
c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work

in other works.

Establishing a Session Database for SDN Using
802.1X and Multiple Authentication Resources

Frederik Hauser, Mark Schmidt, Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

Abstract—Network control systems based on identities allow
fine-grained access control for users. They require a network-wide
session database containing information about active authenti-
cated and authorized users. We propose an authentication and
authorization (AA) module (AAM) as a controller application
for software-defined networking to establish a network-wide
session database and provide a prototypical implementation with
OpenFlow. End systems issue authentication requests and the
switch redirects them to the AAM. The AAM either relays them
to a RADIUS server as in legacy 802.1X (pass-through mode) or
processes them based on directly attached AA resources (authen-
tication server mode). After successful authentication, the AAM
authorizes the requesting user and maintains a network-wide
session database of authenticated and authorized identities. As the
AAM interfaces to end systems and AA resources through existing
protocols, i.e., EAP and RADIUS, its use is compatible with
current infrastructures. Through implementation as distributed
network functions, the AAM can be scaled so that high rates of
authentication requests can be supported.

I. INTRODUCTION

Securing networks by introducing authentication and au-
thorization is a major goal in network security. Especially
large-scale networks with thousands of users require sophis-
ticated network access control. Infrastructures for deploying
authentication, authorization, and accounting (AAA) provide
the technical foundations that have been used for many
years. So far, authorization mostly supports coarse-granular
access permissions or identity-based VLAN tagging. However,
today’s demands for secure network admission control go
beyond that.

The rise of software-defined networking (SDN) led to
extensive work on fine-granular network control systems that
are based on user identities. Approaches like Ethane [1],
Resonance [2] or Kinetics [3] allow network control with
abstract identity-centric rules and stateful network control
actions. This concept is called identity-based security [4] and
has the potential to improve and simplify security solutions
for large-scale networks with different security levels and user-
specific access rights.

Network control systems based on user identities require
network-wide session databases and reliable authentication
mechanisms. The latter should be compatible to existing AAA
infrastructures and end systems. Today, the majority of ap-
proaches for network access control applications in OpenFlow-
based SDN suggest authentication using web frontends or

This work was supported by the bwNET100G+ project which is funded by
the Ministry of Science, Research and the Arts Baden-Wuerttemberg (MWK).
The authors alone are responsible for the content of this paper.

MAC address mappings. Both approaches reveal shortcomings
regarding compatibility, usability, and security that are pointed
out in Section III. 802.1X is the most widely applied method
for authentication and authorization (AA) in networks today.
Some research works have adopted 802.1X for SDN but
without leveraging the increased flexibility offered by SDN.
In particular, there is no common best practice to perform AA
using 802.1X for SDN.

We suggest an authentication and authorization module
(AAM) as controller application to maintain a network-wide
session database which interfaces with 802.1X to end systems
and with other protocols, e.g., RADIUS, to authentication
resources. The AAM can be easily used with existing end
systems implementing 802.1X but does not suffer from the
limitations of current 802.1X deployments. In particular, the
AAM maintains a session database as needed for fine-granular
network access control and can also leverage other authenti-
cation resources than RADIUS, e.g., user information in local
databases.

The remainder of this paper is structured as follows.
Section II shortly reviews key aspects of 802.1X. Section III
discusses related work. In Section IV, we describe the AAM in
detail. Section V describes its prototypical implementation and
experimental evaluation giving a proof-of-concept. Section VI
discusses how network function virtualization may be used
to scale the AAM to large request rates. Finally, Section VII
summarizes this work and draws conclusions.

II. AUTHENTICATION AND AUTHORIZATION
USING 802.1X

In the following, we give an overview of the 802.1X archi-
tecture, describe the supporting protocols EAP and RADIUS,
illustrate the operation of 802.1X, and discuss limitations of
current deployments.

A. 802.1X Architecture

IEEE 802.1X [5]–[7] describes port-based network ad-
mission control in Ethernet networks. Although originally
introduced for wireline networks, 802.1X is mainly known
from wireless 802.11 networks today. A prominent application
of 802.1X is eduroam [8], a federation of wireless university
campus networks worldwide which allows participants to con-
nect to the Internet in foreign institutions.

Figure 1 shows the architecture of 802.1X which adopts
the components of the abstract AAA architecture in [9] with
a different nomenclature. A network host is called supplicant
system and contains a supplicant module. A LAN edge switch
controlling the access of network hosts to the network is called



authenticator system and contains an authenticator module.
The AAA server is called authentication server system and
contains the authentication server. It is responsible for exe-
cuting the actual authentication and provision of authorization
information, and is triggered by the authenticator.

Authentication
ServerAuthenticatorOffered 

ServicesSupplicantProtocols

LAN

un
au

th
or

ize
d

po
rt

un
au

th
or

ize
d

po
rt

Supplicant 
System

Authenticator 
System

Authentication
Server System

Fig. 1: Port-based authorization model of 802.1X according to [6].

The ports within the supplicant and authenticator system
can be considered as abstract port entities. Without success-
ful authentication and authorization, the supplicant system
can reach only the authenticator module on an authenticator
system. A 802.1X AA procedure is always initiated by the
supplicant sending a start message to the authenticator. After
successful authentication and authorization the unauthorized
ports become authorized. Authorization in this context can be
coarse- or fine-granular. The authentication server may inform
the authenticator with a binary information whether access
should be granted, or it may also provide a specific VLAN
tag [10] for prospective user traffic.

Figure 2 shows that 802.1X encompasses both frontend
and backend AA. Frontend authentication between the suppli-
cant and authenticator modules is defined by the Extensible
Authentication Protocol (EAP) [11]. Backend AA between
the authenticator module and the authentication server can be
performed by the Remote Authentication Dial In User Service
(RADIUS) [12] or the Diameter protocol [13].

Authentication
Server

EA
Po

L RADIUS
802.1X

Switch with 802.1X
Authenticator

Frontend Authentication Backend Authentication

Authentication
Ressource

LDAP
SQL

Supplicant

Fig. 2: Interaction of components in the classic 802.1X architecture.

B. EAP and RADIUS in 802.1X

In the following, we introduce EAP and RADIUS in the
context of 802.1X by looking at the examplary AA process
depicted in Figure 3. We solely focus on RADIUS because it
is the most-widely used protocol for backend AA.

1) Initialization of AA in 802.1X: The supplicant module
on the network client initiates AA by sending an EAPOL-
Start message. EAPoL is an EAP-over-LAN encapsulation to
transport EAP messages within Ethernet frames that was intro-
duced with 802.1X. EAP facilitates communication between
supplicant and authenticator, and it provides a fixed request
and response scheme to exchange authentication data between
supplicant and authentication server.

2) Identity-based AA in 802.1X: The authenticator requests
the client’s identity and forwards it to the RADIUS authenti-
cation server. RADIUS supports large domains that consist of
a large number of hierarchically organized RADIUS servers.
Each identity (e.g. an user) is associated with a domain and
known by the RADIUS server of that domain. Therefore, the
identity is the most relevant information for routing AA at-
tempts within RADIUS infrastructures. This principle is used,
e.g., in eduroam which allows users to leverage the wireless
university campus network infrastructure on foreign campuses
or special venues like IETF meetings and conferences.

3) Authentication in 802.1X: Authentication is performed
between supplicant and authentication server. The authen-
ticator decapsulates EAP packets from EAPoL frames and
reencapsulates them in RADIUS frames and vice versa. The
flexible message structure of EAP allows the use of different
authentication procedures. Simple approaches carry plain-text
identity information or simple MD5-hashed passwords, but
more secure authentication procedures like IKEv2 for EAP
[14], EAP Tunneled TLS [15], and EAP-TLS [16] are also
supported. As the authenticator only relays EAP messages in
pass-through manner, it does not need to implement any EAP
type specifics.

4) Authorization in 802.1X: After successful authentica-
tion, the RADIUS server may return authorization data, e.g., a
VLAN tag. The authenticator applies the authorization data on
the particular physical port on the switch, e.g., it sets a VLAN
tag. Afterwards, the authenticator confirms successful AA to
the supplicant with an EAP-Success message.

802.1X

Authentication 
Server

EAPOL-Start

EAP-Request / Identity

EAP-Response / Identity

EAP-Success

Port authorized

Supplicant Authenticator

Access-Request (Identity)

Access-Accept

Authentication using EAP (EAP-MD5, EAP-TTLS, …)

RADIUSEAPoL

Authorization

1

2

3

4

Port not authorized

Fig. 3: Communication example of 802.1X based authentication and autho-
rization (AA).

2



C. Limitations of 802.1X

In [17], client-side security concerns of 802.1X are pointed
out. Here, we discuss limitations regarding flexibility with
respect to the infrastructure side.

1) Dependence on RADIUS or Diameter: 802.1X requires
a RADIUS or Diameter server for backend AA. In most cases,
RADIUS servers use AA data stored on external resources
like an Lightweight Directory Access Protocol (LDAP) server
or an SQL database. The use of RADIUS is an advantage if
user data needs to be accessed from a foreign domain, but
for exclusively local applications this is unnecessary overhead
because RADIUS is an additional service which requires con-
figuration and administration effort. Direct interaction between
an authenticator and an AA resource is more lightweight and
may be used in parallel to other RADIUS resources. Another
aspect is formal administration overhead. Official RADIUS
infrastructures are managed by central computation centers and
adding users is a major administration process which may be
desirable to avoid for separate experimental infrastructure or
student labs.

2) Change of Authorization: Backend authentication in
802.1X does not support unsolicited messages from an authen-
tication server to an authenticator. As a consequence, changes
in AA data, e.g., revocation of a user’s permission to access
the network, cannot be applied to existing sessions. Due to this
limitation, dynamic authorization extensions [18] to RADIUS
have been defined but they are are supported by only a few
authenticator implementations.

3) Stateless Property of RADIUS: Today, an unlimited
number of concurrent authorized network accesses may be
initiated with 802.1X using the credentials of the same identity.
This is due to the stateless property of the system, i.e.,
authenticator and authentication servers do not keep records
of currently authorized user sessions. Due to this shortcoming,
the Simultaneous-Use extension [19] was defined to limit the
number of concurrent sessions and to introduce some session
context on the RADIUS server. The radutmp module [20]
for FreeRADIUS implements this extension but is hardly
deployed. Active sessions are tracked by little standardized
RADIUS accounting messages or through the use of SNMP,
Finger, and telnet which is not a reliable solution to the
problem.

III. RELATED WORK

We give an overview of network control systems based on
user identities and report state of the art for authentication in
SDN.

A. Network Control Systems Based on User Identities

Ethane [1] introduced abstract rules based on user identi-
ties, host classes, and protocols for the definition of abstract
rules for network access. Resonance [2] extends this rather
stateless view by introducing state graphs for network hosts.
Their states change in the network control system, e.g., when
a network security scanner detects a malware infection on
an authorized host. Kinetics [3] introduces a domain-specific
language for the definition of fine-granular network control
rules. In addition, it allows formal verification of these rules.

Ravel [21] focuses on plain network rule representation in
an SQL database and heavily uses view abstractions. All
these approaches require a session database, but none of them
addresses how to build and maintain it using common AA
mechanisms.

B. Authentication and Authorization (AA) in SDN

MAC address mapping and web frontends are most widely
used for AA in SDN. Moreover, some research prototypes
adopt 802.1X in various forms to provide the same service
as today, but they do not maintain a session database.

1) Identification and Authorization Using MAC Addresses:
In this approach, MAC addresses are either used as identities
or they are mapped to identities. The identities are used to
fetch authorization data from an AA resource, e.g., a RADIUS
or an LDAP server. In contrast to authentication, this process
of identification does not verify the identity claimed by the
network client. MAC addresses are unique but not confidential,
especially network devices like printers often have a printed la-
bel revealing their MAC addresses. Moreover, MAC addresses
are easy to eavesdrop. Even a novice attacker can spoof MAC
addresses and, therefore, easily impersonate network hosts to
obtain access to the network.

2) AA Using Web Frontends: When web frontends are
used for AA and an unauthorized user sends traffic, the user
is redirected to a web frontend to provide credentials, e.g.,
a user name and password, or a client certificate. This is
problematic, because it requires a valid IP configuration prior
to authorization. Moreover, an HTTPS-capable web browser is
not available on all platforms like printers, document scanners,
phones, or surveillance cameras. Besides, re-directions require
web browser usage. If browsers are not used, like on pure ad-
ministration workplaces, users have to recognize that network
connectivity is currently limited due to missing authorization
and manually visit the web frontend. Providing credentials in
a web frontend is cumbersome, especially if users are required
to complete frequent re-authentications.

The web frontend directly interfaces an AA resource, e.g.,
an LDAP server or an SQL database. Therefore, the web
application needs to implement the actual AA procedure. First,
it may compare the input from a user with a hashed password
from the AA resource. Then, it may report the authorization
data, possibly including a VLAN tag, to the SDN controller.
The authors in [22] and [23] focus on compatibility with
existing backend authentication infrastructures that are based
on RADIUS. The web frontend acts as a RADIUS client
performing the AA procedure with the help of a RADIUS
server.

3) AA in OpenFlow-Based SDN Using 802.1X: Some re-
search prototypes for OpenFlow-based SDN adopt 802.1X for
AA. Most of them make use of hostapd [24], an open-source
user-space implementation for an 802.1X authenticator.

The SDN controller FAUCET [25] forwards EAPOL
frames to a user-space instance of hostapd [24] that au-
thenticates and authorizes the network client. The frontend
hostapd_cli interfaces hostapd and outputs information about
all AA attempts in a log file. A script monitors the log file
and reports successful authentication attempts to the SDN

3



controller. As an alternative approach, AuthFlow [26] extends
hostapd by introducing an SSL-based communication channel
to directly signal successful AA attempts to the SDN con-
troller. Finally, FlowIdentity [27] builds a wrapper for running
an instance of hostapd within the SDN controller Trema.

Instead of authenticating and authorizing users or end
systems, FlowNAC [28] uses 802.1X to build a fine-granular
network access control system to authenticate different appli-
cations on a network host. To enable multiple authentication
and authorization processes per host, FlowNAC introduces
EAPOL-in-EAPOL encapsulation as an extension to legacy
802.1X. This deviation from the original standard requires
changes on all 802.1X components (supplicant modules, au-
thenticator modules, and authentication servers) to support the
additions. In particular, the implementations of the 802.1X
supplicant (wpa_supplicant) and authenticator (hostapd) were
extended to support EAPoL-in-EAPoL encapsulations.

IV. THE AAM ARCHITECTURE

The AAM is an AA module which serves as application
for an SDN controller. We describe how the AAM implements
the 802.1X concept, how it leverages multiple authentication
resources, and how it maintains a session database.

A. Implementation of 802.1X in an SDN Context

Figure 4(a) illustrates how 802.1X can be adopted for SDN.
In legacy 802.1X infrastructures, the authenticator resides on
the edge switch as shown in Figure 2. In SDN, we propose
to implement the authenticator as a module, the AAM, on the
SDN controller.

A network host initiates AA by sending an EAPOL-Start
message as depicted in Figure 3. The SDN edge switch is
instructed to forward that message to the controller which
redirects it to the AAM. The AAM adopts the functionality of
a legacy 802.1X authenticator, i.e., it relays communication be-
tween the supplicant and the authentication server as depicted
in Figure 3. Therefore, it does not need to implement specific
EAP types, e.g., EAP-TLS, EAP-TTLS, or EAP-PEAP. We
designate this first mode of the AAM as pass-through mode.

After successful authentication, the RADIUS server may
return authorization data, e.g., a binary permission to access a
particular network or a VLAN tag. This authorization data is
transmitted in the RADIUS Access-Accept message as shown
in Figure 3. The AAM implements mechanisms to translate
authorization data from RADIUS Access-Accept messages
into corresponding SDN rules to be applied on the SDN edge
switch.

B. Integration of Alternative AA Resources

As mentioned before, legacy 802.1X authenticators inter-
operate only with RADIUS or Diameter and so does the above
described concept for SDN. To allow for more flexibility, alter-
native AA resources should be supported. Figure 4(b) shows
our proposal for that integration. The AAM essentially acts
both as authenticator and authentication server. That means,
the AAM must implement all EAP type specifics and perform
the desired authentication procedure using authentication data

LDAP
SQL

SDN Components Legacy Components

SDN
Switch

Supplicant Authentication
Resource

EA
Po

L

SDN
Controller

EA
Po

L

Authentication
Server

RA
D

IU
S

AAM

pass-through
mode

(a) Pass-through mode.

LDAP
SQL

SDN Components Legacy Components

OpenFlow
Switch

Supplicant Authentication
Ressource

EA
Po

L

AAM

SDN
Controller

EA
Po

L

authentication 
server mode

(b) Authentication server mode.
Fig. 4: Interaction of components in the SDN-enabled 802.1X architecture

from the alternative resources. We designate this second mode
of the AAM as authentication server mode.

A simple example for an alternative AA is a CSV file
containing user names, hashed passwords, and authorization
data stored on the SDN controller accessible by the AAM.
A more complex example is an LDAP or an SQL database
with appropriate information that is remotely accessibly by
the AAM but without a RADIUS server in between. The AA
resources also provide authorization data that the AAM should
apply after successful authentication in the form of appropriate
flow rules on the edge switch.

If multiple AA resources exist, the AAM must choose
the appropriate one. We propose two selection options for
that problem: port-based resource selection and identity-based
resource selection.

We first explain port-based resource selection. When an
edge switch redirects the initial EAP request of the supplicant
to the AAM, it includes context information, in particular
the physical port and identifier of the SDN edge switch over
which the packet was received. The AAM may use this port to
determine the authentication resource to be used. A potential
use case is a student lab where particular Ethernet ports may
be authenticated and authorized using a simple AA resource
instead of the RADIUS architecture for the overall campus
network.

The alternative identity-based AA resource selection is
limited to specific EAP methods. All EAP methods have an
identical initialization routine where the authenticator requests
the supplicant’s identity to be transmitted in plain text. As an
improvement for providing confidentiality about the identity
on intermediate nodes, most EAP types support the concept
of outer and inner identities. The outer identity, e.g., anony-
mous@foo.bar, is transmitted in the initialization in plain
text and only serves as forwarding hint within a distributed

4



RADIUS infrastructure to find the RADIUS server in the home
organization of the user. The actual identity of the user, e.g.,
john.smith@foo.bar is transmitted within an encrypted tunnel
between supplicant and authentication server. The authors in
[29] leverage multiple RADIUS infrastructures and use the
outer identity to select the one to be used. We follow a
similar approach and use the outer identity to determine the
appropriate AA resource.

Resource
Selector

EAP-Response
test@group1.local

RADIUS
@group1.local

SQL Database
@group2.local

Fig. 5: The AAM selects the appropriate AA resource using the outer identity
in the EAP response from the supplicant.

C. Network-Wide Session Database

We propose that the AAM maintains a network-wide ses-
sion database which may be used by an identity-based network
control system. This approach allows maintenance of user state
while leaving AA servers and resources simple and stateless
as originally desired.

The session database contains information about all au-
thenticated and authorized identities, in particular all of their
(simultaneously) active sessions. After a network host has suc-
cessfully passed AA, the AAM adds a corresponding session
entry to the session database. Conversely, the AAM uses port-
down events from the SDN edge switch to remove sessions.
As this feature is not available on all switches, sessions may
be closed without notification. Therefore, we propose that the
AAM may periodically issue EAP re-authentication requests
to keep sessions and authorization alive.

Figure 6 illustrates exemplary contents of a session
database for two identities. Each of their session entries
contains information regarding the time of the last successful
AA, the AA method used, the physical port of the network host
and authorization information received by the AA resource.

{test@group1.local : { max_sessions : 2,
sessions : (

{ aaa_time : Mo 13 Jun 2016 14:16:26 CEST,
aaa_method : Radius(ip=10.0.20.100, meth=EAP-MD5),
phys_port : OF-Switch(ip=10.0.20.222, port=1),
assigned_vlans : (10)},

{ aaa_time : Mo 13 Jun 2016 14:18:31 CEST,
aaa_method : Radius(ip=10.0.20.100, meth=EAP-MD5),
phys_port : OF-Switch(ip=10.0.20.222, port=2),
assigned_vlans : (10)},

)},
test@group2.local : { max_sessions : 1,

sessions : (
{ aaa_time : Mo 13 Jun 2016 12:18:31 CEST,
aaa_method : SqlDb(ip=10.0.20.101, meth=EAP-MD5),
phys_port : OF-Switch(ip=10.0.20.222, port=3),
assigned_vlans : (20)},

)}
}

Fig. 6: Exemplary contents of a session database.

External applications can interact with the AAM by using
communication techniques like REST interfaces. For example,
after detection of uncommon behavior, a network security
scanner may issue a de-authorization of a network host. The
AAM triggers the necessary actions on the session database
and SDN edge switches. Vice versa, the AAM could request
the network security scanner to perform a scan on a network
host that passed AA in a network for the first time.

V. PROTOTYPICAL IMPLEMENTATION &
FUNCTIONAL VALIDATION

We explain the implementation of the AAM, describe
our semi-virtualized testbed, and validate the AAM approach
through experimentation.

A. Prototypical Implementation of the AAM

We implemented the AAM as a proof-of-concept for the
Ryu SDN controller framework [30]. Its source code package
contains several bootstrap applications that we used as starting
point. We chose the SimpleSwitch application which controls
an OpenFlow-based SDN switch in such a way that it acts like
a simple Ethernet switch.

In contrast to most approaches presented in section III, we
did not reuse the open-source 802.1X authenticator hostapd
but provided a native Python-based implementation. We chose
dpkt for network packet generation and parsing. We provided
own implementations for EAP and RADIUS as they are not
contained in dpkt.

For AAM’s authentication server mode, the AAM requires
implementations for EAP types (e.g., EAP-TTLS or EAP-
PEAP) and interfaces for AA resources (e.g. LDAP database
or SQL server). We designed an object-oriented class hierarchy
and heavily used the concept of mixins to minimize intersec-
tions. For simplicity reasons, we implemented only EAP-MD5
as a single EAP type.

The initialization routine of the SDN controller installs
on all connected SDN switches two proactive rules for each
physical port that is marked as controlled by the AAM. The
first rule forwards all EAPoL frames from network clients to
the controller which relays them to the AAM. EAPoL frames
are identified by the Ethernet frame’s EtherType value 0x888E.
The second rule drops all other packets at the switch port.
This implements the behavior of the unauthorized state prior
to successful AA.

The AAM also translates authorization data into flow rules
and applies them to the corresponding port on the SDN
edge switch. For example, simple permission of an identity
just removes the flow rule for packet drop. More complex
authorization data may result in flow rules setting a desired
VLAN tag or allowing only a set of predefined destinations.

B. Testbed

We used the logical experimentation setup depicted in
Figure 7 for the validation of the AAM. We experimented with
a hardware- and a software-based OpenFlow-capable switch.
The testbed is entirely virtualized except for the hardware
switch. In the following, we describe the virtualization method-
ology and the OpenFlow switches in more detail.

5



Authentication Server
FreeRADIUS on CentOS VM

KVM-based Hypervisor System

OpenFlow-Switch
Open vSwitch

OpenFlow

SDN-Controller
Ryu

Server 1
CentOS VM

Server 2
CentOS VM

VLAN 10 VLAN 20

Client 1
Lubuntu VM

Client 2
Lubuntu VM

RADIUS802.1X

SQL

Postgre SQL

Fig. 7: Logical experimentation setup.

We used QEMU-based virtual machines with KVM accel-
eration managed by libvirt. As shown in Figure 7, we used
Lubuntu 14.04 for user network hosts with a wpa_supplicant.
As server network host, we used CentOS 7, and FreeRADIUS
as backend authentication server.

We first experimented with HP Enterprise 2920 OpenFlow
hardware switches. They failed handling EAPoL packets with
firmware version 16.01.0006, i.e., flow rules installed to for-
ward EAPoL frames to the controller were not effective, the
frames were simply dropped. We consider this an incompati-
bility issue caused by the hybrid mode of the switch. Besides
pure OpenFlow operation, the switch can be used as legacy
L3/L4 switch with CLI and web frontend configuration. In
legacy mode, the switch includes an 802.1X authenticator. As
a hardware-based alternative, we used the SDN prototyping
platform Zodiac FX with firmware version 0.66 that showed
the expected behavior. As a software-based replacement, we
used Open vSwitch [31] in version 2.4.0.

C. Validation Scenario

We used FreeRADIUS server and Postgre SQL as
AA resources. The RADIUS server contained authentication
data for user test@group1.local along with the VLAN tag
10 as authorization data. Authentication data for the user
test@group2.local along with the VLAN tag 20 were stored in
the SQL database. The AA resource was chosen on the outer
identity provided in the EAP-Response message as depicted in
Figure 3.

We performed various tests to validate the AAM’s behavior.
We tested the ability to use multiple AA resources. The 802.1X
supplicant of Client 1 was alternately configured with the
identity managed by the RADIUS server and the identity
managed by the SQL database as AA resource. Depending
on the identity, Client 1 got access to different VLANs, i.e.,
only Server 1 or Server 2 was reachable by an ICMP ping.
We tested the session database, in particular its ability to limit
the number of concurrent sessions. To that end, Client 1 and
Client 2 were both authenticated with the same identity. We
first set the number of concurrent sessions to be unlimited –
both clients could be authorized. We then limited the number of
concurrent sessions to 1 and verified that only a single session
could be established.

VI. SCALABILITY OF THE AAM

The AAM handles authentication requests, possibly ini-
tiates re-authentication requests, and performs authentication
processes and cryptographic operations in authentication server
mode. This may lead to high load in large networks and
overload a central SDN controller.

We suggest to deploy the AAM as network function. It
can be easily scaled to many instances because AA processes
between multiple network hosts and authenticators are inde-
pendent of each other and can be parallelized. Multiple AAM
instances operate on the same session database that may also be
distributed. The SDN controller installs flow rules for EAPoL
frames on the edge switches to directly forward such frames to
a particular AAM instance. This offloads the SDN controller
and protects it from unauthorized network traffic.

VII. CONCLUSION

In this work we proposed to adopt 802.1X for authenti-
cation and authorization (AA) in SDN in such a way that
multiple AA resources can be used and that a session database
can be maintained. The former is useful for the integration of
temporary and experimental local accounts, the latter for fine-
grained network control systems which were a driver for early
SDN research.

We implemented a controller application for OpenFlow-
based SDN, the AA module (AAM). It uses EAP for fron-
tend authentication so that it is compatible with existing end
systems. In pass-through mode, the AAM leverages RADIUS
or Diameter for backend authentication, which is easy to
implement. In authentication server mode, the AAM acts as
authentication server, i.e., it implements complex EAP types
and checks AA data in LDAP servers, SQL databases, or local
files. Independently of the specific mode, the AAM updates
a session database with admitted sessions whenever a new
session is authorized or whenever the controller recognizes
a session teardown.

We implemented the AAM for the Ryu controller and con-
ducted experiments in a semi-virtualized OpenFlow-controlled
network including hardware and software switches. We vali-
dated the functionality of the proposed concept and observed
that some switches refuse to forward EAPoL frames to their
controller which may be problematic for the deployment of
the AAM without appropriate patches. As the AAM performs
time-consuming operations in authentication server mode, we
suggested an organization of the AAM as a distributed network
function to relieve the controller from potentially heavy load
and to scale the AAM and the session database to very large
networks.

VIII. ACKNOLEDGEMENTS

The authors would like to thank Stefan Winter for fruitful
discussions.

REFERENCES

[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” in ACM
SIGCOMM, Kyoto, Japan, Aug. 2007.

[2] A. Nayak, A. Reimers, N. Feamster, and R. Clark, “Resonance: Dy-
namic Access Control for Enterprise Networks,” in Workshop: Research
on Enterprise Networking (WREN), Barcelona, Spain, Aug. 2009.

6



[3] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable Dynamic Network Control,” in USENIX Syposium
on Networked Systems Design & Implementation (NSDI), 2015.

[4] Cyberoam. Cyberoam’s Layer 8 Technology. [Online]. Available:
https://www.cyberoam.com/layer8.html

[5] IEEE, “802.1X-2001 IEEE Standard for Local and Metropolitan Area
Networks - Port-Based Network Access Control,” 2001.

[6] ——, “802.1X-2004 IEEE Standard for Local and Metropolitan Area
Networks - Port-Based Network Access Control,” 2004.

[7] ——, “802.1X-2010 IEEE Standard for Local and Metropolitan Area
Networks - Port-Based Network Access Control,” 2010.

[8] Eduroam, “Eduroam - About.” [Online]. Available: https://www.
eduroam.org/index.php?p=about

[9] C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence,
“Generic AAA Architecture,” RFC 2903 (Experimental), aug 2000.
[Online]. Available: http://www.ietf.org/rfc/rfc2903.txt

[10] P. Congdon, M. Sanchez, and B. Aboba, “RADIUS Attributes for
Virtual LAN and Priority Support,” RFC 4675 (Proposed Standard),
sep 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4675.txt

[11] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz,
“Extensible Authentication Protocol (EAP),” RFC 3748 (Proposed
Standard), 2004. [Online]. Available: http://www.ietf.org/rfc/rfc3748.txt

[12] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Remote
Authentication Dial In User Service (RADIUS),” RFC 2865 (Draft
Standard), jun 2000. [Online]. Available: http://www.ietf.org/rfc/
rfc2865.txt

[13] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter Base
Protocol,” RFC 6733 (Proposed Standard), 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6733.txt

[14] H. Tschofenig, D. Kroeselberg, A. Pashalidis, Y. Ohba, and F. Bersani,
“The Extensible Authentication Protocol-Internet Key Exchange
Protocol version 2 (EAP-IKEv2) Method,” RFC 5106 (Experimental),
feb 2008. [Online]. Available: http://www.ietf.org/rfc/rfc5106.txt

[15] P. Funk and S. Blake-Wilson, “Extensible Authentication Protocol
Tunneled Transport Layer Security Authenticated Protocol Version
0 (EAP-TTLSv0),” RFC 5281 (Informational), aug 2008. [Online].
Available: http://www.ietf.org/rfc/rfc5281.txt

[16] D. Simon, B. Aboba, and R. Hurst, “The EAP-TLS Authentication
Protocol,” RFC 5216 (Proposed Standard), 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5216.txt

[17] S. Brenza, A. Pawlowski, and C. Pöpper, “A practical investigation
of identity theft vulnerabilities in eduroam,” in ACM Conference on
Security and Privacy in Wireless and Mobile Networks (ACM WiSec),
New York, NY, USA, Jun. 2015.

[18] M. Chiba, G. Dommety, M. Eklund, D. Mitton, and B. Aboba,

“Dynamic Authorization Extensions to Remote Authentication Dial
In User Service (RADIUS),” RFC 5176 (Informational), jan 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5176.txt

[19] FreeRADIUS, “FreeRADIUS Manual - Simultaneous-Use Attribute.”
[Online]. Available: ftp://ftp.gnu.org/old-gnu/Manuals/radius/html_
node/radius_177.html#SEC180

[20] Raddb, “raddb 3.0.10 Documentation - rlm_radutmp.” [Online].
Available: http://networkradius.com/doc/3.0.10/raddb/mods-available/
radutmp.html

[21] A. Wang, X. Mei, J. Croft, M. Caesar, and B. Godfrey, “Ravel:
A database-defined network,” in ACM Symposium on SDN Research
(SOSR), Santa Clara, CA, USA, Mar. 2016.

[22] V. Dangovas and F. Kuliesius, “Sdn-driven authentication and access
control system,” in The International Conference on Digital Informa-
tion, Networking, and Wireless Communications (DINWC). Society of
Digital Information and Wireless Communication, 2014, p. 20.

[23] F. Kuliesius and V. Dangovas, “Sdn enhanced campus network au-
thentication and access control system,” in 2016 Eighth International
Conference on Ubiquitous and Future Networks (ICUFN), July 2016,
pp. 894–899.

[24] J. Malinen, “hostapd: IEEE 802.11 AP, IEEE 802.1X/W-
PA/WPA2/EAP/RADIUS Authenticator.” [Online]. Available: https:
//w1.fi/hostapd/

[25] “FAUCET SDN: 802.1x authentication on FAUCET (NFV offload
of authentication).” [Online]. Available: https://faucet-sdn.blogspot.de/
2016/07/8021x-authentication-on-faucet-nfv.html

[26] D. M. Ferrazani Mattos and O. C. M. B. Duarte, “Authflow:
authentication and access control mechanism for software defined
networking,” Annals of Telecommunications, pp. 1–9, 2016. [Online].
Available: http://dx.doi.org/10.1007/s12243-016-0505-z

[27] S. T. Yakasai and C. G. Guy, “Flowidentity: Software-defined network
access control,” in Network Function Virtualization and Software De-
fined Network (NFV-SDN), 2015 IEEE Conference on, Nov 2015, pp.
115–120.

[28] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob, “Flownac:
Flow-based network access control,” in European Workshop on Software
Defined Networks (EWSDN), Budapest, Hungary, Sep. 2014.

[29] Z. Cao, J. Fitschen, and P. Papadimitriou, “Freesurf: Application-
centric wireless access with sdn,” in Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15. New York, NY, USA: ACM, 2015, pp. 357–358.
[Online]. Available: http://doi.acm.org/10.1145/2785956.2790000

[30] Ryu, “Ryu SDN Framework.” [Online]. Available: https://osrg.github.
io/ryu/

[31] O. vSwitch, “Open vSwitch - Production Quality, Multilayer Open
Virtual Switch.” [Online]. Available: http://openvswitch.org/

7


