
©IFIP, 2020. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for redistribution.
The definitive version was published in 1st International Workshop on Time-Sensitive and Deterministic Networking (TENSOR 2020),

June 2020, Paris, Fance.

P4 In-Network Source Protection for Sensor
Failover

Steffen Lindner∗, Marco Häberle∗, Florian Heimgaertner∗, Naresh Nayak†, Sebastian Schildt†,
Dennis Grewe†, Hans Loehr†, and Michael Menth∗

∗ University of Tuebingen, Chair of Communication Networks, Tuebingen, Germany
Email: {steffen.lindner,marco.haeberle,florian.heimgaertner,menth}@uni-tuebingen.de,

† Corporate Sector Research and Advance Engineering, Robert Bosch GmbH, Renningen, Germany
Email: {naresh.nayak,sebastian.schildt,dennis.grewe,hans.loehr}@de.bosch.com

Abstract—Automated systems like industrial applications or
autonomous cars heavily rely on sensor information. To increase
reliability, several sensors may be used to provide identical data,
e.g., temperatures or velocity. Applications exploiting this data
may either use both data streams or rely on a single primary
data stream until the primary stream fails. This increases the
complexity of the application and is prone to errors. In this paper
we present a prototype and mechanisms for in-network sensor
failover. Our novel prototype detects the failure of a primary
sensor and delivers in turn the data of a redundant sensor to the
application.

I. INTRODUCTION

Reliability is an important property of system critical in-
frastructure. Traditional resilience mechanisms protect against
single link and single node failure, i.e. the connectivity can be
restored if a single link or a single node fails. The detection of
a link or node failure may require a few 10s of milliseconds
so that traffic loss cannot be avoided. Loop-Free Alternates
(LFAs) [1] are an example for such a mechanism. To respond
faster to an incident, traffic can be transmitted redundantly on
multiple paths. If there is an error on one path, the traffic
on another path is still transmitted correctly. As traffic is
transmitted redundantly, a substantially higher bandwidth is
required and the resources of the network are not used in
an optimal manner. 1+1 protection [2] is an example for a
redundant protection mechanism. These network protection
mechanisms protect only against network failures like link
or node failures. However, they cannot help when the source
node fails. The source can be protected by having several
sources providing the same information. Possible use cases
include sensors in industrial facilities, (autonomous) cars,
or other publish/subscribe scenarios. In a publish subscribe
environment, publishers offer data that can be accessed by
subscribers. To compensate for the failure of a publisher,
several publishers provide the same information. In case of
an error, the information is provided by another publisher.
To that end, the failure of a publisher must be detected and

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-2. The authors alone are responsible for
the content of the paper.

the network re-configured. Alternatively, an application can
subscribe to several streams and independently perform error
handling. These methods either require additional signaling
effort, and thus time, or involve redundant implementations in
different applications. In industrial and time-critical networks
in general, the demands on data streams are usually stringent,
not only in terms of bandwidth, latency and jitter, but also
in terms of response time in the event of errors. While new
paradigms and standardization efforts like time-sensitive net-
working (TSN) and deterministic networking (DetNet) provide
a broad feature set to guarantee these requirements, they
come with the need of specialized and costly hardware. With
software defined networking, new mechanisms and protocols
can be developed without requiring specialized hardware.
Technologies such as P4 enable the data plane of a compatible
switch to be programmed, paving the way for new prototypes
and mechanisms. In this paper, we present two mechanisms
that can be used to implement a fast failover for redundant
sensor pairs in a network. In the error-free case, only data
from the primary sensor is forwarded. If the primary sensor
fails, the switch detects the missing data of the primary
sensor and forwards the data of the redundant sensor. The
presented mechanisms neither require additional signaling nor
the reconfiguration of the network. Furthermore, the failover
is transparent for the receiver. We present a P4-based imple-
mentation of the proposed mechanisms and evaluate them on
the high-performance P4 switching ASIC Tofino.

The remainder of the paper is structured as follows. We
discuss some related resilience mechanisms in Section II.
Section III gives an overview of the data plane programming
language P4. Afterwards, we introduce two mechanisms for in-
network sensor failover in Section IV. Section V gives some
insights regarding the P4-based implementation of the pro-
posed mechanisms. We evaluate and discuss the mechanisms
in Section VI. Finally, Section VII concludes the paper.

II. RELATED WORK

In this section we present some related resilience mech-
anisms. Closely related to our case study is the area of
publish/subscribe networks. In a publish/subscribe system,

©1st International Workshop on Time-Sensitive and Deterministic Networking (TENSOR 2020), June 2020, Paris, Fance



users can subscribe to publishers to receive information. To
ensure reliability, several publishers can provide the same
information. In our deployment scenario the user corresponds
to the application and the sensors correspond to publishers.

In [3], the authors propose an extension to the PURSUIT
framework to introduce source recovery in information-centric
networks (ICN). They introduce a new component, called
resilience management (RM). To detect a component fail-
ure, each node exchanges link state updates (LSU) with its
neighbors. If a node does not receive a LSU within a time
limit, a link failures is assumed. The topology management
(TM), another component in the PURSUIT framework, re-
ceives this information and updates the topology accordingly.
Afterwards, affected distribution trees can be altered and the
connectivity can be restored. If the failure affects a publisher,
the distribution trees can be adjusted to use an alternative
publisher. Hoefling et. al [4] propose a distributed load balanc-
ing mechanism for SeDAX, a publish/subscribe information-
centric networking architecture. They ensure robustness by
replicating content on multiple nodes. If the primary node
fails, it is possible to switch directly to the second node in
order to continue offering the content.

The data distribution service (DDS) [5] is a platform-
independent standard for data-centric publish subscribe sys-
tems. It is designed for real-time systems with low latency
and high robustness requirements. DDS facilitates that several
publishers supply the same data while a subscriber always re-
ceives data from the so-called ”most-trusted” publisher. If the
”most-trusted” publisher fails, the application automatically
uses the data of the next publisher. This failure mechanism
requires an action from the application, provided by the DDS
framework. Campelo et. al [6] propose an architecture for a
fault-tolerant distributed industrial control system composed of
several micro-controllers. The system can switch to an alterna-
tive micro-controller in case of a failure. Another architecture
for safety-critical applications is described in [7].

III. P4 FOUNDATIONS

We first give an overview of P4. Then we summarize
basics of the P4 pipeline that are needed to understand the
implementation of the P4 implementation.

A. P4 Overview

P4 is a programming language for protocol-independent
packet processors [8]. It allows a flexible description of its
processing pipeline, in particular the definition of arbitrary
headers and packet parsers. P4 programs are compiled to so-
called targets, e.g., the software switch BMv2 or switching
ASICs. A compiled program offers the P4Runtime as an API
so that P4 nodes can be re-configured by controllers during
runtime.

B. P4 Pipeline

Figure 1 illustrates P4’s abstract forwarding model. A user-
programmable parser reads an incoming packet and stores

its header information in P4-internal header fields. They are
carried with the packet through the P4 pipeline, possibly with
additional metadata.

Fig. 1. P4 abstract forwarding model according to [8].

The P4 abstract forwarding model is divided into two stages,
the ingress and the egress pipeline, which are separated by
the packet buffer. For modularity, the ingress and egress
pipeline can be further subdivided by control blocks (CB).
Match+action tables (MATs) allow for packet-specific process-
ing. They have entries consisting of match fields and match
types that map packets to actions and parameters. One action
may be defined to be carried out if no table entry matches a
packet (table miss).

P4 offers in its core definition three match types: exact, lpm,
and ternary. Exact implies that a packet header must contain
the match field in the table entry, e.g. a given IPv4 address in
the destination address field of an IP header. Lpm stands for
longest prefix match which is well-known from standard IP
forwarding. Ternary facilitates wildcard matches. A packet is
processed at most once by the same MAT within the pipeline.

C. Registers

Information stored in metadata are only valid during a
packets lifetime. To store information beyond the lifetime of
a packet, P4 offers the ability to store information in so-
called registers. Information stored in registers can be accessed
during packet processing. We leverage registers to store data
required for the protection mechanisms.

IV. IN-NETWORK SENSOR FAILOVER

In this section we first give an overview of the general
context. Afterwards, we describe novel protection mechanisms
for in-network sensor failover.

A. Overview

Figure 2 shows the concept of the proposed protection
mechanisms. Two sensors periodically send data to an appli-
cation over a network. To ensure reliability, both sensors send
the same information, e.g., temperatures or velocity, but may
send them with different periods.

An application may decide which data to use. The appli-
cation might either use both data streams or only one data
stream and, in case of an error, switch to the second data
stream. However, this comes with an increase in program
logic and developers have to deal with sensor failures. We
propose to transfer the sensor failover to the network by
leveraging programmable network devices, e.g. P4 switches.
Two different modes of operation can be distinguished. By



Fig. 2. Conceptual overview. Two redundant sensors provide information for
a application.

default, the primary sensor data is forwarded to the application.
With the aid of periodic messages from the redundant sensor,
the P4 switch can detect if the primary sensor fails. If a failure
is detected, data from the redundant sensor can be forwarded
to the application.

(a) Counter-Based protection mechanism.

(b) Timer-Based protection mechanism.

Fig. 3. Overview ot the operations of the counter-based and timer-based
protection mechanism.

B. Mechanisms

To detect the failure of the primary sensor, we leverage
the time dependencies between the two data streams of
the sensors. We propose two mechanisms to detect sensor
failures, counter-based and timer-based failover, respectively.
Figure 3(a) and Figure 3(b) illustrate the operations of the two
protection mechanisms. We refer to actions involving register

access as Register Actions, and actions without this access
solely as Action.

1) Counter-Based Failover: The first protection mechanism
is based on a counter approach. A counter is increased for each
arriving data portion from the redundant sensor. In simplest
form, the counter is increased by one and stored in a register
field leveraging a Register Action. For each arriving data
portion of the primary sensor, the counter is set to zero.
If the counter exceeds a certain threshold Tc, the switch
forwards the data from the redundant sensor to the application.
The threshold has to be selected in such a way that the
dependencies of the two data streams are taken into account.
For example, if the redundant sensor transmits data twice as
fast as the primary sensor, a failure of the primary sensor can
be detected by a threshold of two and an increase by one. In
such a case, at most one packet of the primary sensor is lost. If
the periods of the two sensors are not multiples of each other,
the same effect can be achieved by scaling the threshold and
the respective increase of the counter.

If the primary sensor transmits faster than the secondary
sensor, it cannot be guaranteed that at most one packet from
the primary sensor will be lost. Furthermore, a change in the
sensor periods may result in undesired behaviour, which is
further described in Section VI. This protection mechanism
is implemented for the high-performance P4 switching ASIC
Tofino and demonstrated in Section VI.

2) Timer-Based Failover: The counter based approach is
reliable if the sensor periods are stable. If the sensor periods
change during operation, the relation between the intermediate
arrival times and the configured threshold is no longer correct.
In addition, the currently stored value in the counter is no
longer valid. As a consequence, the counter must be reset.
However, this may cause a delayed switch-over to the redun-
dant sensor. To overcome this problem, we propose to use the
actual intermediate arrival times for the protection mechanism
instead of the counter-based relation among the arrival times.
The timer-based approach utilizes packet timestamps which
can be accessed during packet processing. For each arriving
data portion of the primary sensor, the packet timestamp is
saved in a special register. Data from the redundant sensor
is only forwarded, if the elapsed time since the last data
portion of the primary sensor exceeds a certain threshold Tt.
This more advanced mechanism is implemented for the BMv2
software switch and can be accessed at Github1. The timer-
based mechanism can also be implemented for the Tofino.
For simplicity, we only implemented this mechanism for the
BMv2. We give some examples of its advantages over the
counter-based mechanism in Section VI.

V. IMPLEMENTATION

In this section we describe the P4 based implementation of
the protection mechanisms presented in Section IV. First, we
will give an overview of the P4 pipeline. Afterwards, we will

1Repository: https://github.com/uni-tue-kn/p4-source-protection



describe the important properties of the control block Protect,
which implements the protection mechanisms. Finally, we give
a rough overview of the control plane.

A. Overview

The implementation is based on a local Ethernet network
and comprises local layer-2 switching and the applied pro-
tection mechanism. Figure 4 illustrates our implemented P4
pipeline.

Fig. 4. Overview of the ingress pipeline.

The implementation solely requires the ingress part of the
P4 pipeline. The P4 pipeline was introduced in Section III.
The ingress pipeline is divided into three control blocks
(CBs), named CB Topology, CB Protect and CB L2. The
control blocks CB Topology and CB L2 are used for general
network connectivity such as topology recognition and layer-
2 forwarding. The protection mechanisms are implemented in
the control block CB Protect. Incoming packets traverse all
three control blocks.

B. Control Block CB Protect

The control block CB Protect implements the two previ-
ously presented mechanisms. In order for the mechanisms
to work, the switch must have access to several pieces of
information. First and foremost, the switch must know the
relation between the sensors and its physical interfaces, i.e.
which interface corresponds to which sensor. Furthermore,
the switch requires the configured threshold Tc or Tt. These
information is dynamically provided with match+action tables
(MATs). During packet processing, the information is made
available by matching on these MATs and storing the required
information in metadata fields. As soon as the period of the
sensors changes, the contents of the MATs can be updated by
the control plane. As a consequence, we can react dynamically
to the changes. In addition to the interface and threshold
information, the last timestamp of the primary sensor and the
counter must be stored. We leverage registers that are available
in the software switch BMv2 as well as in the Tofino.

C. Control Plane

The control plane is responsible for filling the different
MATs with entries. To that end, it provides an interface for
runtime changes and updates the MATs accordingly. It utilizes
information of a proprietary topology detection mechanism to

calculate the appropriate forwarding rules of the network to
enable local layer-2 forwarding.

VI. EVALUATION & DISCUSSION

In this section we illustrate the functionality and effec-
tiveness of the two introduced protection mechanisms. To
accomplish this, we perform experiments in our testbed using
our prototype. We first explain the general setup of our
experiments. Afterwards, we introduce our evaluation metrics.
Finally, we describe the experimental results and explain some
theoretical examples.

A. Methodology

1) General Setup: The hardware testbed consists of three
servers physically connected to a Tofino Edgecore Wedge
100BF-32X as shown in Figure 2. The servers are based
on an Intel Xeon Scalable Gold 6134 (8x 3.2 GHz) and 4x
32 GB RAM. The Tofino Edgecore Wedge 100BF-32X is a
high-performance P4 switch with 32 100G ports. Two servers
thereby act as sensors, the third server mimics an application.
Both sensors send data to the application with different periods
p0 and p1.

2) Metric: We evaluate the arrival of the packets of the
two sensors at the application. During operation we simulate
a sensor failure by disconnecting the link between the primary
sensor and the P4 switch. We demonstrate that the correct
configuration of the mechanism is essential and show by a
theoretical example that the timer-based approach is superior
to the counter-based approach.

B. Counter-Based Protection

To illustrate the influence of the threshold on the counter-
based mechanism, we consider the experiment as described in
Section VI-A. Figure 5(a) reflects the result of an incorrect
configuration of the counter-based mechanism. The primary
sensor sends with a period of p1 = 10 ms and the redundant
sensor with a period of p2 = 5 ms. Since the secondary sensor
transmits twice as fast as the primary sensor, a failure of the
primary sensor can be detected by a threshold of Tc = 2.
In this experiment the threshold was falsely set to Tc = 5.
Figure 5(a) shows the incoming data packets from the primary
sensor (sensor 1) and the redundant sensor (sensor 2) at the
application for this configuration.

At time t = 0, the first packet of the primary sensor is
lost. Subsequently, due to the wrong threshold, two additional
packets of the primary sensor are lost before the system
switches to the redundant sensor. In contrast, Figure 5(b)
shows that with a properly tuned threshold, only one packet
of the primary sensor is lost.

C. Timer-based Protection

With constant sensor periods, the timer-based mechanism
performs as well as the counter-based mechanism. However,
as soon as the periods change during operation, the timer-
based approach is superior. Two strategies can be pursued
for the counter-based approach. After a period change, the



(a) p1 = 10 ms, p2 = 5 ms, Tc = 5.

(b) p1 = 10 ms, p2 = 5 ms, Tc = 2.

Fig. 5. Influence of threshold on sensor failover for the counter-based
protection mechanism.

counter can either be reset or maintained. We now consider
the case that the counter is reset. Figure 6(a) illustrates an
example. Note that all transmitted signals are displayed. We
further assume that at t = 0 the primary sensor fails and
that the counter is reset. At the same time the period of the
redundant sensor changes from 1 ms to 2 ms. The counter-
based approach forwards the data of the redundant sensor at
time t = 10 ms, as all information before the period change is
lost. In contrast to the counter-based mechanism, the timer
based mechanism performs the switch-over as intended at
t = 4 ms. Figure 6(b) visualizes the differences.

If the counter is maintained at a period change, the counter-
based mechanism will still not behave correctly. Lets assume
similar settings as in the previous example. The primary sensor
transmits data with period p1 = 10 ms, the secondary sensor
with p2 = 1 ms. At time t = 0 the primary sensor fails, the
counter equals four and the period of the secondary sensor
switches again to p2 = 2 ms. Figure 7(a) illustrates this setup.
As the counter has not been reset, the switch erroneously
switches to the redundant sensor at time t = 2. Again,
Figure 7(b) shows that the timer-based mechanism is not
affected by this problem.

VII. CONCLUSION

Sensors in critical systems must provide applications with
redundant information. Applications have to decide how to
handle the different data streams and how to react to the
failure of one of the data streams. This is not only prone to
errors but also leads to duplication in application logic. In this
paper we proposed two mechanisms to move the detection
of sensor errors to the network to make the redundant data
transmission transparent for the application. We have shown
the disadvantages of a simple counter-based mechanism and

(a) Counter-based mechanism with reset.

(b) Timer-based mechanism.

Fig. 6. Different behaviour of the two mechanisms during a period change.
The counter-based mechanism requires more time for the switch-over than
the timer-based mechanism.

(a) Counter-based mechanism without reset.

(b) Timer-based mechanism.

Fig. 7. Different behaviour of the two mechanisms during a period change.
The counter-based mechanism erroneously forwards data from the secondary
sensor.



presented a more complex timer-based mechanism for the
BMv2.

REFERENCES

[1] A. Atlas and A. Zinin, “RFC5286: Basic Specification for IP Fast Reroute:
Loop-Free Alternates ,” Sep. 2008.

[2] “ITU-T Recommendation G.7712/Y.1703 (2010), Internet protocol as-
pects – Operation, administration and maintenance,” ITU, Sep. 2010.

[3] M. F. Al-Naday, M. J. Reed, D. Trossen, and K. Yang, “Information
resilience: source recovery in an information-centric network,” IEEE
Network, vol. 28, no. 3, pp. 36–42, 2014.

[4] M. Hoefling, C. G. Mills, and M. Menth, “Distributed load balancing for
the resilient publish/subscribe overlay in sedax,” IEEE Transactions on
Network and Service Management, vol. 14, no. 1, pp. 147–160, 2017.

[5] M. Ryll and S. Ratchev, “Towards a publish / subscribe control architec-
ture for precision assembly with the data distribution service,” in Micro-
Assembly Technologies and Applications, S. Ratchev and S. Koelemeijer,
Eds. Boston, MA: Springer US, 2008, pp. 359–369.

[6] J. Campelo, F. Rodriguez, A. Rubio, R. Ors, P. Gil, L. Lemus, J. Busquets,
J. Albaladejo, and J. Serrano, “Distributed industrial control systems: a
fault-tolerant architecture,” Microprocessors and Microsystems, vol. 23,
no. 2, pp. 103 – 112, 1999.

[7] B. Rostamzadeh, H. Lonn, R. Snedsbol, and J. Torin, “Dacapo: a
distributed computer architecture for safety-critical control applications,”
in Proceedings of the Intelligent Vehicles ’95. Symposium, 1995.

[8] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, 2014.


