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INTRODUCTION

Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program 3



Networking Concepts

► “Black box” (switch) received 
from vendor

► Fixed-feature set

► Configure feature set provided 
by vendor (e.g., via SNMP)

► Feature set not extendable

► “Configure IPv4 Routing for 
the prefix 10.0.0.0/8”

► Switch divided into Control 
Plane (controller) and Data 
Plane (switch)

► Data plane provides fixed-
functionality, e.g., IPv4 Routing

► Programmable Controller, e.g.,
“Reroute traffic on a failure by 
changing the IPv4 routing 
entries”
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► Programmable Data Plane and 
Control Plane

► Implement full feature set by 
yourself, e.g., IPv4 routing, IP 
tunneling, or FRR

► Low-level operations are used 
to define packet processing

Source: [1]



P4: Overview

►P4: Programming protocol-independent packet processors [2], [3]
 High-level programming language to describe data planes

 Target-specific compiler maps P4 program to target

 P4 program not tied to a specific vendor or device (target), but can be used 
on “any” P4 programmable target

 P4 defines low level (packet processing) operations 

 Fully programmable data plane

 Limited only by expressiveness and features of P4 (and not by vendor)

P4 target
Target-specific P4 

compiler

P4 program
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THE P4 PROGRAMMING MODEL
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P4 Programming Model
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Definition: P4 Target

►What is a P4 target?
 A packet-processing system capable of executing a P4 program

 P4 targets follow a specific architecture, e.g., PSA, PISA, …
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P4 Targets - Categories

►Software
 Software-based P4 targets run on a standard CPU

 Not suitable for high performance scenarios

 Good for rapid prototyping
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►FPGA
 Tool chains translate P4 programs for field 

programmable gate arrays (FPGAs) 

 Includes logic synthesis, verification, validation and 
placement/routing on the logic circuit for the FPGA

►ASIC
 Specialized micro chip for P4

 ASIC = Application-Specific Integrated Circuit



P4 Targets - Categories

►NPU
 Network processing units

 Programmable ASICs optimized for networking 
applications

 Part of standalone network devices or device 
boards

Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program 10



P4 Compiler (I)

►Two-Layer Compiler Model
 Most P4 compilers use the two-layer compiler model

 Consists of common frontend and a target-specific backend

 Front-end compiler
 syntactic and target-independent semantic analysis

 Back-end compiler
 Target-specific transformations
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Common representation 
for all targets



P4 Compiler (II)

►P4-hlir (high-level intermediate representation)
 First generation P4-compiler for P4 v14 written in Python 

 Uses high-level intermediate representation (HLIR) 
 Tree of python objects
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►P4c
 Current generation P4-compiler for both v14 and v16

 Written in C++

 Uses C++-object-based intermediate representation (IR)

 IR can be represented as JSON file

 Has backends for multiple targets, e.g., bmv2, eBPF, uBPF, …

►Vendor specific compilers
 P4 target vendors maintain own compilers based on the common frontend



P4 Model: Benefits

►P4 programming model decouples software and hardware development / evolution

 P4 architectures as abstraction layer (or interface) between software and hardware
 Hides low level, target-specific details from high-level processing

 Software-models of P4 architectures allow software development independently of hardware

 Interface ensures compatibility 

►Resource mapping and management is left to the manufacturer

 Software developers use only abstract high-level description of resources, e.g., Tables, registers, …

 Compilers maps software description to hardware resources 
 Manages low-level details, e.g., memory allocation, scheduling, ...

 Software developers do not need to worry about efficiency
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P4 Language: Benefits

►Packet forwarding expressible as programs

 Language expressiveness
 Describe target-independent packet processing with general-purpose operations and table look-ups

 Programs portable across targets

 Flexibility
 Easy to adapt

 Implement novel packet processing 

 Software engineering characteristics
 Type checking, information hiding (interfaces), software reuse, …

 Agile development process

 Component libraries
 Wrap hardware-specific functions into portable P4 constructs

 Supplied by manufacturers
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P4 Language Consortium

►Independent non-profit organization (https://p4.org)

►Free membership (in contrast to OpenFlow)

►Partners from industry and academia (https://p4.org/tst/) 

 Technical steering team
 Nate Foster (Cornell University), Guru Parulkar (ONF), Armin Vahdat (Google)

 Industry members
 Cisco, Juniper, Google, Microsoft, Intel, Dell, Xilinx, …

 Academic members
 Princeton, Cornell, Stanford, …

►Many working groups (https://p4.org/working-groups/) 
 Language design, API, Architecture, Applications, Education

15Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program



P4 Architectures

►Diverse targets with different underlying functionalities
 Software-based, hardware-based, ASICs, FPGAs, ...
 Challenge: efficient execution of high-level code

 Programming models for different types of targets

►P4 architectures
 Programming models with logical view of the targets
 Decouples P4 program from targets
 P4 program is developed for specific P4 architecture
 A P4 program can be run on any target following the same 

architecture

 Manufacturers
 “implement” architecture on hardware device
 provide compiler to map P4 code to device

 P4 is not only a programming language but also a 
programming model based on architectures
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P4 Architecture

►Programming models with logical view of the 
targets

 Hardware abstraction layer

►Decouples P4 program from targets
  A P4 program can be run on any target following 

the same architecture
 Architecture model and corresponding compiler 

provided by manufacturer

►Network devices have programmable
1. (de)parser: protocol independence

2. match-action pipeline: custom packet processing

►Protocol-Independent Switch Architecture (PISA)
Source: [1]
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P4 Architectures: Other

►Portable Switch Architecture (PSA)

 2 control blocks with separate (de-)parsers

 Traffic manager takes care of queueing etc.

►V1Model Architecture

 Implemented by BMv2 target

 Used in the Hackathon

 More info: https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4
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ANATOMY OF A P4 PROGRAM
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P4 Components – Overview

►Data types
 For header fields and metadata fields

►Parsers
 Extract information from a packet

►Control Blocks
 Describe packet processing pipeline

 Match-action units

►Deparsers

►Externs
 Architecture/target-specific operations
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P4 Data Types (I)

►Base types
 bool: Boolean

 bit<n>: Unsigned integer (bitstring) of size n (bit bit<1>)
 int<n>: Signed integer of size n (>=2)

 varbit<n>: Variable-length bitstring (fixed maximum length n)

►typedef
 Alternative name for a type

 „Syntactic sugar“

►header
 Ordered collection of base types

 Describes a packet header, e.g., an IPv4 header
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P4 Data Types (II)

►struct
 Unordered collection of members

►Two types of metadata structs
 Intrinsic metadata
 Architectural metadata associated with each packet

 Example: input port, timestamp, …

 User-defined metadata
 User-defined data structures associated with each packet

 Comparable to variables

 is discarded when the packet leaves the switch

 can be used to exchange information between control blocks
 No other variables than metadata between control blocks!

► headers struct
 Describes the complete packet header

22Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program



Parsers (I)

►Parser maps serialized packets to header
fields and metadata fields for later use

 1010110101  Ethernet header | IP header …

 Packets consist of headers and payload

 Non-extracted headers (= payload) cannot be 
accessed

►Parser described as state machine

 Three predefined states
 Start, Accept, Reject

 Other states may be defined by the developer

• Extract information from packets

• Mark extracted header as valid

• Transition to another state
(loops are OK)
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Parser (II)

Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program 24

►Packets consist of headers and 
payload

►Parser extracts headers for later 
use (e.g., MATs)

►Non-extracted headers (= payload) 
cannot be accessed 

►Requires: Header definition 



Parser (II)
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4. Go to next state

2. Extract header with 
given name

3. Select next header to parse 
based on header field

1. Definition of parser



Control Blocks (I)
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►Control Blocks…
 encapsulate functionality
 Some similarities with classes in other languages

 define packet processing operations

►Two required control blocks

 Ingress and egress

►Data (e.g., variables) is carried in user-defined metadata to 
other control blocks

►Control blocks can…
 Use branching (if, select)

 Use logical and simple arithmetic operations (&&, ||, +, -, …)

 NOT use loops

 Use match+action tables (MATs)



Match-action tables (MATs) (I)
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► Match on selected key fields, execute an 
action accordingly

► Structure of MAT entries, i.e., table columns

 (Match) key(s)
 header / metadata field for comparison with

table entries

 Match types, i.e., longest-prefix match 
(lpm), exact, wildcard, …

 Possible action(s)
 Actions are defined outside of the MAT in 

the P4 program

 Define most of the program logic

►Packet is matched with selected header 
or metadata fields to the defined key



MATs (II)

►Data plane only defines format

►Requires control plane to populate entries
 Specify key value

 Specify action and parameter(s)

►„Matching a packet onto a MAT“

 Specified fields of the packet are
compared with key(s) of table entries

 If a matching entry is found, 
corresponding action is executed

► A MAT can be applied only once per packet!

ActionKey

forward(1)10.0.1.1/32

drop10.0.1.2/32

standard_metadata.egress_spec = 1;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;
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Reminder:



Control Blocks (II)
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►Control Blocks contain program logic, e.g.,
 Match-action tables

 Conditions

 …

►Control Blocks can be encapsulated
 Call with .apply(..)

Resource
definitions

Apply
block



P4 Actions

►P4 actions
 Similar to functions in other programming languages

 Not only tied to MATs

 Available programming constructs

 Variables (only visible within the action)

 Many standard arithmetic and logical operations

• +, -, *, ~, &, |, ^, >>, <<, ==, !=, >, >=, <=

 Non-standard operations: bit-slicing and bit concatenation

► An action can be applied only once per packet!
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Deparser
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►Serializes headers back into a well-formed network 
packet

 Emit packet headers

 Order is relevant

 Only valid headers are added

 During processing, headers may be added with
.setValid() or removed with .setInvalid()

 .isValid() to check if header is valid

 Extracted headers in the parser are automatically
marked as valid



P4 Extern Objects

►Externs extend core P4 functionality
 P4 specification defines certain mandatory externs, e.g., registers, parsing, cloning, counters, …

 Other externs defined by target

 E.g., traffic generator in Intel Tofino switching ASIC

►extern describes set of methods but not the implementation!
 Similarity: abstract class in an object-oriented language

 Example: incremental checksum unit

extern Checksum16 { 
Checksum16(); // constructor
void clear(); // prepare unit for computation
void update<T>(in T data); // add data to checksum
void remove<T>(in T data); // remove data from existing checksum
bit<16> get(); // get the checksum for the data added since last clear

}
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The Register Extern

►Metadata is per-packet and discarded after processing

►How to implement stateful algorithms? 

  Register extern

 A packet can trigger reading from / writing a value into a register

►Extern: Implementation is target-specific!

 The v1model architecture provides a read and write function

 Other targets allow custom register actions
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Data type of stored values

Register size
Index in register



Packet Cloning
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►What to do if we need a copy of a packet, e.g., for 1+1 protection?
 Clone-Ingress-to-Egress (CI2E)
 Cloned packet does not contain modifications from ingress

 or Clone-Egress-to-Egress (CE2E)
 Cloned packet contains modifications from ingress

Clone session, needs 
configuration from 

control plane

Clone type, here 
Egress-to-Egress



Recirculation
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►There are no loops in P4!

 How to implement iterative algorithm?  Recirculation / Resubmit

Need to configure a 
recirculation port



P4 Switch

►Switch.p4

 Connects all components

- Import of the switch architecture
- <v1model.p4>: bmv2 (your target switch for hackathon)

36Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program



THE CONTROL PLANE
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P4 Control Plane (I)

►Control plane manages the runtime behavior of P4 targets via data plane APIs

►Data plane API is provided by a device driver or software component

 Exposes data plane features in a well-defined way

 If data plane feature is not exposed, it cannot be used by the control plane

►P4 targets may be used without a control plane with static MAT entries
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P4 Control Plane (II) – Recap

►Example

 Data plane defines the table structure

 Control plane fills those tables with entries

►Communication via data plane API
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P4 Control Plane

►Different approaches and control planes for runtime control of P4 switches

 SDN controller, CLI, …

►Crucial: API between control plane and data plane required

 P4 compiler auto-generated runtime APIs
 Program-dependent

 BMv2 CLI
 Program-independent, but target-specific

 Control plane not portable!

P4 Runtime: *-independent API
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P4 Runtime (I)

►Framework for runtime control of P4 targets

 Standardized gRPC communication
 p4runtime.proto defines messages and semantics (part of 

P4 runtime standard)

 P4 targets include a gRPC server

 Controller implements gRPC client

►P4 compiler generates p4info.proto file from P4 
program
 Contains all accessible P4 entities (MATs, Externs, …)

►P4 *-independent
 Not restricted to specific data plane protocols

 Target manufacturer ensures compatibility

 API doesn’t change with the P4 program
Source: [1]
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P4Runtime (III)

►In Scope

 Runtime control of P4 built-in objects and PSA externs

 MATs, registers, …

 In-the-field device-reconfiguration with a new P4 data plane

 Dynamically load a new P4 program on a switch during runtime

►Not in Scope

 Runtime control of elements outside the P4 language 

 e.g., ports, traffic management, etc.

 Protobuf message definition for non-PSA externs
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Alternative Data Plane APIs

►Barefoot Runtime Interface (BRI)
 BRI consists of two independent APIs available for Tofino-based P4 hardware 

targets

 BfRt API: local control including C, C++ and Python bindings

 BF Runtime: based on gRPC framework and protobuf (similar to P4Runtime)

►BM Runtime API

 Program independent data plane API for bmv2

 Based on Thrift RPC
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Controller Use Case Patterns

►Embedded/Local Controller

 P4 hardware targets comprises / are attached to a 
computing platform

 Running controller directly on the P4 target

Fast interaction and updates

►Remote Controllers

 Typical SDN setup

 Hybrid control planes might be used

 Local tasks, e.g., MAC learning, port monitoring, done by 
embedded controller

 Global tasks, e.g., routing, done by remote controller
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UNICORN-P4
A Universal Control Plane and GUI for P4

Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program 45



P4 Development Workflow

The developer …

… writes a P4 program

… compiles it for the target switch

… implements the corresponding control plane

… sets up a (virtual) testbed for validation

… loads the P4 program onto the switches

… configures the control plane to write MAT entries 
in the data plane

Focus should be on P4 developing!

Not on control plane or testbed emulation
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UniCorn-P4
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►UniCorn-P4 simplifies the development process
 Universal control plane using the P4 runtime data plane API

 Web GUI to configure MAT entries

►P4info file (compilation artifact) can be loaded in the web GUI
 UniCorn-P4 automatically detects available MATs and actions from the P4 program

 MAT entries can be added, modified, and deleted in the frontend

 P4 program can be loaded onto multiple switches in the network
 Communication via P4 Runtime + gRPC

►Network topologies can be specified as .json file
 Starts up a virtualized Mininet network testbed

 Each switch can be programmed individually

►UniCorn-P4 keeps a history of previous configurations
 Load P4 programs and MAT entries from history

Source: [5]



P4 TUTORIAL
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Example Setting

► Host 1 must reach Host 2 via ICMP ping

► Given data plane: P4 program

 Header

 Parser

 Ingress: Table + Action

 Egress

 Deparser

► Given control plane: UniCorn-P4

 Writes table entries for packet forwarding

► In the tutorial, you will learn …

 how to operate with the data plane and the control plane

 how to debug

 how to implement a new protocol
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Getting started

1. Start the UniCorn-P4 control plane
 Navigate to /home/p4/UniCorn-P4/docker
 Run sudo docker compose up
 Navigate to http://localhost:3000 in the web browser

2. Write your P4 program in VSCode
 Place the project in a subfolder in /home/p4/UniCorn-P4/p4-files
 Already done for you

3. Compile your P4 program
 P4c is bundled in the UniCorn-P4 backend container

i. Enter a shell in the container: sudo docker exec -it backend bash
ii. Enter your project folder: cd /p4/basic/<project>
iii. Compile the P4 program: p4c p4_tutorial.p4 --target bmv2 --arch v1model --

p4runtime-files p4_tutorial.p4info.txt -o .
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Getting started – Working with UniCorn-P4

4. Adapt topology.json to your needs.
 Located in /home/p4/UniCorn-P4/netsim/topology*.json
 Mininet automatically assigns IP adresses

5. Load the topology in the UniCorn-P4 GUI
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Getting started – Working with UniCorn-P4

6. Connect to the switches in the UniCorn-P4 GUI
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Getting started – Working with UniCorn-P4

7. Load the P4 program onto each switch
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Getting started – Working with UniCorn-P4

8. Write table entries in the UniCorn-P4 GUI
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Getting started – Working with UniCorn-P4

9. Alternative to step 7 and 8: Load a state including a P4 program and table entries onto a 
switch from „Saved“
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Getting started – Working with UniCorn-P4

10. Access the host terminals
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Interrupt



Debugging

►ping 10.0.1.2 from Host 1 does not work. Why?

►Check switch log file netsim/logs/s1.log 
 IPv4.isValid() is false. Why?

►Use wireshark or tcpdump
 ARP packets are not forwarded!

►ARP handling must be implemented
 Simplified, hardcoded entries, no „real“ ARP handling
 ARP request from Port 1 will be sent to Port 2 and vice versa
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Implementing a new protocol (ARP)

►Steps to implement a new protocol
 Data Plane

i. Define EtherType ARP

ii. Define ARP header

iii. Add ARP to header stack

iv. Adapt the parser state machine

v. Add parser state

vi. Add Match-Action logic

vii. Call Match-Action logic

viii. Deparse ARP header

 Recompile the program and load it onto the switch

 Control plane
i. Write Match-Action table entries
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HACKATHON
Simplified, wired 1+1 protection in P4
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1+1 Protection – Concept

►Sender (duplication node) duplicates traffic and forwards it over disjoint paths

►Receiver (deduplication node) forwards only the first copy received and drops the other

► On a failure of one link, no interruption in forwarding!
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1+1 Protection – Concept (animated)
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1+1 Protection – Concept
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1+1 Protection – Concept
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Duplication node
• Encapsulate them with an IP tunnel header and a 

protection header
• Keep track of sent sequence numbers in a register, add 

them to the protection header
• Clone packets to both links

Forwarding node
• Does normal IPv4 LPM forwarding

Deduplication node
• Keep track of next expected sequence numbers in a 

register
• Only forward frames with a sequence number higher or

equal to the expected sequence number
• Drop other frames (duplicates)
• Remove protection and IP tunnel header

Switch 1 and Switch 3 are
duplication nodes and 
deduplication nodes at the same 
time!



Hackathon VM – Getting started

►Install a virtualization environment

 VirtualBox 7: https://www.virtualbox.org/wiki/Downloads (platform independent)

 Mac users may use the .qcow2 file and UTM

►Download the .ova file shared in the Nextcloud with you and import it

 In VirtualBox: „File“  „Import Appliance“
 2 CPUs and 4096 MiB RAM

 Start the VM

• username p4, password resilience

►Open VSCode in the virtual machine and navigate to /home/p4/UniCorn-P4/docker in a 
terminal

►Start UniCorn-P4 with sudo docker compose up

►Navigate to http://localhost:3000 in a web browser
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1+1 Protection – Getting started

1. Load the given topology file topology_protection.json in UniCorn-P4
 Navigate to http://localhost:3000 after starting UniCorn-P4

 Click on the „Mininet“ tab

 Select the topology file in the dropdown menu and load it

 IP addresses and ARP handling are already configured
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1+1 Protection – Getting started

2. Compile and load the template code from the protection folder in UniCorn-P4/p4-files in 
UniCorn-P4 onto each switch
 Compile your code as described on slide 54

 Click on the switch tab „s1“, „s2“, etc. in UniCorn-P4

 Click on „Edit Initialization“

 Select the .p4info.txt and the protection.json file and click on initialize

 Do this for every switch

 You have to repeat this every time you recompile your P4 program

 The given code implements IPv4 LPM routing
 Lookup the IPv4 destination in a MAT and execute the forward action

• Set the egress port

• Set the ethernet source address to the destination address

• Set the destination ethernet address to the next hop

• Decrement TTL

 The egress port, and ethernet addresses are provided by the control plane (UniCorn-P4)

 ARP handling is not necessary
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1+1 Protection – Getting started

3. Set up IPv4 LPM forwarding entries so that H1 can reach H2 via the ping command
 Without 1+1 protection

 You can load the table states for each switch in UniCorn-P4 under „Saved“
 Click on a switch tab

 Scroll down below the initialization

 Select the corresponding protection state from the list of saved states and load it with „Re-initialize state“

 Make sure to select the correct switch state for the current switch

 This also reloads the P4 program onto the switch as done in step 2

► Ensure that H1 can reach H2 before you continue!
 Click on the Mininet tab

 Scroll down to see the terminals

 Start pinging from the host1 terminal: ping 10.0.3.2
 Send an interrupt to the terminal by clicking the red button top left
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1+1 Protection – Implementation

►Implement 1+1 protection between s1 and s3
 Set up packet mirroring (cloning)
 Run the following in the terminal in VSCode

 sudo docker exec –it netsim bash

• s1
simple_switch_CLI --thrift-port 9090
mirroring_add 1 2

• s3
simple_switch_CLI --thrift-port 9092
mirroring_add 3 3

 In your P4 program, use this session ID with the clone extern to clone packets to the configured port
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1+1 Protection – Implementation

►Every packet between s1 and s3 destined for H1 and H2 should be forwarded between s1 
and s3 using both paths
 s1 (duplication node) duplicates packets for H2 and sends the packets to s2 and s3 (de-duplication

node)

 Use IPv4 tunnels for the disjoint paths to address the de-duplication node

 Build your own protection header with sequence numbers. 
 It might contain further fields, e.g., a protocol field to enable flexible parsing

► Both directions H1<->H2 and H2<->H1 should be protected

 Switch 1 and Switch 3 are duplication nodes and deduplication nodes at the same time!
 You still implement only one P4 program that runs on all switches

 If a packet should be encapsulated or decapsulated can be determined from the IP destination address
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1+1 Protection – Verification

►Verify if your protection works
 Ping between H1 and H2 from the terminal in UniCorn-P4

 No duplicates allowed between H1<->s1 and H2<->s3
 Verify with wireshark

 Kill the s1<->s3 connection
 In the VSCode terminal

• sudo docker exec –it netsim bash
• simple_switch_CLI --thrift-port 9090
• port_remove 3

  No interruption in pinging
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Hints

►Define a protection header and a second IP header in headers.p4, add them to the packet 
header
 e.g., Ethernet – Outer IP – Protection – Inner IP

 Adapt parser.p4 to parse your new header structure based on the ether_type
 Define a protection ether_type in headers.p4
 The outer IP header is always parsed, the inner only if the protection type is set

 Adapt parser.p4 to emit the new headers in the deparser
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Hints

►Define a protection header and a second IP header in headers.p4, add them to the packet 
header
 e.g., Ethernet – Outer IP – Protection – Inner IP

 Adapt parser.p4 to parse your new header structure based on the ether_type
 Define a protection ether_type in headers.p4
 The outer IP header is always parsed, the inner only if the protection type is set

 Adapt parser.p4 to emit the new headers in the deparser

►Use two registers for sequence numbers in ingress.p4
a. Next sequence number to push (duplication node)

b. Next sequence number expected (de-duplication node)

 Both switches need both registers!
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Hints

►Implement two MATs to determine if a packet needs to be protected or decapsulated
 Protection needed: Destination of original packet (outer IP) is a host

 Deduplication needed: Destination of tunnel header (inner IP) is the deduplication node

 Fill those tables from the Control Plane, i.e., from UniCorn-P4!
 Save your table state so you don’t have to enter the new entries on every reload

Data Plane Programming With P4                                                                                   Resilient Worlds Research School Program 73



Hints

►Implement two actions to encapsulate and decapsulate
 Decapsulate
 Verify sequence number: if hdr.protection.seq >= expected_seq forward else drop

 Increment expected sequence number in register

 Copy inner IP header to outer IP header

 Remove the protection and the inner IP header

 Encapsulate
 Parameters of the action, filled in by control plane

• IP address of tunnel endpoint (s1 or s3)

• Source IP address of this switch

• Session ID for packet mirroring

 Create the protection header and set it valid

• Fill it with the next sequence number read from the register

• Increment the register value

 Copy the original IP header (outer) to the inner IP header and set it valid

 Rewrite the outer IPv4 header to address the tunnel endpoint
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Hints

►Add packet cloning
 Set the session ID in metadata during the encapsulation action
 Session ID is configured during set up

 Session ID is given to the action from the control plane

 Use the Egress-to-Egress clone extern in egress.p4 to clone a packet
 Session ID as parameter
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