
UniCorn-P4: A Universal Control Plane and GUI
for P4

Fabian Ihle∗, Moritz Flüchter∗, Steffen Lindner∗, Michael Menth∗
∗University of Tübingen, Chair of Communication Networks

{fabian.ihle, moritz.fluechter, steffen.lindner, menth}@uni-tuebingen.de

Abstract—Traditional networking equipment is limited to the
features and management tools supplied by the manufacturer.
Software-Defined Networking (SDN) is an approach to loosen
this dependency on manufacturers by allowing developers to
implement custom control planes. Data plane programming
further evolves this concept, enabling developers to fully cus-
tomize the forwarding logic on network devices. Currently,
Programming Protocol-independent Packet Processors (P4) is
the prominent technology in academia and industry for data
plane programming. However, the development process of new
P4 prototypes is difficult and slow. Both the data and control
plane must be developed simultaneously, require a complex tech
stack, and leverage new programming languages.

In this work, we introduce UniCorn-P4, a universal control
plane and GUI for P4. UniCorn-P4 supports the development of
P4 prototypes by providing a control plane that is compatible
with any P4 program. Developers can focus on implementing P4
data planes and use UniCorn-P4 to validate their implementation.
UniCorn-P4 connects to P4 switches, automatically detects the
available data plane entities, and enables user configuration
over the graphical user interface. Further, UniCorn-P4 can
emulate virtual testbeds of network topologies using the Mininet
framework for rapid prototyping.

Index Terms—Data Plane Programming, P4, Rapid Prototyp-
ing

I. INTRODUCTION

Traditional network devices are delivered as a closed system
with hardware and software bundled together. Operators can
configure features through a provided interface, such as a web
GUI or the SNMP protocol. However, the configuration is
limited to the functionality exposed by the vendor. With SDN,
a custom control plane can be implemented. The resulting
flexibility is the reason why SDN is widely used in practice,
such as in data centers [1] and in 6G networks [2]. However,
a SDN network device is still limited by the capabilities of
the data plane. With data plane programming, the forwarding
algorithms and data structures can be implemented directly
in the data plane. These algorithms can be tailored to the
needs of the network and allow for full customization of
packet forwarding logic, limited only by the hardware and
the expressiveness of the programming language.

Currently, Programming Protocol-independent Packet Pro-
cessors (P4) [3] is widely used in industry and academia
for data plane programming [4]. It comprises a programming
language, architecture abstraction, and a data plane API. P4
facilitates rapid prototyping of new protocols and is therefore
used in research on next-generation technologies such as
6G [5]–[7]. However, developing and especially testing new

prototypes with P4 is a time-consuming and complex process.
Developers have to implement a data plane program, then a
control plane application, and finally a testing environment
before they can validate their program. Further, developers
must be familiar with the P4 data plane programming language
and the API to the data plane.

We developed UniCorn-P4 [8], a universal control plane and
GUI for faster prototyping. Developers can connect UniCorn-
P4 to multiple hardware or virtual switches and then load P4
programs onto them. UniCorn-P4 creates a controller instance
for each switch and discovers the available data plane entities
by parsing the compiled P4 program. Then, users can use the
GUI to manipulate table entries in the data plane or load entries
from a file. This allows them to test and validate their P4
prototypes without writing a custom control plane. Developers
can either provide their own testbed environment in hardware
or software or use the Mininet [9] extension for UniCorn-P4.
The Mininet extension enables rapid prototyping with auto-
generated virtual network devices. As a result, UniCorn-P4
streamlines the development process of P4 programs and can
be leveraged as a prototyping environment.

II. BACKGROUND

In this section, we provide background information on the
programming language P4 including the basic concept of
architectures in P4 and developing data plane programs for
P4 switches. Further, we explain how data plane APIs such as
the P4 runtime manage the runtime control of the data plane.

A. The Programming Language P4
P4 [3] is a domain-specific programming language to

describe the data plane of P4-programmable switches, the
so-called targets. A target can either be software-based,
like the BMv2 [10] switch or hardware-based, like the
Intel Tofino switching ASIC [11]. Each target imple-
ments a specific architecture, such as the Portable Switch
Architecture (PSA) [12], the Tofino Native Architecture
(TNA) [11], or the v1model architecture. The BMv2 imple-
ments the simple_switch_grpc architecture derived from
the v1model architecture.

P4 uses a two-layer compiler model. First, a front-end
compiler performs syntactic and target-independent semantic
analysis. It then compiles the P4 program into an intermediate
representation, e.g., into a JSON object. Second, a target-
specific compiler performs transformations and maps the in-
termediate representation onto the target. This allows data

plane algorithms to be developed in a common language while
supporting different hardware- and software-based targets.

The P4 language can be used to implement custom al-
gorithms that manipulate and forward packets. A P4 pro-
gram provides a programmable packet parser, multiple Match-
Action Units (MAUs), and a programmable packet deparser.
After parsing the packet, the program logic is applied in
one or more MAUs. MAUs consist of one or more Match-
Action Tables (MATs) that can use logical expressions, simple
arithmetic operations, and branching constructs. The concept
of a MAT is illustrated in Figure 1.

Control plane

Metadata

Headers

Lookup key

M
atching

Match+action
table

Headers

MetadataMetadata

Headers

Data
plane

Key Action A
ction

Fig. 1. A packet is matched according to a composite key of header fields
and metadata to an entry in the table. The associated action on a table hit is
executed. The entries in each MAT are populated by the control plane.

A MAT consists of predefined key fields that are matched
for a packet. The key of a MAT consists of packet header
fields or metadata. An associated action is performed when a
key is matched against an entry in the MAT. An action can
manipulate packet data or make a packet forwarding decision
and is defined by the programmer. While the MATs in the data
plane define the table structure, i.e., the matching key, and the
available actions, the content of those tables is populated by
the control plane. More information on P4 can be found in an
extensive survey by Hauser et al. [4].

B. Runtime Control of the Data Plane
The control plane implements the runtime control of a

switch, such as adding, deleting, or modifying MAT entries.
To that end, the data plane must expose endpoints that allow
runtime control of data plane entities from the control plane.
This interface is called the data plane API.

The P4 Runtime is a data plane API that is independent
of the P4 program and the used target. The control plane
needs to know about the existing MATs and its structure. For
this purpose, the control plane communicates with the gRPC1

protocol with the data plane API. The control plane can query
the information from the target if the target has a program
loaded. Otherwise, the control plane can load the p4info file
and push a P4 program to the target. The p4info file is a
file generated by the P4 compiler that contains all accessible
P4 entities, such as MATs. Multiple libraries implement the
P4 Runtime in common programming languages such as
Python [14] or Go [15]. Other data plane APIs exist, such
as the Barefoot Runtime [16], [17].

1gRPC is a modern, high performance, open source Remote Procedure Call
(RPC) framework that can run in any environment [13].

III. UNICORN-P4: A UNIVERSAL CONTROL PLANE AND
GUI FOR P4

In this section, we introduce UniCorn-P4, a generic graphi-
cal user interface (GUI) control plane for P4 programs. We
first explain the features of UniCorn-P4 and the resulting
development workflow. Then, we illustrate its architecture and
APIs. Last, we introduce the UniCorn-P4 rapid prototyping
extension for Mininet.

A. Development Workflow with UniCorn-P4

We first elaborate on the standard development process of
P4 prototypes illustrated in Figure 2 and then explain how
UniCorn-P4 can streamline this workflow.

The developer starts by writing the P4 program 1 and
compiles it for the target switch 2 . Then, the developer
uses the knowledge of the existing MATs to design the
corresponding controller 3 . For the validation, the developer
has to set up a virtual or physical testbed that contains the
target switch 4 . In the testbed, the P4 program is loaded
onto the switches 5 that are connected to the controller. The
controller then writes the MAT entries to the switches 6 . After
these steps, packets can be sent through the switch to validate
the P4 program.

Controller

P4
program

P4
compiler

p4info
file

Testbed

Code

1

3

2 5

4
6

Host

Host

P4
Switch

Fig. 2. The development and validation workflow of a P4 prototype. First, the
P4 program is developed and compiled. Then, the controller can be developed
using knowledge about the existing MATs. Last, the compiled P4 program is
loaded onto switches in a virtual or physical testbed which are connected to
the controller.

UniCorn-P4 simplifies this development process by provid-
ing a universal controller with a GUI for prototyping and
validation (3 , 5 and 6). Developers can connect switches by
supplying the network address of the switch, the gRPC port,
and its device ID. Then, UniCorn-P4 can be used to load a P4
program onto these switches. UniCorn-P4 creates a controller
instance for each switch and parses the P4 Runtime p4info
file. This way, the controller instance automatically identifies
the available MATs, actions, and data fields. Once a switch
is initialized, developers can view and modify the MATs
entries, or load them from a configuration file. Further, switch
configurations and MAT entries are stored in a database,
enabling users to restore snapshots of configured switches,
programs, and table entries across multiple sessions from their
history.

B. Architecture

The architecture of UniCorn-P4 is split into two main
components: frontend and backend. Both components come in
a dockerized environment for ease of use. Figure 3 illustrates
this architecture and its communication interfaces. The fron-
tend provides the user interface for configuring P4 switches
and visualizes the configured switches including the content
of their MATs. Configuration actions by the user are passed to
the backend over an HTTP REST API. The backend contains
the main controller which manages the connected switches and
configures them over the P4 Runtime interface.

SQLite
 DB

Ba
ck

en
d

N
et

w
or

k

P4 files

P4 Runtime

REST API

gRPC

Fr
on

te
nd

HTTP

Controller
instances

Fig. 3. The architecture of UniCorn-P4. The backend parses the P4 files to
discover the MAT structure. This information is then used to connect to the P4
switches over the P4 Runtime interface. Further, the configuration for known
switches is stored in an SQLite database. Changes to the MATs performed
by the user in the frontend are sent to the backend over a REST API.

1) Frontend: The frontend of UniCorn-P4 is developed
using React [18], ensuring a responsive interface. Information
about switches and their MATs is dynamically retrieved from
the backend in a generalized format. This allows the frontend
to visualize the information without needing additional knowl-
edge about specific P4 programs. Further, users can interact
with the MAT entries without having to manually define the
table format. The frontend also uses this information to provide
a template for adding or changing table entries. It generates
a form for the user to fill with all available match fields and
possible actions. The information from this form is then passed
back to the backend to modify the selected MAT.

2) Backend: The core of the backend consists of multiple
controller instances that each implement the control plane
for a target switch. Each instance manages an active switch
connection over the P4 Runtime interface. For each switch
connection, the controller parses the corresponding p4info file

to discover the available data plane entities. The REST API of
the backend exposes this information to the frontend and can
also receive calls from the frontend, e.g., to write a new MAT
entry to a switch. Data that needs to be stored over multiple
sessions is written to and read from an SQLite database.

C. Mininet Extension

To simplify the prototyping of networks, UniCorn-P4 pro-
vides an extension for the SDN emulator Mininet [9] that
enables testbed emulation (step 4 in Figure 2). Mininet allows
for rapid prototyping of networks with software-based targets
emulated on constrained resources, such as a local workstation.
The emulation framework leverages OS-level virtualization to
build emulated networks in a specified topology. The topology
can specify switches, hosts, and links between these nodes.
Mininet then creates processes and network namespaces to
emulate the network. In combination with the BMv2 [10]
software-based P4 target, the emulated nodes can be loaded
with a P4 program to emulate a SDN network environment.
Each node can be individually programmed and configured to
facilitate a SDN-based network without the need for expensive
hardware.

With UniCorn-P4, developers can define network topologies
consisting of hosts, switches, and links in a JSON format and
load them via the web interface of UniCorn-P4. UniCorn-
P4 creates the emulated network in a docker container using
Mininet, BMv2 [10] switches, and Linux hosts. Then, devel-
opers can load P4 programs onto the switches and configure
them over UniCorn-P4.

IV. DISCUSSION

UniCorn-P4 leverages the P4 Runtime to communicate with
and configure P4 switches, making it compatible with any
target that implements the P4 Runtime API. Examples are the
commonly used hardware targets Intel Tofino 1 and 2 [11], or
the Mellanox Spectrum switch [19]. However, manufacturers
also provide their own data plane APIs for advanced features
such as architecture-specific externs. For example, the Intel
Tofino uses the so-called Barefoot Runtime [16] which extends
the P4 Runtime. Therefore, the current version of UniCorn-P4
cannot configure these advanced features. Future work should
focus on adding support for other well-known data plane APIs
to support a larger scope of targets.

Another shortcoming of UniCorn-P4 is that it currently only
supports the configuration of MATs defined in a P4 program.
However, there are other P4 entities that UniCorn-P4 cannot
interact with, such as registers or counters. Info on these so-
called externs is not exposed in the p4info file as they are part
of the architecture and not the P4 program. Therefore, they
are currently not configurable by UniCorn-P4. Configuration
support for these externs may be added to UniCorn-P4 in
future work.

V. CONCLUSION

In this work, we presented UniCorn-P4 a universal P4 con-
troller for rapid prototyping of P4 programs in data plane pro-
gramming. UniCorn-P4 simplifies the development process of

P4 programs by providing a web-based GUI for configuration
and visualization of P4 switches. The backend of UniCorn-P4
implements a control plane that communicates with connected
switches via the data plane API and derives the available
MATs and their structure from P4 programs. Developers can
manipulate the MAT entries manually or load them from
configuration files. Switch configurations and MAT entries
are stored in a database and can be restored over multiple
sessions. With the Mininet extension for UniCorn-P4, network
topologies can be emulated for testing P4 programs. However,
UniCorn-P4 has some limitations as the user manually triggers
changes to the MATs. It cannot automatically react to changes,
e.g., like a routing protocol would react to changes in the
topology.

Future work should extend the feature set of UniCorn-
P4, e.g., to allow the definition of network topologies in the
frontend or to support more architectures and data plane APIs.
Further, it may also be used to teach students the first steps
of P4 without programming a controller. UniCorn-P4 is open
source and can be found on GitHub [8].

REFERENCES

[1] A. Shirmarz and A. Ghaffari, “Performance Issues and Solutions in
SDN-based Data Center: a Survey,” The Journal of Supercomputing,
vol. 76, 10 2020.

[2] Q. Long, Y. Chen, H. Zhang, and X. Lei, “Software Defined 5G and 6G
Networks: a Survey,” Mobile Networks and Applications, vol. 27, no. 5,
pp. 1792–1812, 2022.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, pp. 87––95, July
2014.

[4] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A Survey on Data Plane Programming
with P4: Fundamentals, Advances, and Applied Research,” Journal of
Network and Computer Applications (JNCA), vol. 212, Mar. 2023.

[5] S. Qi, K. Ramakrishnan, and J.-C. Chen, “L26GC: Evolving the Low
Latency Core for Future Cellular Networks,” IEEE Internet Computing,
2024.

[6] F. Paolucci, D. Scano, F. Cugini, A. Sgambelluri, L. Valcarenghi,
C. Cavazzoni, G. Ferraris, and P. Castoldi, “User Plane Function Offload-
ing in P4 Switches for Enhanced 5G Mobile Edge Computing,” in IEEE
International Conference on the Design of Reliable Communication
Networks (DRCN), pp. 1–3, 2021.

[7] V. Jain, S. Panda, S. Qi, and K. Ramakrishnan, “Evolving to 6G:
Improving the Cellular Core to Lower Control and Data Plane Latency,”
in IEEE International Conference on 6G Networking (6GNet), pp. 1–8,
2022.

[8] F. Ihle, M. Flüchter, S. Lindner, and M. Menth, “UniCorn-P4.” https:
//github.com/uni-tue-kn/UniCorn-P4.

[9] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks,” in ACM SIGCOMM
Workshop on Hot Topics in Networks, no. 19, 2010.

[10] P4 Language Consortium, “GitHub: Behavioural Model Version 2
(BMv2).” https://github.com/p4lang/behavioral-model. Last accessed on
17.07.2024.

[11] Intel®, “P416 Intel® Tofino™ Native Architecture – Public
Version.” https://github.com/barefootnetworks/Open-Tofino/blob/master/
PUBLIC Tofino-Native-Arch.pdf, Apr. 2021. Last accessed on
17.07.2024.

[12] The P4.org Architecture Working Group, “P416 Portable Switch Archi-
tecture (PSA).” https://p4.org/p4-spec/docs/PSA.html, Apr. 2021. Last
accessed on 17.07.2024 (working draft).

[13] The gRPC Authors, “gRPC - A High Performance, Open Source Uni-
versal RPC Framework.” https://grpc.io/. Last accessed on 15.07.2024.

[14] The P4.org Architecture Working Group, “P4Runtime Specification.”
https://github.com/p4lang/p4runtime, Apr. 2021. Last accessed on
18.07.2024.

[15] A. Bas, “p4runtime-go-client.” https://github.com/antoninbas/
p4runtime-go-client, July 2020. Last accessed on 18.07.2024.

[16] APS Networks, “Barefoot Runtime Helper.” https://github.com/
APS-Networks/bfrt-helper. Last accessed on 15.07.2024.

[17] S. Lindner and F. Ihle, “Rust BF Runtime Interface (rbfrt).” https://
github.com/uni-tue-kn/rbfrt. Last accessed on 15.07.2024.

[18] Meta Open Source, “React Library.” https://react.dev/. Last accessed on
15.07.2024.

[19] A. Lo, “Controlling P4Runtime-enabled Mellanox Spectrum Switch
with ONOS.” https://wiki.onosproject.org/display/ONOS/Controlling+
P4Runtime-enabled+Mellanox+Spectrum+switch+with+ONOS. Last
accessed on 22.08.2024.

https://github.com/uni-tue-kn/UniCorn-P4
https://github.com/uni-tue-kn/UniCorn-P4
https://github.com/p4lang/behavioral-model
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch.pdf
https://p4.org/p4-spec/docs/PSA.html
https://grpc.io/
https://github.com/p4lang/p4runtime
https://github.com/antoninbas/p4runtime-go-client
https://github.com/antoninbas/p4runtime-go-client
https://github.com/APS-Networks/bfrt-helper
https://github.com/APS-Networks/bfrt-helper
https://github.com/uni-tue-kn/rbfrt
https://github.com/uni-tue-kn/rbfrt
https://react.dev/
https://wiki.onosproject.org/display/ONOS/Controlling+P4Runtime-enabled+Mellanox+Spectrum+switch+with+ONOS
https://wiki.onosproject.org/display/ONOS/Controlling+P4Runtime-enabled+Mellanox+Spectrum+switch+with+ONOS

	Introduction
	Background
	The Programming Language P4
	Runtime Control of the Data Plane

	UniCorn-P4: A Universal Control Plane and GUI for P4
	Development Workflow with UniCorn-P4
	Architecture
	Frontend
	Backend

	Mininet Extension

	Discussion
	Conclusion
	References

