes. We
further extend this approach to heterogeneous periodic on/off
flows and again validate them by simulations. Our additions,
albeit simple, enable AC for heterogeneous periodic on/off
streams in the presence of overbooking which is the most
frequent application scenario in practice.

The paper is structured as follows. Section II reviews
related work. Section III proposes and validates new, simple
approximations to calculate the CCDF of the packet waiting
time of multiplexed heterogeneous periodic flows. Section IV
presents and validates new methods to calculate the CCDF for
multiplexed on/off traffic with a periodic base structure inthe
presence of overbooking. Section V summarizes this work.

II. RELATED WORK

In this section, we give a short overview of related work
considering the multiplex of periodic traffic and on/off traffic.

A. Queuing Formulae for Strictly Periodic Traffic

An excellent summary of formulae for the waiting time of
multiplexed periodic traffic is given in [3, Chapter 15.3] that
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reports many results from [7], [8]. The authors consider so-
calledn·D/D/1 queuing systems where several homogeneous
periodic flows are multiplexed onto a common link and calcu-
late the CCDF of the packet waiting time due to queuing. They
present the closed-form solution Equation (1) that requires
substantial computation time if many sources are multiplexed.
Therefore, they also present Equation (2) which serves as a
good approximation for relevant scenarios. Both formulae are
simple and can be easily implemented. As our work is heavily
based on them, we validate their accuracy in Section III-B4.
An algorithmic solution to this queuing problem was given in
[9] and an exact derivation was provided by [10], [11].

Furthermore, [3] considers the∑0≤i<k ni · Di/D/1 queu-
ing system whereni periodic flows of k different classes
with different inter-arrival times are multiplexed. Virtamo and
Roberts [7] present a fairly complex algorithm calculatingthe
CCDF of the resulting packet waiting times (VR-method).
For our comparison we donwloaded the above algorithm from
[12]. Unfortunately, for some input values we got inconsistent
output from which we conclude that the above algorithm is
numerically unstable.

Finally, [3] studies the∑0≤i<k ni · DXi
i /D/1 queue. That

means, periodic streams ofk different classes are multiplexed.
All packets have the same size (like cells in ATM), but flows
may have different periods and batch arrivals ofXi packets.
We reformulate this system to∑0≤i<k ni ·Di/Di/1, i.e., periodic
flows from k different classes are multiplexed, each of them
being characterized by its own period and packet size. A very
complex method is given to calculate the CCDF of the packet
waiting time. Again, we failed to implement that method, but
in this case we could not obtain an implementation of the
algorithm. Therefore, we believe that this approach might be
good, but it is not simple and accessible enough to be used in
practice.

B. Queuing Formulae for On/Off Traffic

We give a brief overview on work regarding the multiplex of
on/off traffic. Some methods are based on fluids and cannot
account for packet scale queueing. Others are rather coarse
approximations or cannot cope with overbooking.

1) Approximative Solution for Multiplexed On/Off Flu-
ids with Overbooking:The well known Anick-Mitra-Sondhi
(AMS) approach [13] yields the waiting time distribution of
multiplexed on/off fluids for infinite buffers. Fluids describe
continuous flows of information that are not partitioned in
packets, i.e., we can think of them as infinitesimally small
packets, a bit stream instead of a packet stream. Therefore,
AMS cannot describe delay caused by packet scale queuing,
but we will use it as a lower bound to validate our solutions
in Section IV using the implementation provided at [12].

2) Waiting Time Distribution for Multiplexed On/Off Fluids:
Bensaou, Roberts et al. [3], [14] derive an exact formula for
the queue length distribution in the presence of an infinite
buffer based on the results of Benes̆ [15] for fluid queues.
Since for most practical problems it is not possible to evaluate
this exact solution, approximations are developed and the

asymptotic behavior is studied. The results for the waitingtime
are good for larger numbers of connections and moderate link
utilization. The approximation does not account for congestion
effects that may arise due to long term correlation of on/off
traffic.

3) Approximation Based on Modulated Periodic Arrivals
∑Di/D/1 for Systemswithout Temporary Overload:Rama-
murthy and Sengupta studied the superposition of periodic
sources that arrive according to a Poisson model [16]. The
sources have an exponential inter-arrival time distribution
with rate 1

λ and general holding times during which they
send periodic traffic. They derive the stationary waiting time
distribution for n multiplexed sources, i.e.∑0≤i<nDi/D/1.
Then, they calculate the waiting time distribution of the overall
system under the assumption that the overall rate of the
calls never exceeds the link bandwidth. They achieve that by
weighting the packet waiting time distributions fori active
flows with the probabilitypi for i active flows and the number
of transmitted packetsi such that the overall packet waiting
time distribution is calculated according to Equation (12).
However, the meaning of this analysis is different from ours:
while we consider a fixed number of multiplexed flows with
on/off characteristics, [16] studies a variable number of strictly
periodic flows whose overall rate cannot exceed the link
bandwidth.

4) More Approximations Based on Different Queuing Mod-
els: Baiocchi et al. approximate the arrival process by a
Markov modulated Poisson process in [17]. They give an
approximation of the cell loss probability for different buffer
sizes. Stern and Ganguly [18], [19] calculate the queue length
distribution of multiplexed packet streams with finite buffer
capacity. Sriram and Whitt [20] approximate the queue length
distribution of a packet multiplexer with a special two param-
eterGI/GI/1−∞ approximation tool [21]. Humblet et al. [22]
study the effect of an added smoothing delay on the resulting
packet waiting time.

III. PACKET WAITING TIME OF MULTIPLEXED PERIODIC

FLOWS

In this section, we first review existing queuing formulae
for multiplexing homogeneous periodic flows and illustrate
the queuing behavior of periodic packet arrivals. Then we
extend the formulae to heterogeneous flows with equal periods
but different packet sizes, different periods but equal packet
sizes, and different periods and packet sizes, and validatethese
methods by simulations.

A. Notation

In the following, we denote periods, i.e. packet inter-arrival
times, by a, packet sizes byb, link bandwidths byc, and
transmission time of packets byd= b

c . Given n multiplexed
homogeneous flows, the relative offered load isρ = n·d

a . It is
the system utilization when packet loss does not occur. In case
of ρ <1, this can be achieved for multiplexed periodic traffic
by a moderately large multiplexing buffer.
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B. n·D/D/1: Multiplexing Flows with Identical Periods and
Packet Sizes

We review an accurate but computationally rather demand-
ing queuing formula for multiplexed homogeneous flows as
well as a simple approximation. We compare them and validate
their accuracy by simulations.

1) A Closed-Form Solution for the CCDF of the Waiting
Time: When several periodic streams with the same period
a are multiplexed onto a single link with sufficiently large
capacityc, the multiplexing buffer is emptied at least once
within the perioda if the system is not overloaded. Hence,
the waiting time is smaller than a period (t < a) and the
waiting time of a packet depends only on the arrival instants
of its preceding packets within the last period (i). We call the
arrival instant of a flow within an observed period its phase.
As the phase of a flow does not change in consecutive periodic
intervals, the phase pattern of a superposition of several flows
is also periodic (ii). Combining (i) and (ii), it follows that each
packet belonging to the same flow faces the same waiting time
in each periodic interval. Therefore, the packet waiting time
is deterministic and depends on the phase pattern of the flow
arrivals within a period. However, different realizationsof such
a process with the same number of multiplexed streamsn lead
to different phase patterns. Taking into account all possible
phase patterns leads to a distribution function of the packet
waiting time. This so-calledn ·D/D/1 queueing system has
been studied in [3, Chapter 15.2.1] and can be calculated by
the following closed-form solution:

P(W > t) = Wbinom
CCDF(n,d,a, t)

= ∑
t
d <m≤(n−1)

(

n−1
m

)

·

(

m·d− t
a

)m

·

(

1−
m·d− t

a

)n−1−m

·

a− (n−1) ·d+ t
a−m·d+ t

. (1)

We call this formula the “binomial closed-form solution”. The
relative offered load must be smaller than one (ρ < 1) and
the waiting timet must be smaller than the period (t < a).
However, this does not limit the applicability of the formula.
The formula is computationally expensive for a large number
of multiplexed flows n. Note that Equation (1) yields the
CCDF of the real waiting time while the CCDF of the virtual
waiting time is obtained using the same formula forn+ 1
instead ofn customers.

2) An Approximation Formula for the CCDF of the Waiting
Time: The following computationally efficient formula is a
good approximation for Equation (1) if the relative offered
load ρ is high enough [3, Chapter 15.2.2]. We call it the
“exponential approximation”.

P(W > t) = Wexp
CCDF(n,d,a, t)

≈ exp

(

−2· t
d

·

(

t
(n−1) ·d

+1−
n·d
a

))

. (2)

3) Simulation of the CCDF of the Packet Waiting Time:The
superposition of periodic flows leads to a non-ergodic process

which is difficult to simulate. The phase pattern chosen at
the initialization of the simulation fully determines all future
packet waiting times as the rest of the process is deterministic.
Moreover, all packets of each flow experience the same waiting
time from the second simulated period on. Therefore, for
strictly periodic systems it is enough to collect the waiting
time data of the second simulated period. To get a statistically
reliable estimate of the CCDF of the packet waiting time,
it is essential to collect waiting times from many different
phase patterns. Hence, we start many simulation runs (107 per
reported CCDF) with different seeds, group their results into
batches, derive from them CCDFs for the packet waiting time,
and calculate confidence intervals from the CCDFs received
by the independent batches. The obtained confidence intervals
are very small as long as the CCDF values are in the order
of magnitude of 10−5 or larger. Therefore, we do not show
them in our figures for the sake of clarity. When simulating
the superposition of periodic flows with different periods,the
statistical data must be gained from several simulated periods
until the process repeats.

In case of on/off modulated periodic streams (see Sec-
tion IV), the number of flows in the on-phase mainly influence
the packet waiting time distribution. Therefore, many periods
must be simulated in a single simulation run to capture the
impact of the on/off phases. We perform 50 long runs (107

packet arrivals), derive the CCDF of the packet waiting time,
and calculate confidence intervals from the CCDFs of the
individual runs. The confidence intervals are again small for
probability values of 10−5 or larger; we omit them in the
figures.

4) Validation of the Binomial Closed-Form Solution and
the Exponential Approximation:We validate the accuracy of
the above presented approximation methods by simulations.
Figure 1 shows the CCDF of the packet waiting time for
different utilization levelsρ and 10 flows. The x-axis shows
the waiting time t as a fraction of the period and the y-
axis indicates the probability that packets wait longer than t.
The binomial closed-form solution is exact and its curves
coincide with those from simulations. The curves of the
exponential approximation show small deviations from those
of the simulation for moderate utilization levels of up to
ρ =0.7. The approximation quality of both formulae increases
with the number of flowsn and gives a perfect fit forn > 50.
However, the exponential approximation can be safely used
for admission control since it yields an upper bound on the
real CCDF.

5) Queuing Behavior of Periodic Traffic:To understand the
queuing behavior ofn ·D/D/1 systems, we study the impact
of the number of multiplexed flows, the period, and the packet
size or service time on the packet waiting times.

For the first experiment we keep the packet service time
constant atd=1 ms. We vary the number of the multiplexed
homogeneous flowsn and their perioda such thatan is constant
and choose the bandwidthc of the link such that that its
utilization is ρ =0.9. Figure 2(a) shows that the waiting time
decreases with a decreasing period because the period is an
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Fig. 1. CCDF of the packet waiting time for 10 multiplexed flows deter-
mined by simulation, the binomial closed-form solution, and the exponential
approximation; the system utilizations areρ ∈{0.5,0.6,0.7,0.8,0.9}; time t
is given as a fraction of the period.

upper bound on the maximum waiting time. Furthermore, we
observe that the CCDF of the packet waiting time of an
n ·D/D/1 system converges with an increasing perioda to
the one of anM/D/1−∞ system with the same packet service
time d = 1 ms and system utilizationρ = 0.9. However, we
also observe that theM/D/1−∞ system overestimates the
waiting time of periodic systems dramatically. Therefore,it
is very important to take into account the periodic structure
of multiplexed flows to calculate the CCDF of their packet
waiting time.

For the second experiment we keep the period constant. We
vary the number of the multiplexed homogeneous flowsn and
the packet service timed such thatn·d is constant. We choose
the bandwidthc of the link such that that its utilization is
ρ =0.9. Figure 2(b) shows the CCDF for the packet waiting
time. The waiting time on the x-axis is given as a fraction
of the perioda. The figure shows that the packet waiting
time decreases with an increasing number of flows or in other
words, it increases with increasing packet size. There are two
reasons for this observation. First, the transmission instants in
the experiments with more flows are likely to be distributed
more evenly over a perioda than the transmission instants in
the experiments with fewer flows. Second, the packet service
time d in the experiments with more flows is shorter than
in the experiments with fewer flows. Both issues effect that
the traffic in the experiments with more flows is smoother on
the time scale of a period than in the experiments with fewer
flows.

C. ∑0≤i<k ni ·D/Di/1: Multiplexing Flows with Identical Pe-
riods but Different Packet Sizes

We considerk classes of flows with the same periodsa but
different packet sizesbi , 0≤ i <k. The corresponding queuing
model is denoted by∑0≤i<k ni ·D/Di/1 for which Equations
(1) and (2) are not applicable.
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(a) The multiplexed flows have a constant service timed = 1 ms. Their
numbern varies and their perioda is adapted to produce the same system
load for all curves.
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(b) The multiplexed flows have a constant perioda. Their numbern varies
and their packet service timed is adapted to produce the same system load.

Fig. 2. CCDF of the packet waiting time for multiplexed periodic streams
for a system utilization ofρ =0.9

1) Approximation Formula Based on Effective Packet Sizes
(EffPs): We propose a simple approximation for the packet
waiting time of a ∑0≤i<k ni · D/Di/1 queuing system. It is
based on the idea of an an effective number of flowsneff and
an effective packet sizebeff. These parameters are calculated
from the characteristics of the multiplexed flows. The CCDF
of the packet waiting time is approximated by either Equation
(1) or (2) using the effective number of multiplexed flowsneff

and the effective packet service timedeff=
beff
c which is derived

from the effective packet sizebeff.

The most intuitive approach defines the effective number of
flows by the number of multiplexed flowsnintuitive

eff = ∑0≤i<k ni

amd the effective packet size by the average packet size
bintuitive

eff = 1
∑0≤i<k ni

·∑0≤i<k ni ·bi . However,nintuitive
eff andbintuitive

eff
significantly underestimate the packet waiting times.
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Fig. 3. Approximated and simulated CCDFs of packet waiting timeof a
∑0≤i<k ni ·D/Di/1 system; the link bandwidth is 1.138 Mbit/s, the flows have
a common period ofa=20 ms but different packet sizes ofb0=20 bytes and
b1=80 bytes.

We propose a different approach which is given by Equa-
tions (3) – (6). It computes the effective packet sizebtmp

eff
by averaging packet sizes of the multiplexed flows weighted
by their contribution to the overall multiplexed traffic. The
effective number of flowsneff is chosen thatneff homogeneous
flows with packet sizebtmp

eff produce about the same traffic rate
as the multiplexed flows in the queue. Finally the effective
packet size is adjusted that the same traffic rate is exactly
met. The rationale behind this cumbersome computation is
the fact that Equations (1) and (2) require integer values for
the number of flows.

si =
ni ·bi

∑0≤ j<k n j ·b j
(3)

btmp
eff = ∑

0≤i<k

si ·bi (4)

neff =
⌊∑0≤i<k ni ·bi

btmp
eff

⌋

(5)

beff =
∑0≤i<k ni ·bi

neff
. (6)

2) Validation of the EffPs-Approximation:To validate this
approach, we choose two classes with the same perioda=20
ms but different packet sizes ofb0 = 20 bytes andb1 = 80
bytes, and multiplex them onto a link. To facilitate the choice
of the experiment parameters, we set the capacity of the link
such that 16 flows of 64 kbit/s lead to a resource utilization of
ρ =0.9, i.e., we getc≈1.138 Mbit/s. We consider 5 different
traffic mixes s0 : s1 ∈ {1 : 0,3 : 1,1 : 1,1 : 3,0 : 1} to assess the
accuracy of the formula for a link utilization ofρ =0.675 and
ρ =0.9.

Figures 3(a) and 3(b) show the CCDF of the packet waiting
time for the considered traffic mixes. Multiplexing flows with
only 80 byte large packets leads to the longest packet waiting
times while multiplexing flows with only 20 byte large packets
leads to the shortest ones. The waiting time for the traffic
mixes lies in between. For a utilization ofρ =0.9, the packet
waiting time is larger than forρ =0.675. The quality of the
presented approximation is relatively good in all considered
scenarios. However, the accuracy of the formula is limited if
only a small number of flows are multiplexed, e.g.n=10, or if
packet sizes extremely differ, e.g.,b0=20 bytes andb1=500
bytes or larger.

D. ∑0≤i<k ni ·Di/D/1: Multiplexing Flows with Different Pe-
riods but Identical Packet Sizes

We considerk classes of flows with different periodsai , 0≤
i <k but the same packet sizesb. The corresponding queuing
model is denoted by∑0≤i<k ni ·Di/D/1.

1) Approximation Formula Based on Effective Periods
(EffPd): We propose the following simple, new approximation
which is based on the effective periodaeff. This is calculated
using the proportion of the traffic volume of classi with

respect to the overall traffic volume:si =
ni
ai

∑0≤ j<k
nj
aj

and

aeff = ∑
0≤i<k

si ·ai . (7)

We use the effective periodaeff, the packet service time
d= b

c , and the number of multiplexed flowsn=∑0≤i<k ni as
parameters for Equation (1) or (2) to calculate the CCDF of
the packet waiting time.

2) Validation of the EffPd-Approximation:To validate this
approach, we choose two classes with the same packet size
b=20 bytes but different periodsa0 =5 ms anda1 =20 ms
and multiplex them onto a link with a capacity ofc≈1.138
Mbit/s. We consider 5 different traffic mixess0 :s1 ∈ {1:0,3:
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1,1 :1,1 :3,0 :1} to assess the accuracy of the formula for a
link utilization of ρ =0.675 andρ =0.9.
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Fig. 4. Approximated and simulated CCDFs of packet waiting timeof a
∑0≤i<k ni ·Di/D/1 system; the link bandwidth is 1.138 Mbit/s, the flows have
common packet sizes ofb=20 bytes but different periods ofa0 =5 ms and
a1=20 ms. The traffic mixs0 : s1 is indicated in the figures.

Figures 4(a) and 4(b) present the CCDF of the packet wait-
ing time derived by simulation, our new EffPd-approximation,
and the complex VR-method [3]. Multiplexing homogeneous
traffic with only short periods ofa0 = 5 ms leads to the
shortest packet waiting times while multiplexing traffic with
only long periods ofa1 = 20 ms leads to the longest ones.
The waiting times of the traffic mixes lie in between. The
curves of the VR-method are close to the simulation results.
Our new approximation EffPd-Appx deviates significantly
more from the real values, especially for the traffic mixes
3:1 and 1:1, but it is sufficiently accurate to get a rough
estimate of the packet waiting time. As EffPd-Appx yields
an upper bound on the CCDF, it may be used for admission
control purposes. While the VR-method experiences numerical
difficulties for some delay values and is algorithmically and

computationally demanding, the new method is simple, fast,
and has no known instabilities. The packet waiting time is
at a utilization ofρ = 0.9 clearly larger than atρ =0.675. In
both cases, the EffPd-approximation and the VR-method yield
upper bounds for the CCDFs, therefore, they can be used for
admission control purposes. For links with larger bandwidth
the accordance of the approximation and the simulation results
improves. However, the accuracy of the formula is limited if
only a small number of flows are multiplexed, e.g.,n=10, or
if periods extremely differ, e.g.,a0 =10 ms anda1=100 ms
or larger.

E. ∑0≤i<k ni ·Di/Di/1: Multiplexing Flows with Different Pe-
riods and Packet Sizes

We considerk classes of flows with different periodsai and
different packet sizesbi , 0≤ i <k. The corresponding queuing
model is denoted by∑0≤i<k ni ·Di/Di/1.

1) Approximation Formula Based on Effective Packet Sizes
and Periods (EffPsPd):We propose the following new approx-
imation which is based on the concepts of effective packet size
and period. First, the effective period is calculated according to
Equation (7). Then, the contributionsi of classi to the overall
multiplexed traffic is calculated by

si =

ni ·bi
ai

∑0≤ j<k
n j ·b j

a j

. (8)

The rough estimatebtmp
eff of the effective packet sizes is

calculated based on Equation (4). It is used together with the
effective periodaeff to compute the effective number of flows
by

neff =
⌊

∑
0≤i<k

ni ·
bi

ai
·

aeff

btmp
eff

⌋

. (9)

The effective packet size is adjusted to produce the same
system load by

beff = ∑
0≤i<k

ni ·
bi

ai
·
aeff

neff
. (10)

Finally, we use the effective number of multiplexed flowsneff,

the effective packet service timedeff=
beff
c , and the effective

period aeff as parameters for Equation (1) or (2) to calculate
the CCDF of the packet waiting time.

2) Validation of the Proposed Approximation:To validate
this approach, we choose two flow types with the same bitrate.
They have different periodsa0 =10 ms anda1 =40 ms and
different packet sizesb0 = 20 bytes andb1 = 80 bytes. We
multiplex them onto a link with a capacity ofc≈1.138 Mbit/s.
We consider 5 different traffic mixess0 : s1 ∈ {1 : 0,3 : 1,1 :
1,1 :3,0 :1} to assess the accuracy of the formula for a link
utilization of ρ =0.675 andρ =0.9.

Figures 5(a)–5(b) present the CCDF of the packet wait-
ing time derived by simulation and our new EffPsPd-
approximation. Both traffic types have different queueing
properties. Multiplexing traffic with longer periods and largeer
packet sizes yields longer waiting times. The simulation curves
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Fig. 5. Approximated and simulated CCDFs of packet waiting timeof a
∑0≤i<k ni ·Di/Di/1 system; the link bandwidth is 1.138 Mbit/s, the flows
have periods ofa0=10 ms anda1=40 ms and packet sizes ofb0=20 bytes
andb1=80 bytes. The traffic mixs0 : s1 is indicated in the figures.

are above the approximated curves which means that EffPsPd-
Appx cannot be used as an upper bound on the real CCDF.
However, for practical problems they may be useful to get an
estimate of the waiting time given the fact that no alternative
exists and that theM/D/1 queue heavily overestimates the
waiting time. This observation holds for both moderate and
high utilizations of ρ = 0.675 andρ = 0.9. The limitations
of EffPsPd-Appx are inherited from EffPs-Appx und EffPd-
Appx.

IV. EXTENSIONS FORMULTIPLEXING PERIODIC ON/OFF

TRAFFIC IN THE PRESENCE OFOVERBOOKING

In this section, we review quantitative models for on/off
traffic with a periodic base structure. When such flows are
multiplexed, overbooking can be applied to save bandwidth.

We modify the equations presented above to calculate the
CCDF of the packet waiting time under these conditions.

A. Modelling Compressed Voice Traffic

Many voice codecs like G.723.1 [5] or GSM 06.10 [6] use
silence detection and suppress the generation of packets when
the speaker is silent. Their output stream is basically periodic
with interruptions leading to an on/off stream which is also
called an on/off modulated periodic stream.

We have parameterized a simple two state on/off model for
G.723.1 traffic in [23]. The packet payload is 24 bytes and
packets are sent every 30 ms. The duration of the on/off phases
are geometrically distributed with a mean ofE[Don]=10.43 s
andE[Doff]=13.09 s which leads to a flow activity probability
of α = E[Don]

E[Don]+E[Doff]
=0.44332. Thus, silence detection reduces

the flow rates on average to 44%.
The model in [23] differs from other models in literature by

longer on/off phases. They capture the packet generation on
the time scale of sentences whereby some missing packets
are just disregarded. In contrast, mean durations of only
E[Don]= 0.352 s andE[Doff]= 0.650 s are reported in [20].
Such values are obtained when phase lengths are determined
by strictly contiguous on/off phases. However, [23] shows that
the queuing behavior of the source model with the long phase
durations approximates the one of compressed voice traces
better than the source model with short phase durations. In
particular, long phase durations describe the autocorrelation
of the series of generated and suppressed packets within flow
traces better than short phase durations.

because it captures the length of whole sentences that may
contain small pauses. This results in only a few missing
packets during an on-phase. In contrast, mean durations of
only E[Don] = 0.352 s andE[Doff] = 0.650 s are reported in
[20] which are obtained when phase lengths are determined
by strictly contiguous on/off phases. However, the queuing
behavior of the source model with the long phase durations
approximates the one of compressed voice traces better than
the source model with short phase durations [23] because long
phase durations describe the autocorrelation of flow traces
better than short phase durations.

When several such on/off streams are multiplexed onto a
single link and if the sum of the peak rates of the multi-
plexed flows do not exceed the link bandwidth, the average
link utilization is at mostα = 0.44332. Therefore, the link
bandwidth may be overbooked which introduces the risk of
temporary overload when the number of active flows varies.
Then, a queue arises and packets can face significantly larger
waiting times than in a multiplexing system with constant
bitrate sources. Therefore, the second objective of this work
is to describe the CCDF of the packet waiting time for this
scenario by a simple approximation formula.

B. Modulated n·D/D/1: Multiplexing On/Off Periodic Flows
with Identical Periods and Packet Sizes

We review a method from [3] to calculate the CCDF of
the packet waiting time for multiplexed on/off flows without
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overbooking. We extend it to the case with overbooking,
validate the new method by simulations, and compare its
results with the fluid approximation by Anick-Mitra-Sondhi
(AMS) [13].

1) CCDF for Multiplexed On/Off Flows without Overbook-
ing: The modulatedn ·D/D/1 queue in [3, Chapter 15.2.4]
addresses the superposition of exactlyn on/off sources with
a voice activity factor ofα. They essentially calculate the
probability pm of m active flows by

pm=P(n,m,α)=

(

n
m

)

·αm · (1−α)n−m (11)

and computeP(W> t) by

P(W > t) =
∑0≤m≤nm· pm ·WCCDF(m,d,a, t)

∑0≤m≤nm· pm
. (12)

ForWCCDF we can use either Equation (1) or (2). The approach
presented in [3, Chapter 15.2.4] requires that the maximum
offered relative traffic loadρmax = n·d

a is smaller than 1;
otherwise,WCCDF(m,d,a, t) is not defined. Hence, it is not
possible to calculated the CCDF of the packet waiting time of
multiplexed on/off traffic in the presence of overbooking.

2) Approximative Solution for Multiplexed On/Off Flows
with Overbooking (OnOff-Appx):To approximate the CCDF
of the packet waiting time for multiplexed on/off flows
with overbooking, we propose to modify the CCDF
WCCDF(m,d,a, t) for the packet waiting time for periodic flows
by WCCDF(m,d,a, t) = 1 for ρmax=

n·d
a ≥ 1. Then, we apply

Equation (12) also whenn·da ≥ 1 provided that the average
load of the system does not exceed its capacity.

3) Validation of the Proposed Approximation:We validate
the approximation method of Section IV-B2 by comparing its
resulting CCDF with the one from simulations and from the
AMS method introduced in Section II-B1. To that end, we
multiplex on/off flows with a period ofa=30 ms, a packet size
of b=24 bytes, and an activity factor ofα =0.44332. Thus, the
flow rates are no longer constant and, therefore, we deal with
average rates. We dimension the capacity of the link such that
its average utilization isρavg∈{0.49,0.63,0.74}. This value
ρavg is rather a long-term average and differs from varying
short-term averages. To obtain them, the link bandwidth is set
to c∈{116,90,77} kbit/s for n = 20 multiplexed flows and to
c∈{579,450,383} kbit/s for n = 100 multiplexed flows. This
setting covers a wide range of long-term utilization valuesthat
are of interest when transmission capacities are overbooked by
on/off traffic.

Figures 6(a) and 6(b) show the CCDFs of the packet waiting
times. They look different from those for multiplexed strictly
periodic traffic. Instead of decaying quickly, they converge to
a certain probability value which is about the probability that
overload occurs on the overbooked link. This probability is
also approximated by the AMS method, but our approach also
well captures the course of the real curves to that threshold.
This threshold increases with increasing average utilization
since the links in our experiment have then less bandwidth to
carry the same traffic, i.e., the likelihood for overload becomes
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(a) n=20 multiplexed flows,c=116,90,77 kbit/s link bandwidth.
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Fig. 6. Approximated and simulated CCDFs of packet waiting timeof an
on/off-modulatedn·D/D/1 system with G.723.1 traffic; the multiplexed flows
have common periods ofa=30 ms, packet sizes ofb=24 bytes, and a voice
activity factor ofα =0.44332.

larger. Forn=20 flows, the new approximation captures the
behavior of the CCDFs qualitatively, but significant deviations
to the simulated curves are visible. Forn= 100 flows, the
approximation results of our new method are already quite
accurate as they almost coincide with the results from simula-
tions. The overload probability forρavg=0.49 andρavg=0.63
is now so small that we do not observe the horizontal line,
i.e., the overbooked system is not likely to run into severe
congestion. The approximation result is better than the one
from the AMS methods as this disregards packet scale queuing
completely and yields, therefore, too short waiting times,most
of them are zero. However, AMS serves as lower bound for
the real CCDF.

We choose the rather small values of the link capacities
to show that our approximation works well also for a small
multiplexing degree, which in general limits the accuracy of
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these approximation formulae. For more thann= 20 multi-
plexed flows and larger bandwidths the approximation accu-
racy improves. The applicability of this method is also limited
to sufficiently long on/off periods, i.e., very short on/off
periods do not lead to excessive queuing delay. However, the
formula is applicable when the traffic has the characteristics
of compressed speech.
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(a) Utilization ρavg≈0.65.
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Fig. 7. Approximated and simulated CCDFs of packet waiting timeof an
on/off modulated∑0≤i<k ni ·Di/Di/1 system; the link bandwidth is 1.138
Mbit/s, the flows have periods ofa0=10 ms anda1=40 ms, packet sizes of
b=20 bytes andb=80 bytes, and activity factors ofα0=0.75 andα1=0.375.
The traffic mixs0 : s1 is indicated in the figures.

C. Modulated∑0≤i<k ni ·Di/Di/1: Multiplexing On/Off Peri-
odic Flows with Different Periods and Packet Sizes

In a more general case, we multiplexk different classes of
on/off modulated periodic flows. Streams of different classes
i send with different periodsai , different packet sizesbi , and
different activity factorsαi , 0≤ i <k.

1) Approximation Formula Based on the Pattern of Active
Flows (General-Appx):We extend Equation (12) and its mod-

ification in Section IV-B2 to this problem by considering all
possible patterns of active on/off flows(m0, ...,mk−1) together
with their likelihood p(m0, ...,mk−1)=Π0≤i<kP(ni ,mi ,αi) (see
Equation (11)). For each such pattern we can calculate the
CCDF of the packet waiting timeWCCDF(m0, ...,mk−1) accord-
ing to the approximation presented in Section III-E1. Then,
the CCDF of the packet waiting time for multiplexed on/off
traffic can be approximated byP(W > t) = Xnum

Xdenom
where the

expressions for the numerator and the denominator are

Xnum= ∑
0≤m0<n0

... ∑
0≤mk−1<nk−1

(

p(m0, ...,mk−1) ·
(

∑
0≤i<k

mi
)

·

WCCDF(m0, ...,mk−1)
)

Xdenom= ∑
0≤m0<n0

... ∑
0≤mk−1<nk−1

(

p(m0, ...,mk−1) ·
(

∑
0≤i<k

mi
)

)

.(13)

2) Validation of the Proposed Approximation:We validate
the General-Appx approach in a similar way as in Sec-
tion III-E. We choose two classes with different periodsa0=10
ms anda1 = 40 ms, packet sizesb0 = 20 bytes andb1 = 80
bytes, activity factorsα0=0.75 andα1=0.375, and multiplex
them onto a link with a capacity ofc≈1.138 Mbit/s. We con-
sider 5 different traffic mixess0 :s1 ∈ {1:0,3:1,1:1,1:3,0:1}
to assess the accuracy of the formula for link utilizations of
ρavg=0.55 andρavg=0.8.

Figures 7(a)–7(b) show the CCDFs for all considered traffic
mixes. Traffic mix 1 : 0 has the shortest packet waiting time
and traffic mix 0 : 1 has the longest one, the others are in
between. We observe a similar behavior regarding horizontal
lines as in Figures 6(a)–6(b). However, there, the different
overload probabilities, i.e. they-value of the horizontal lines
are caused by different average utilizations while the differ-
ences in Figures 7(a)–7(b) are caused by the different activity
factorsα0 andα1. For small utilization values, the overload is
unlikely and Appx-General captures the packet waiting time
quite well. The accordance of the results from approximation
and simulation is rather good for all investigated traffic mixes
and utilization values. The match of the simulated and approxi-
mated curves even improves for larger link bandwidths. Appx-
General inherits its limitations from EffPsPd-Appx and OnOff-
Appx, i.e., the CCDFs are inaccurate for a small number of
flows with extremely large differences in packet sizes and
periods or if the durations of on/off phases are rather short,
e.g. 1 s or smaller.

V. CONCLUSION

The first contribution of this work are new simple formulae
to calculate the CCDF of the packet waiting time of multi-
plexed periodic flows with different periods and packet sizes.
We showed by extensive simulations that they are sufficiently
accurate if periods and packet sizes differ by an order of
magnitude. Complex formulae already exist for that objective,
but they are hard to implement while our methods are simple
and, therefore, well applicable in practice.

The second contribution of this work is the extension of the
formulae mentioned above to on/off traffic. Such a formula
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already existed for homogeneous on/off flows whose traffic
rates cannot exceed the link bandwidth. We extended this
approach towards overbooking and studied its accuracy which
is good if on/off phases are sufficiently long. In particular, the
method works well if the traffic has the on/off characteristics
of typical compressed speech [23].

The presented methods are useful in an environment with
overbooked transmission lines to support admission decisions
for new flows in order to avoid extensive packet loss and delay
[24].
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