
Communication Networks

http://kn.inf.uni-tuebingen.de

Data Plane Programming With P4
Fabian Ihle <fabian.ihle@uni-tuebingen.de>

University of Tübingen

Agenda

►Introduction

►The P4 Programming Model

►Anatomy of a P4 program

►The Control Plane

►UniCorn-P4

►P4 Tutorial

►Hackathon

Data Plane Programming With P4 Resilient Worlds Research School Program 2

INTRODUCTION

Data Plane Programming With P4 Resilient Worlds Research School Program 3

Networking Concepts

► “Black box” (switch) received
from vendor

► Fixed-feature set

► Configure feature set provided
by vendor (e.g., via SNMP)

► Feature set not extendable

► “Configure IPv4 Routing for
the prefix 10.0.0.0/8”

► Switch divided into Control
Plane (controller) and Data
Plane (switch)

► Data plane provides fixed-
functionality, e.g., IPv4 Routing

► Programmable Controller, e.g.,
“Reroute traffic on a failure by
changing the IPv4 routing
entries”

4Data Plane Programming With P4 Resilient Worlds Research School Program

► Programmable Data Plane and
Control Plane

► Implement full feature set by
yourself, e.g., IPv4 routing, IP
tunneling, or FRR

► Low-level operations are used
to define packet processing

Source: [1]

P4: Overview

►P4: Programming protocol-independent packet processors [2], [3]
 High-level programming language to describe data planes

 Target-specific compiler maps P4 program to target

 P4 program not tied to a specific vendor or device (target), but can be used
on “any” P4 programmable target

 P4 defines low level (packet processing) operations

 Fully programmable data plane

 Limited only by expressiveness and features of P4 (and not by vendor)

P4 target
Target-specific P4

compiler

P4 program

5Data Plane Programming With P4 Resilient Worlds Research School Program

THE P4 PROGRAMMING MODEL

Data Plane Programming With P4 Resilient Worlds Research School Program 6

P4 Programming Model

7Data Plane Programming With P4 Resilient Worlds Research School Program

Definition: P4 Target

►What is a P4 target?
 A packet-processing system capable of executing a P4 program

 P4 targets follow a specific architecture, e.g., PSA, PISA, …

Data Plane Programming With P4 Resilient Worlds Research School Program 8

P4 Targets - Categories

►Software
 Software-based P4 targets run on a standard CPU

 Not suitable for high performance scenarios

 Good for rapid prototyping

Data Plane Programming With P4 Resilient Worlds Research School Program 9

►FPGA
 Tool chains translate P4 programs for field

programmable gate arrays (FPGAs)

 Includes logic synthesis, verification, validation and
placement/routing on the logic circuit for the FPGA

►ASIC
 Specialized micro chip for P4

 ASIC = Application-Specific Integrated Circuit

P4 Targets - Categories

►NPU
 Network processing units

 Programmable ASICs optimized for networking
applications

 Part of standalone network devices or device
boards

Data Plane Programming With P4 Resilient Worlds Research School Program 10

P4 Compiler (I)

►Two-Layer Compiler Model
 Most P4 compilers use the two-layer compiler model

 Consists of common frontend and a target-specific backend

 Front-end compiler
 syntactic and target-independent semantic analysis

 Back-end compiler
 Target-specific transformations

Data Plane Programming With P4 Resilient Worlds Research School Program 11

Common representation
for all targets

P4 Compiler (II)

►P4-hlir (high-level intermediate representation)
 First generation P4-compiler for P4 v14 written in Python

 Uses high-level intermediate representation (HLIR)
 Tree of python objects

Data Plane Programming With P4 Resilient Worlds Research School Program 12

►P4c
 Current generation P4-compiler for both v14 and v16

 Written in C++

 Uses C++-object-based intermediate representation (IR)

 IR can be represented as JSON file

 Has backends for multiple targets, e.g., bmv2, eBPF, uBPF, …

►Vendor specific compilers
 P4 target vendors maintain own compilers based on the common frontend

P4 Model: Benefits

►P4 programming model decouples software and hardware development / evolution

 P4 architectures as abstraction layer (or interface) between software and hardware
 Hides low level, target-specific details from high-level processing

 Software-models of P4 architectures allow software development independently of hardware

 Interface ensures compatibility

►Resource mapping and management is left to the manufacturer

 Software developers use only abstract high-level description of resources, e.g., Tables, registers, …

 Compilers maps software description to hardware resources
 Manages low-level details, e.g., memory allocation, scheduling, ...

 Software developers do not need to worry about efficiency

13Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Language: Benefits

►Packet forwarding expressible as programs

 Language expressiveness
 Describe target-independent packet processing with general-purpose operations and table look-ups

 Programs portable across targets

 Flexibility
 Easy to adapt

 Implement novel packet processing

 Software engineering characteristics
 Type checking, information hiding (interfaces), software reuse, …

 Agile development process

 Component libraries
 Wrap hardware-specific functions into portable P4 constructs

 Supplied by manufacturers

14Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Language Consortium

►Independent non-profit organization (https://p4.org)

►Free membership (in contrast to OpenFlow)

►Partners from industry and academia (https://p4.org/tst/)

 Technical steering team
 Nate Foster (Cornell University), Guru Parulkar (ONF), Armin Vahdat (Google)

 Industry members
 Cisco, Juniper, Google, Microsoft, Intel, Dell, Xilinx, …

 Academic members
 Princeton, Cornell, Stanford, …

►Many working groups (https://p4.org/working-groups/)
 Language design, API, Architecture, Applications, Education

15Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Architectures

►Diverse targets with different underlying functionalities
 Software-based, hardware-based, ASICs, FPGAs, ...
 Challenge: efficient execution of high-level code

 Programming models for different types of targets

►P4 architectures
 Programming models with logical view of the targets
 Decouples P4 program from targets
 P4 program is developed for specific P4 architecture
 A P4 program can be run on any target following the same

architecture

 Manufacturers
 “implement” architecture on hardware device
 provide compiler to map P4 code to device

 P4 is not only a programming language but also a
programming model based on architectures

16Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Architecture

►Programming models with logical view of the
targets

 Hardware abstraction layer

►Decouples P4 program from targets
  A P4 program can be run on any target following

the same architecture
 Architecture model and corresponding compiler

provided by manufacturer

►Network devices have programmable
1. (de)parser: protocol independence

2. match-action pipeline: custom packet processing

►Protocol-Independent Switch Architecture (PISA)
Source: [1]

17Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Architectures: Other

►Portable Switch Architecture (PSA)

 2 control blocks with separate (de-)parsers

 Traffic manager takes care of queueing etc.

►V1Model Architecture

 Implemented by BMv2 target

 Used in the Hackathon

 More info: https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

Data Plane Programming With P4 Resilient Worlds Research School Program 18

ANATOMY OF A P4 PROGRAM

Data Plane Programming With P4 Resilient Worlds Research School Program 19

P4 Components – Overview

►Data types
 For header fields and metadata fields

►Parsers
 Extract information from a packet

►Control Blocks
 Describe packet processing pipeline

 Match-action units

►Deparsers

►Externs
 Architecture/target-specific operations

20Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Data Types (I)

►Base types
 bool: Boolean

 bit<n>: Unsigned integer (bitstring) of size n (bit bit<1>)
 int<n>: Signed integer of size n (>=2)

 varbit<n>: Variable-length bitstring (fixed maximum length n)

►typedef
 Alternative name for a type

 „Syntactic sugar“

►header
 Ordered collection of base types

 Describes a packet header, e.g., an IPv4 header

21Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Data Types (II)

►struct
 Unordered collection of members

►Two types of metadata structs
 Intrinsic metadata
 Architectural metadata associated with each packet

 Example: input port, timestamp, …

 User-defined metadata
 User-defined data structures associated with each packet

 Comparable to variables

 is discarded when the packet leaves the switch

 can be used to exchange information between control blocks
 No other variables than metadata between control blocks!

► headers struct
 Describes the complete packet header

22Data Plane Programming With P4 Resilient Worlds Research School Program

Parsers (I)

►Parser maps serialized packets to header
fields and metadata fields for later use

 1010110101  Ethernet header | IP header …

 Packets consist of headers and payload

 Non-extracted headers (= payload) cannot be
accessed

►Parser described as state machine

 Three predefined states
 Start, Accept, Reject

 Other states may be defined by the developer

• Extract information from packets

• Mark extracted header as valid

• Transition to another state
(loops are OK)

23Data Plane Programming With P4 Resilient Worlds Research School Program

Parser (II)

Data Plane Programming With P4 Resilient Worlds Research School Program 24

►Packets consist of headers and
payload

►Parser extracts headers for later
use (e.g., MATs)

►Non-extracted headers (= payload)
cannot be accessed

►Requires: Header definition

Parser (II)

Data Plane Programming With P4 Resilient Worlds Research School Program 25

4. Go to next state

2. Extract header with
given name

3. Select next header to parse
based on header field

1. Definition of parser

Control Blocks (I)

Data Plane Programming With P4 Resilient Worlds Research School Program 26

►Control Blocks…
 encapsulate functionality
 Some similarities with classes in other languages

 define packet processing operations

►Two required control blocks

 Ingress and egress

►Data (e.g., variables) is carried in user-defined metadata to
other control blocks

►Control blocks can…
 Use branching (if, select)

 Use logical and simple arithmetic operations (&&, ||, +, -, …)

 NOT use loops

 Use match+action tables (MATs)

Match-action tables (MATs) (I)

Data Plane Programming With P4 Resilient Worlds Research School Program 27

► Match on selected key fields, execute an
action accordingly

► Structure of MAT entries, i.e., table columns

 (Match) key(s)
 header / metadata field for comparison with

table entries

 Match types, i.e., longest-prefix match
(lpm), exact, wildcard, …

 Possible action(s)
 Actions are defined outside of the MAT in

the P4 program

 Define most of the program logic

►Packet is matched with selected header
or metadata fields to the defined key

MATs (II)

►Data plane only defines format

►Requires control plane to populate entries
 Specify key value

 Specify action and parameter(s)

►„Matching a packet onto a MAT“

 Specified fields of the packet are
compared with key(s) of table entries

 If a matching entry is found,
corresponding action is executed

► A MAT can be applied only once per packet!

ActionKey

forward(1)10.0.1.1/32

drop10.0.1.2/32

standard_metadata.egress_spec = 1;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

28Data Plane Programming With P4 Resilient Worlds Research School Program

Reminder:

Control Blocks (II)

Data Plane Programming With P4 Resilient Worlds Research School Program 29

►Control Blocks contain program logic, e.g.,
 Match-action tables

 Conditions

 …

►Control Blocks can be encapsulated
 Call with .apply(..)

Resource
definitions

Apply
block

P4 Actions

►P4 actions
 Similar to functions in other programming languages

 Not only tied to MATs

 Available programming constructs

 Variables (only visible within the action)

 Many standard arithmetic and logical operations

• +, -, *, ~, &, |, ^, >>, <<, ==, !=, >, >=, <=

 Non-standard operations: bit-slicing and bit concatenation

► An action can be applied only once per packet!

30Data Plane Programming With P4 Resilient Worlds Research School Program

Deparser

Data Plane Programming With P4 Resilient Worlds Research School Program 31

►Serializes headers back into a well-formed network
packet

 Emit packet headers

 Order is relevant

 Only valid headers are added

 During processing, headers may be added with
.setValid() or removed with .setInvalid()

 .isValid() to check if header is valid

 Extracted headers in the parser are automatically
marked as valid

P4 Extern Objects

►Externs extend core P4 functionality
 P4 specification defines certain mandatory externs, e.g., registers, parsing, cloning, counters, …

 Other externs defined by target

 E.g., traffic generator in Intel Tofino switching ASIC

►extern describes set of methods but not the implementation!
 Similarity: abstract class in an object-oriented language

 Example: incremental checksum unit

extern Checksum16 {
Checksum16(); // constructor
void clear(); // prepare unit for computation
void update<T>(in T data); // add data to checksum
void remove<T>(in T data); // remove data from existing checksum
bit<16> get(); // get the checksum for the data added since last clear

}

32Data Plane Programming With P4 Resilient Worlds Research School Program

The Register Extern

►Metadata is per-packet and discarded after processing

►How to implement stateful algorithms?

  Register extern

 A packet can trigger reading from / writing a value into a register

►Extern: Implementation is target-specific!

 The v1model architecture provides a read and write function

 Other targets allow custom register actions

Data Plane Programming With P4 Resilient Worlds Research School Program 33

Data type of stored values

Register size
Index in register

Packet Cloning

Data Plane Programming With P4 Resilient Worlds Research School Program 34

►What to do if we need a copy of a packet, e.g., for 1+1 protection?
 Clone-Ingress-to-Egress (CI2E)
 Cloned packet does not contain modifications from ingress

 or Clone-Egress-to-Egress (CE2E)
 Cloned packet contains modifications from ingress

Clone session, needs
configuration from

control plane

Clone type, here
Egress-to-Egress

Recirculation

Data Plane Programming With P4 Resilient Worlds Research School Program 35

►There are no loops in P4!

 How to implement iterative algorithm?  Recirculation / Resubmit

Need to configure a
recirculation port

P4 Switch

►Switch.p4

 Connects all components

- Import of the switch architecture
- <v1model.p4>: bmv2 (your target switch for hackathon)

36Data Plane Programming With P4 Resilient Worlds Research School Program

THE CONTROL PLANE

Data Plane Programming With P4 Resilient Worlds Research School Program 37

P4 Control Plane (I)

►Control plane manages the runtime behavior of P4 targets via data plane APIs

►Data plane API is provided by a device driver or software component

 Exposes data plane features in a well-defined way

 If data plane feature is not exposed, it cannot be used by the control plane

►P4 targets may be used without a control plane with static MAT entries

38Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Control Plane (II) – Recap

►Example

 Data plane defines the table structure

 Control plane fills those tables with entries

►Communication via data plane API

Data Plane Programming With P4 Resilient Worlds Research School Program 39

P4 Control Plane

►Different approaches and control planes for runtime control of P4 switches

 SDN controller, CLI, …

►Crucial: API between control plane and data plane required

 P4 compiler auto-generated runtime APIs
 Program-dependent

 BMv2 CLI
 Program-independent, but target-specific

 Control plane not portable!

P4 Runtime: *-independent API

40Data Plane Programming With P4 Resilient Worlds Research School Program

P4 Runtime (I)

►Framework for runtime control of P4 targets

 Standardized gRPC communication
 p4runtime.proto defines messages and semantics (part of

P4 runtime standard)

 P4 targets include a gRPC server

 Controller implements gRPC client

►P4 compiler generates p4info.proto file from P4
program
 Contains all accessible P4 entities (MATs, Externs, …)

►P4 *-independent
 Not restricted to specific data plane protocols

 Target manufacturer ensures compatibility

 API doesn’t change with the P4 program
Source: [1]

41Data Plane Programming With P4 Resilient Worlds Research School Program

P4Runtime (III)

►In Scope

 Runtime control of P4 built-in objects and PSA externs

 MATs, registers, …

 In-the-field device-reconfiguration with a new P4 data plane

 Dynamically load a new P4 program on a switch during runtime

►Not in Scope

 Runtime control of elements outside the P4 language

 e.g., ports, traffic management, etc.

 Protobuf message definition for non-PSA externs

42Data Plane Programming With P4 Resilient Worlds Research School Program

Alternative Data Plane APIs

►Barefoot Runtime Interface (BRI)
 BRI consists of two independent APIs available for Tofino-based P4 hardware

targets

 BfRt API: local control including C, C++ and Python bindings

 BF Runtime: based on gRPC framework and protobuf (similar to P4Runtime)

►BM Runtime API

 Program independent data plane API for bmv2

 Based on Thrift RPC

Data Plane Programming With P4 Resilient Worlds Research School Program 43

Controller Use Case Patterns

►Embedded/Local Controller

 P4 hardware targets comprises / are attached to a
computing platform

 Running controller directly on the P4 target

Fast interaction and updates

►Remote Controllers

 Typical SDN setup

 Hybrid control planes might be used

 Local tasks, e.g., MAC learning, port monitoring, done by
embedded controller

 Global tasks, e.g., routing, done by remote controller

Data Plane Programming With P4 Resilient Worlds Research School Program 44

UNICORN-P4
A Universal Control Plane and GUI for P4

Data Plane Programming With P4 Resilient Worlds Research School Program 45

P4 Development Workflow

The developer …

… writes a P4 program

… compiles it for the target switch

… implements the corresponding control plane

… sets up a (virtual) testbed for validation

… loads the P4 program onto the switches

… configures the control plane to write MAT entries
in the data plane

Focus should be on P4 developing!

Not on control plane or testbed emulation

Data Plane Programming With P4 Resilient Worlds Research School Program 46

Source: [5]

UniCorn-P4

Data Plane Programming With P4 Resilient Worlds Research School Program 47

►UniCorn-P4 simplifies the development process
 Universal control plane using the P4 runtime data plane API

 Web GUI to configure MAT entries

►P4info file (compilation artifact) can be loaded in the web GUI
 UniCorn-P4 automatically detects available MATs and actions from the P4 program

 MAT entries can be added, modified, and deleted in the frontend

 P4 program can be loaded onto multiple switches in the network
 Communication via P4 Runtime + gRPC

►Network topologies can be specified as .json file
 Starts up a virtualized Mininet network testbed

 Each switch can be programmed individually

►UniCorn-P4 keeps a history of previous configurations
 Load P4 programs and MAT entries from history

Source: [5]

P4 TUTORIAL

Data Plane Programming With P4 Resilient Worlds Research School Program 48

Example Setting

► Host 1 must reach Host 2 via ICMP ping

► Given data plane: P4 program

 Header

 Parser

 Ingress: Table + Action

 Egress

 Deparser

► Given control plane: UniCorn-P4

 Writes table entries for packet forwarding

► In the tutorial, you will learn …

 how to operate with the data plane and the control plane

 how to debug

 how to implement a new protocol

Data Plane Programming With P4 Resilient Worlds Research School Program 49

Getting started

1. Start the UniCorn-P4 control plane
 Navigate to /home/p4/UniCorn-P4/docker
 Run sudo docker compose up
 Navigate to http://localhost:3000 in the web browser

2. Write your P4 program in VSCode
 Place the project in a subfolder in /home/p4/UniCorn-P4/p4-files
 Already done for you

3. Compile your P4 program
 P4c is bundled in the UniCorn-P4 backend container

i. Enter a shell in the container: sudo docker exec -it backend bash
ii. Enter your project folder: cd /p4/basic/<project>
iii. Compile the P4 program: p4c p4_tutorial.p4 --target bmv2 --arch v1model --

p4runtime-files p4_tutorial.p4info.txt -o .

Data Plane Programming With P4 Resilient Worlds Research School Program 50

Getting started – Working with UniCorn-P4

4. Adapt topology.json to your needs.
 Located in /home/p4/UniCorn-P4/netsim/topology*.json
 Mininet automatically assigns IP adresses

5. Load the topology in the UniCorn-P4 GUI

Data Plane Programming With P4 Resilient Worlds Research School Program 51

Getting started – Working with UniCorn-P4

6. Connect to the switches in the UniCorn-P4 GUI

Data Plane Programming With P4 Resilient Worlds Research School Program 52

Getting started – Working with UniCorn-P4

7. Load the P4 program onto each switch

Data Plane Programming With P4 Resilient Worlds Research School Program 53

Getting started – Working with UniCorn-P4

8. Write table entries in the UniCorn-P4 GUI

Data Plane Programming With P4 Resilient Worlds Research School Program 54

Getting started – Working with UniCorn-P4

9. Alternative to step 7 and 8: Load a state including a P4 program and table entries onto a
switch from „Saved“

Data Plane Programming With P4 Resilient Worlds Research School Program 55

Getting started – Working with UniCorn-P4

10. Access the host terminals

Data Plane Programming With P4 Resilient Worlds Research School Program 56

Interrupt

Debugging

►ping 10.0.1.2 from Host 1 does not work. Why?

►Check switch log file netsim/logs/s1.log
 IPv4.isValid() is false. Why?

►Use wireshark or tcpdump
 ARP packets are not forwarded!

►ARP handling must be implemented
 Simplified, hardcoded entries, no „real“ ARP handling
 ARP request from Port 1 will be sent to Port 2 and vice versa

Data Plane Programming With P4 Resilient Worlds Research School Program 57

Implementing a new protocol (ARP)

►Steps to implement a new protocol
 Data Plane

i. Define EtherType ARP

ii. Define ARP header

iii. Add ARP to header stack

iv. Adapt the parser state machine

v. Add parser state

vi. Add Match-Action logic

vii. Call Match-Action logic

viii. Deparse ARP header

 Recompile the program and load it onto the switch

 Control plane
i. Write Match-Action table entries

Data Plane Programming With P4 Resilient Worlds Research School Program 58

HACKATHON
Simplified, wired 1+1 protection in P4

Data Plane Programming With P4 Resilient Worlds Research School Program 59

1+1 Protection – Concept

►Sender (duplication node) duplicates traffic and forwards it over disjoint paths

►Receiver (deduplication node) forwards only the first copy received and drops the other

► On a failure of one link, no interruption in forwarding!

Data Plane Programming With P4 Resilient Worlds Research School Program 60

1+1 Protection – Concept (animated)

Data Plane Programming With P4 Resilient Worlds Research School Program 61

1+1 Protection – Concept

Data Plane Programming With P4 Resilient Worlds Research School Program 62

1+1 Protection – Concept

Data Plane Programming With P4 Resilient Worlds Research School Program 63

Duplication node
• Encapsulate them with an IP tunnel header and a

protection header
• Keep track of sent sequence numbers in a register, add

them to the protection header
• Clone packets to both links

Forwarding node
• Does normal IPv4 LPM forwarding

Deduplication node
• Keep track of next expected sequence numbers in a

register
• Only forward frames with a sequence number higher or

equal to the expected sequence number
• Drop other frames (duplicates)
• Remove protection and IP tunnel header

Switch 1 and Switch 3 are
duplication nodes and
deduplication nodes at the same
time!

Hackathon VM – Getting started

►Install a virtualization environment

 VirtualBox 7: https://www.virtualbox.org/wiki/Downloads (platform independent)

 Mac users may use the .qcow2 file and UTM

►Download the .ova file shared in the Nextcloud with you and import it

 In VirtualBox: „File“  „Import Appliance“
 2 CPUs and 4096 MiB RAM

 Start the VM

• username p4, password resilience

►Open VSCode in the virtual machine and navigate to /home/p4/UniCorn-P4/docker in a
terminal

►Start UniCorn-P4 with sudo docker compose up

►Navigate to http://localhost:3000 in a web browser

Data Plane Programming With P4 Resilient Worlds Research School Program 64

1+1 Protection – Getting started

1. Load the given topology file topology_protection.json in UniCorn-P4
 Navigate to http://localhost:3000 after starting UniCorn-P4

 Click on the „Mininet“ tab

 Select the topology file in the dropdown menu and load it

 IP addresses and ARP handling are already configured

Data Plane Programming With P4 Resilient Worlds Research School Program 65

1+1 Protection – Getting started

2. Compile and load the template code from the protection folder in UniCorn-P4/p4-files in
UniCorn-P4 onto each switch
 Compile your code as described on slide 54

 Click on the switch tab „s1“, „s2“, etc. in UniCorn-P4

 Click on „Edit Initialization“

 Select the .p4info.txt and the protection.json file and click on initialize

 Do this for every switch

 You have to repeat this every time you recompile your P4 program

 The given code implements IPv4 LPM routing
 Lookup the IPv4 destination in a MAT and execute the forward action

• Set the egress port

• Set the ethernet source address to the destination address

• Set the destination ethernet address to the next hop

• Decrement TTL

 The egress port, and ethernet addresses are provided by the control plane (UniCorn-P4)

 ARP handling is not necessary

Data Plane Programming With P4 Resilient Worlds Research School Program 66

1+1 Protection – Getting started

3. Set up IPv4 LPM forwarding entries so that H1 can reach H2 via the ping command
 Without 1+1 protection

 You can load the table states for each switch in UniCorn-P4 under „Saved“
 Click on a switch tab

 Scroll down below the initialization

 Select the corresponding protection state from the list of saved states and load it with „Re-initialize state“

 Make sure to select the correct switch state for the current switch

 This also reloads the P4 program onto the switch as done in step 2

► Ensure that H1 can reach H2 before you continue!
 Click on the Mininet tab

 Scroll down to see the terminals

 Start pinging from the host1 terminal: ping 10.0.3.2
 Send an interrupt to the terminal by clicking the red button top left

Data Plane Programming With P4 Resilient Worlds Research School Program 67

1+1 Protection – Implementation

►Implement 1+1 protection between s1 and s3
 Set up packet mirroring (cloning)
 Run the following in the terminal in VSCode

 sudo docker exec –it netsim bash

• s1
simple_switch_CLI --thrift-port 9090
mirroring_add 1 2

• s3
simple_switch_CLI --thrift-port 9092
mirroring_add 3 3

 In your P4 program, use this session ID with the clone extern to clone packets to the configured port

Data Plane Programming With P4 Resilient Worlds Research School Program 68

Traffic mirrored to this port

Mirror session ID

1+1 Protection – Implementation

►Every packet between s1 and s3 destined for H1 and H2 should be forwarded between s1
and s3 using both paths
 s1 (duplication node) duplicates packets for H2 and sends the packets to s2 and s3 (de-duplication

node)

 Use IPv4 tunnels for the disjoint paths to address the de-duplication node

 Build your own protection header with sequence numbers.
 It might contain further fields, e.g., a protocol field to enable flexible parsing

► Both directions H1<->H2 and H2<->H1 should be protected

 Switch 1 and Switch 3 are duplication nodes and deduplication nodes at the same time!
 You still implement only one P4 program that runs on all switches

 If a packet should be encapsulated or decapsulated can be determined from the IP destination address

Data Plane Programming With P4 Resilient Worlds Research School Program 69

1+1 Protection – Verification

►Verify if your protection works
 Ping between H1 and H2 from the terminal in UniCorn-P4

 No duplicates allowed between H1<->s1 and H2<->s3
 Verify with wireshark

 Kill the s1<->s3 connection
 In the VSCode terminal

• sudo docker exec –it netsim bash
• simple_switch_CLI --thrift-port 9090
• port_remove 3

  No interruption in pinging

Data Plane Programming With P4 Resilient Worlds Research School Program 70

Hints

►Define a protection header and a second IP header in headers.p4, add them to the packet
header
 e.g., Ethernet – Outer IP – Protection – Inner IP

 Adapt parser.p4 to parse your new header structure based on the ether_type
 Define a protection ether_type in headers.p4
 The outer IP header is always parsed, the inner only if the protection type is set

 Adapt parser.p4 to emit the new headers in the deparser

Data Plane Programming With P4 Resilient Worlds Research School Program 71

Hints

►Define a protection header and a second IP header in headers.p4, add them to the packet
header
 e.g., Ethernet – Outer IP – Protection – Inner IP

 Adapt parser.p4 to parse your new header structure based on the ether_type
 Define a protection ether_type in headers.p4
 The outer IP header is always parsed, the inner only if the protection type is set

 Adapt parser.p4 to emit the new headers in the deparser

►Use two registers for sequence numbers in ingress.p4
a. Next sequence number to push (duplication node)

b. Next sequence number expected (de-duplication node)

 Both switches need both registers!

Data Plane Programming With P4 Resilient Worlds Research School Program 72

Hints

►Implement two MATs to determine if a packet needs to be protected or decapsulated
 Protection needed: Destination of original packet (outer IP) is a host

 Deduplication needed: Destination of tunnel header (inner IP) is the deduplication node

 Fill those tables from the Control Plane, i.e., from UniCorn-P4!
 Save your table state so you don’t have to enter the new entries on every reload

Data Plane Programming With P4 Resilient Worlds Research School Program 73

Hints

►Implement two actions to encapsulate and decapsulate
 Decapsulate
 Verify sequence number: if hdr.protection.seq >= expected_seq forward else drop

 Increment expected sequence number in register

 Copy inner IP header to outer IP header

 Remove the protection and the inner IP header

 Encapsulate
 Parameters of the action, filled in by control plane

• IP address of tunnel endpoint (s1 or s3)

• Source IP address of this switch

• Session ID for packet mirroring

 Create the protection header and set it valid

• Fill it with the next sequence number read from the register

• Increment the register value

 Copy the original IP header (outer) to the inner IP header and set it valid

 Rewrite the outer IPv4 header to address the tunnel endpoint

Data Plane Programming With P4 Resilient Worlds Research School Program 74

Hints

►Add packet cloning
 Set the session ID in metadata during the encapsulation action
 Session ID is configured during set up

 Session ID is given to the action from the control plane

 Use the Egress-to-Egress clone extern in egress.p4 to clone a packet
 Session ID as parameter

Data Plane Programming With P4 Resilient Worlds Research School Program 75

Sources

[1] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger, R. Frank, and M.
Menth: A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied
Research, (preprint), in Journal of Network and Computer Applications (JNCA), vol. 212, March
2023, Elsevier

[2] https://p4.org/

[3] https://github.com/p4lang/tutorials/blob/master/P4_tutorial.pdf

[4] P4 16 Language Specification (v.1.2.1,” https://p4.org/p4-spec/docs/P4-16-v1.2.1.html,
accessed 04-19-2021.

[5] F. Ihle, M. Flüchter, S. Lindner, and M. Menth: UniCorn-P4: A Universal Control Plane and
GUI for P4, in KuVS Fachgespräch - Workshop on Modeling, Analysis and Simulation of Next-
Generation Communication Networks, Sept. 2024, Würzburg, Germany

76Data Plane Programming With P4 Resilient Worlds Research School Program

