(©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Activity-Based Congestion Management for Fair
Bandwidth Sharing in Trusted Packet Networks

Michael Menth and Nikolas Zeitler
University of Tuebingen, Chair of Communication Networks, Germany

Abstract—Congestion management detects congestion in a
network and resolves it, e.g., by dropping or marking packets.
A challenge is to drop or mark the right packets if fair capacity
sharing is desired, especially if a few heavy users monopolize the
bandwidth, e.g., by opening many flows or using non-responsive
transport protocols. To this end, we propose activity-based
congestion management (ABC). Users are assigned reference
rates and their traffic is equipped with activity information.
The activity indicates by which factor the transmission rate of
a user exceeds his reference rate. ABC leverages active queue
management (AQM) in routers or switches and uses the packets’
activity information to adapt the drop or mark probabilities of
the AQM. ABC is scalable as switches do not require user states,
multiple queues, or signalling.

We investigated ABC by means of simulation under condi-
tions where a heavy user wants to monopolize a bottleneck’s
bandwidth. ABC provides an ecosystem where users with non-
responsive constant-bitrate (CBR) traffic can maximize their
throughput on a congested bottleneck link by adapting their
sending rate to their fair share induced by their reference rate.
Users with responsive TCP traffic obtain approximately fair
capacity shares. Moreover, ABC protectes TCP traffic when
competing with traffic from CBR users. We investigate the
impact of system parameters and give recommendations for
configuration.

I. INTRODUCTION

Congestion management detects and resolves congestion in
a network. Simple forms effect that heavy users can monop-
olize a bottleneck link’s bandwidth and degrade the quality
of experience of competing light users. More sophisticated
variants guarantee some fairness among users. Congestion
management is useful, e.g., for multi-tenant data centers,
mobile access and core networks, or Internet service provider
(ISP) networks. In the latter, some back pressure is applied
on certain users, traffic, or applications [1]]-[3]]. This helps
ISPs to provide with limited resources better service to most
customers, delay early reinvestments in transmission capacity,
and save money.

In the recent years, there have been several efforts in
particular in the IETF to improve congestion management
for networks with respect to delay and fairness. New active
queue management (AQM) algorithms are being standardized
[4], [5]. Congestion exposure (ConEx) attempts to make
congestion more visible in the IP layer to facilitate better-
informed traffic engineering [1]. The driving application for
ConEx is congestion policing that pursues more fairness
among users in case of congestion [6]. One of its goals is to
provide an ecosystem that incentivizes the application of more

978-1-5090-0223-8/16/$31.00 © 2016 IEEE

congestion-sensitive protocols such as LEDBAT [7]]. Real-
time transport protocol (RTP) media congestion avoidance
techniques (RMCAT) add congestion control to realtime flows.

In this work, we introduce activity-based congestion man-
agement (ABC) to improve fairness among users in case of
congestion. ABC defines traffic aggregates — based on user,
interface, virtual machines, or other criteria — and assigns
reference rates to them. In the following, we talk only about
users for the sake of simplicity. A user’s transmission rate is
metered at the network edge and packets are equipped with
activity information. AQM mechanisms in routers or switches
inside a network adapt their mark or drop probabilities for
packets depending on the activity coded in these packets.
We show that ABC creates an ecosystem where users with
constant bitrate (CBR) traffic can maximize their throughput
by sending at their fair rate. Users with TCP traffic fairly share
the capacity of a bottleneck link even if they hold a different
number of flows. And TCP traffic is protected against overload
by users sending non-responsive CBR traffic. Furthermore,
ABC can be configured that some users obtain larger capacity
shares and short transactions from light users are expedited.

ABC may be applied for similar use cases as ConEx-
based congestion policing for which several preferred use
cases have been proposed: residential access networks [8]],
mobile communication networks [9]], and data center networks
[10]. However, the focus of this paper is on the basic ABC
mechanism, not on its adaptation to use cases. Note that ABC’s
objective is different from traditional AQMs. However, it may
be combined with existing AQMs to provide both fairness and
low delay which is not covered in this study.

The paper is structured as follows. Section [[I] gives an
overview of congestion management approaches. In Section [ITI]
we propose the ABC design. The simulation results in Sec-
tion [[V| show ABC’s performance properties mentioned above
and address configuration issues. Section [V]draws conclusions
and gives an outlook on future work.

II. RELATED WORK

An excellent and extensive overview of congestion manage-
ment is compiled in [2]. Congestion management techniques
comprise packet classification, admission control and resource
reservation, caching, rate control and traffic shaping, routing
and traffic engineering, packet dropping and scheduling, and
many more technology-specific approaches. Moreover, multi-
ple examples of congestion management practices applied by
ISPs are described.

IEEE/IFIP Network Operations and Management Symposium (NOMS 2016), April 2016, Istanbul, Turkey

The whitepaper in [3] proposes that congestion management
should be applied only in the presence of real congestion and
discusses several detection methods for congestion that are
based on time of day, concurrent user thresholds, bandwidth
thresholds, and subscriber quality of experience. Application
priorities and policy enforcement, e.g., prioritization, schedul-
ing mechanisms, rate limiting, etc., are discussed as means to
manage traffic when congestion is detected.

Congestion management techniques may be applied per user
or per application. The latter requires deep packet inspection
and expedites or suppresses traffic of certain applications. This
is technically demanding, not always possible, e.g., with IPsec
traffic, and widely undesired as it obviously violates network
neutrality.

Rate limiting is simple and usually implemented by token-
bucket based algorithms. It reduces a user’s traffic rate to an
upper bound regardless of the network state. Rate limiting
may be applied generally or only to users that have recently
been identified as heavy users, e.g., by having exceeded certain
data volumes, and only for a limited time. Monthly quotas are
common for many subscriber contracts. If a user exceeds his
quota, his rate is throttled to an upper bound which is rather
low. This is a drastic and ineffective means. As long as a heavy
user has quota available, he may significantly contribute to
congestion, and if his quota is consumed, he is not even able
to transmit traffic in the absence of congestion.

Comcast’s congestion management system [11]] identifies
heavy users who contribute too much traffic within a 15
minutes measurement interval. It further monitors upstream
and downstream ports of cable modem termination systems
(CMTSs) to detect near congestion states. Under such condi-
tions, the congestion management system reduces the priority
of heavy user traffic to “best effort” (BE) while other traffic
is served with “priority best effort” (PBO). The latter is
scheduled before BE so that only heavy users possibly suffer
from lower throughput and longer delays.

Scheduling mechanisms such as weighted fair queueing,
possibly approximated by deficit round robin (DRR) [12],
reduce a heavy user’s throughput just to his fair share and only
when needed. However, they are more complex as they require
per-user queues on all potential bottleneck links and traffic
classification which raises scalability concerns. Moreover, sig-
nalling may be needed to configure scheduling algorithms per
user on potential bottlenecks.

Seawall [13]] is a network bandwidth allocation scheme
for data centers that divides network capacity based on
administrator-specific policy. It is based on congestion-
controlled tunnels and provides strong performance isolation.

AQM mechanisms in routers and switches occasionally
drop packets before tail drops occur. The survey in [14]]
gives a comprehensive overview of the large set of existing
mechanisms. RED [15] was one of the first AQMs and is
implemented on many routers. CoDel [[16] and PIE [17] are
currently discussed and further developed in the IETF AQM
working group to allow temporary bursts but to avoid a stand-
ing queue and bufferbloat. ABC leverages AQM mechanisms

that drop packets with some probability. An example is PIE.
Other AQM mechanisms, e.g., CoDel, work deterministically.
Another AQM [[18]] resembles ABC in that it protects TCP
traffic against non-responsive traffic, but it does not address
per-user fairness. With explicit congestion notification (ECN)
[19], ECN-enabled TCP senders mark packets appropriately
and AQM mechanisms re-mark these packets as “congestion
experienced” (CE) instead of dropping them. Thereby, ECN
makes congestion visible in the network between the con-
gested element and the receiver. Upon receipt of a CE signal,
the TCP receiver signals an ECN echo (ECE) to the sender
which then reduces its transmission rate like upon detection
of packet loss.

Briscoe argued that per-flow fairness is not the right ob-
jective in the Internet [20] and proposed ReFeedback and
congestion policing (CP) to implement per-user fairness [21]—-
[23]. The congestion exposure (ConEx) protocol is currently
standardized by the IETF and implements the core idea of
ReFeedback. ConEx leverages ECN to learn about congestion
on a flow’s path. A TCP sender sets for any received ECE
signal a ConEx mark in the IP header of subsequent packets
so that any node on a flow’s path can observe its contribution
to congestion. This requires modifications to TCP senders and
receivers [24]. As the network cannot trust that users insert
sufficient ConEx marks into packet streams, per-flow audit
near the receiver should compare CE and ConEx signals to
detect cheating flows and sanction them [25].

We briefly explain ConEx-based CP which is the driving
application for ConEx. A congestion policer meters only
ConEx-marked packets of a user and if they exceed the user’s
configured congestion allowance rate and burst tolerance, the
policer drops some of the user’s traffic. Thereby, the policer
penalizes heavy users causing a lot of congestion and saves
light users whose ConEx-marked traffic does not exceed their
congestion allowances. The objective of this differentiated
treatment is fairer bandwidth sharing among users in case
of congestion. In [[I]] ConEx is qualitatively compared with
existing congestion management approaches, and use cases
are discussed which are further elaborated in [8]]-[10]]. There
is only little insight into the performance of ConEx-based CP.
Wagner [26] applied CP to a single queue. Traffic of different
users is classified and separately policed before entering the
queue. The policers leverage congestion information of the
local queue rather than ConEx signals in data packets. This
approach may be used for fair bandwidth allocation on a local
queue. However, it requires per-user state so that the major
advantage over scheduling is lost. ConEx Lite was developed
for mobile networks in [27]. Instead of requiring users to
apply ConEXx, traffic is tunneled and CP is performed using
congestion feedback from the tunnel.

ABC was inspired by ConEx-based CP but takes a different
approach due to lessons learned. We have simulated ConEx-
based CP and gained two insights. First, in case of congestion,
policers may penalize only heavy users, but light users are also
throttled by the receipt of ECE signals. Second, appropriate
congestion allowances are difficult to configure. Low conges-

tion allowances cause low utilization in case of only a few
users. Large congestion allowances cannot enforce fair capac-
ity sharing. Therefore, the performance of CP we considered
benefits from leveraging information about bottleneck band-
widths and the number of current users for configuration of
policers. However, this requires dynamic configuration which
makes a system complex. These shortcomings are avoided in
ABC.

Core-stateless fair queueing (CSFQ) [28] resembles ABC in
that edge nodes of a network add rate information to packets.
Core routers measure the traffic arrival rate on a link and
relate it to the known link bandwidth to determine conges-
tion. The rate information contained in packets helps to find
packet-specific drop probabilities to achieve max-min fairness
among flows. In contrast, ABC leverages instantaneous queue
lengths instead of rate measurements to detect congestion
and determine drop probabilities. This is simpler and offers
the perspective to combat bufferbloat in combination with
appropriate AQMs and to cope with variable bandwidth.

With pre-congestion notification (PCN), meters and markers
within a single domain re-mark high-priority packets if a near-
congestion state is reached. This information is used at the
edge of a DiffServ domain for admission control and flow
termination [29]. While ABC meters traffic at the edge and
drops packets inside a network, PCN meters traffic inside
the network and drops packets from non-admitted or torn-
down high-priority flows at the network edge. Thus, although
ABC and PCN look similar at first sight, they are significantly
different regarding operation and objectives.

ITIT. ABC DESIGN

We first give an overview of ABC. Then, we introduce the
activity meter and explain how AQM probabilities are adapted.
Finally, deployment aspects are discussed.

A. Overview

ABC enforces fair resource sharing within an ABC domain.
The concept is illustrated in Figure [II An ABC domain is
confined by edge nodes with activity meters. They meter the
activity of traffic aggregates (aka users) and record it in their
packets. Modified AQMs may drop/mark traffic in case of con-
gestion on all links within an ABC domain. Such ABC-AQMs
leverage only the packets’ activity to preferentially drop/mark
traffic from more active users. Therefore, ABC operation does
not require per-flow or per-user state or signalling in the core
network.

ABC assigns a reference rate R, to the activity meter of
any user (or other traffic aggregate) within an ABC domain.
Activity meters determine the users’ activity at every packet
arrival. The activity is essentially the logarithmic value of
the factor by which a user’s transmission rate R; exceeds his
reference rate R,. An ABC-AQM accounts for the average
activity A,y of received packets. It adapts the conventional
AQM probability for dropping/marking a packet using the dif-
ference between a packet’s activity and the observed average
activity Agye (A —Aay,). Essentially, drop/mark probabilities

are increased for packets with activity values higher than A,
and decreased for packets with activity values lower than Ag,,.

ABC domaln

w/ activity
meter & marker,
ABC-AQM

w/ ABC AQM

Fig. 1. Act1v1ty metering and marking is performed on the network edge only
while ABC-AQM may be applied on all interfaces within an ABC domain.

B. Activity Meter

An activity meter is applied per user. It consists of a token
bucket with a bucket size B and whose fill state F' is increased
by the user’s reference rate R, over time. The fill state F is
decreased by the metered traffic and can become negative in
contrast to conventional token buckets. If a packet of length
L arrives at time t,,,,, the tokens arrived since the last packet
arrival #;,5; are added to the fill state by

_tlast)) (1)

and #;,5 1s updated with ¢,,,,. Then, the activity A is computed
using the activity inertia / for scaling purposes:

F =min(B,F 4+ R, - (tyow

F>0

0
A= .)
—F
{ z1 F<0
The activity A is recorded in the packet’s header. Then, the
fill state F is decreased by

F=F—-L 24 (3)

Both B and I are configured values. The bucket size B is given
in bytes and expresses a burst allowance. We use a default
value of B =0 KB. An activity meter with a full bucket
disregards at least this traffic quantity before indicating that
the transmission rate R; exceeds the reference rate R,. The
activity inertia / is given in seconds and controls how fast
the activity adapts to changed transmission rates in a similar
way as the length of a measurement window controls how fast
measured rates can change over time.

We briefly summarize some properties of the proposed
activity meter without further proof as the focus of this work
is on the overall ABC mechanism which may use alternate
activity meters. For a user with CBR traffic and a transmission
rate R, > R,, the metered activity converges to log,(R;/R;).
The condition R, -1 > L should be respected so that the metered
activity is sufficiently smooth. In our simulations, we take
I = 0.6 s because this values allows to use small reference
rates of R, = 0.02 Mb/s without the risk of oscillating activity
values.

C. Adaptation of AQM Probabilities

ABC adapts AQM probabilities such that packets from users
with a larger or lower activity value than the average A,,, face
larger or lower mark/drop probabilities. To that end, the AQM
is extended to average activity values A of received packets
by an exponentially weighted moving average (EWMA) as
follows:

Aavg:wA-Aavg+(l —wy)-A.)

The activity weight wy is a number between 0 and 1 and
controls how quickly the average A, adapts to changed
activity values. We use a default value of wy = 0.99. The
AQM probability p is adapted by the following equation:

_ 2~ Y-(A—Aavg)

pPA=Dp)

The differentiation factor y controls the impact of the activity
difference (A —Aqy,) on the deviation of the modified drop
probability p4 from the AQM probability p. Positive values
of y increase p4 for positive differences, which is desired.
A value of Yy =0 avoids differentiation and turns off ABC.
Negative differentiation factors lead to undesired adaptation
results. We use a default value of y=3.

D. Deployment Aspects

ABC requires the following parameters: reference rate R,,
burst allowance B, activity inertia I per user, and differentiation
factor y and activity weight wq per AQM on bottleneck links.
They do not need to be the same network-wide, in particular
users may be configured with different reference rates R,
for service differentiation. However, they need to be set
consistently for meaningful operation. We study their impact
in the next section. ABC does not require a special AQM.
The AQM just needs to work with drop/mark probabilities
that can be modified by ABC. The activity information may
be coded, e.g., into IPv6 extension headers or in additional
headers below IP. The latter seems doable in OpenFlow-based
networks. Switches need to evaluate the activity information in
packets, average over them, and adapt drop/mark probabilities
of their AQMs accordingly. Fraudulent users may set too low
activity values. Therefore, we propose the use of ABC only
for trusted networks where the assignment of activities and the
transport can be controlled by the network operator.

ABC requires any upstream traffic of a user to be activity-
metered and equipped with activity information, which may be
done in a single location close to the source. If ABC should
be applied to downstream traffic, the user’s traffic needs to be
metered at possibly many network ingresses by a distributed
activity meter. This seems feasible for two reasons. First,
distributed policing has been demonstrated in [30]]. Second,
activity metering yields equal results when a flow is load-
balanced over two meters that are configured with half the
reference rate. Further details need to be discussed in the
context of specific use cases which may be similar to those of
ConEx-based CP [8]-[10].

IV. RESULTS

In this section, we investigate bandwidth sharing with ABC
using stochastic discrete-event simulation. After explanation of
the simulation methodology, we first illustrate how competing
constant-bitrate (CBR) flows share bandwidth with and with-
out ABC. Then, we show that ABC protects TCP flows against
non-responsive CBR flows. Finally, we demonstrate the ability
of ABC to enforce per-user fairness for TCP traffic for various
ABC configuration parameters and networking conditions.

A. Simulation Methodology

1) Simulator and Traffic Sources: We performed simula-
tions with INET 2.4.0 [|31] in the OMNet++ network simula-
tion framework 4.4.1 [32]. We used the Network Simulation
Cradle 0.5.3 [33]] to model saturated TCP sources. It facilitates
the application of real world network stacks from the Linux
kernel for which we took version 2.6.29. We used TCP Reno
for our study with and without ECN [19]. We work with a
maximum transfer unit of MTU=1500 bytes on layer 2. For
experiments with non-responsive traffic we apply CBR UDP
sources with maximum packet size.

user
(" equipment

access router
[performingactivity
user == &5 metering
group0 < H
- router server
El /\ running AQM
kg—f‘% Nl w/ABC —
p ~\ o7
EI ' f bottleneck link
. &S i w/ capacity C, and
wer ¢ \ propagation delay D),
group 1
*‘g‘—f’% access links w/ capacity
L C, and propagation delay D,

Fig. 2. Simulation setup.

2) Network and AQM: We simulate the scenario depicted
in Figure 2] Multiple users communicate with a server via an
access router, an access link, and a bottleneck link, yielding
a one-sided dumbbell topology. They are divided into a user
group 0 (UGy) and a user group 1 (UGy). If the experiments
require a distinction between heavy and light users, the heavy
users are grouped in UGy and the light users in UG|. The user
groups have u; users which are all configured with the same
reference rate R.. All users of a user group communicate in
the same way with the server. In case of TCP communication,
each user in UG; has f; TCP flows. In case of non-responsive
traffic, a user has only a single UDP flow sending CBR traffic
at a transmission rate of Ri. All access links have the same
propagation delay D, and bandwidth C,. The bottleneck link
is shared by all users, has propagation delay D; and capacity
Cp. Thus, a lower bound for the round trip time (RTT) is
2- (Da + Db).

The bottleneck link has a simple AQM algorithm that drops
or marks packets with a probability that depends on the current

queue size Q given in packets and excluding the newly arrived
packet. The probability function is determined as follows:

0 0 <00

0—-0o

01—0o Pl QO < QS Ql 6
o P1+32:QQ11'(1*P1) 01<0<Q (©)

1 0 <0

It has 4 parameters: thresholds Qo, Q1, Q2, and probability p;.
Unlike RED, it does not average queue lengths Q [15]. We
denote specific functions by “pf-Qp-Q1-0>-p1”. We choose
this simple AQM to point out important AQM properties.
However, this specific AQM is not essential for ABC and
alternate approaches, e.g., PIE may be used. With the proposed
AQM, the queue cannot exceed Q» packets in case of dropping
so that this number of packets is a sufficient buffer size.
With ECN-enabled TCP flows, packets are marked instead
of dropped so that the queue size may increase significantly
beyond Q,. To minimize the likelihood of tail-drops, we
generally use a buffer capacity of O, = 50 packets. On the
fast access links, we apply drop-tail queues also with a buffer
size of 50 packets.

3) Experiment Setup and Performance Metrics: We per-
form multiple experiments that differ only in a few param-
eters. Table [[] compiles default values that are applied in all
experiments if not stated differently.

TABLE 1
DEFAULT PARAMETER VALUES FOR EXPERIMENTS.

link bandwidths C,, Cj
link delays D,, Dy
AQM probability function

100 Mb/s, 10 Mb/s
0.1 ms, 5 ms
pf-11-17-24-0.01

buffer size Qpax 50 pkts
reference rates R, R} 0.05 Mb/s
inertia I, burst allowance B 0.6 s, 0 bytes
diff. factor 7, activity weight wy 3,0.99

ABC’s intention is to share bandwidth in case of congestion
proportionally to users’ reference rates. We study to which
degree this objective can be achieved when heavy users
compete with light users under various networking conditions.

Without ABC, saturated TCP flows, i.e., flows that always
have data to send, share the bandwidth of a bottleneck link
about equally, giving more throughput to users with more
flows. We simulate heavy and light TCP users with fy and
fi TCP flows (fo > f1), respectively, yielding a configured
unfairness of U, = ;—? To study non-responsive traffic, we
simulate a single user per user group UG; with a single
flow sending CBR traffic at rate Ri. If two non-responsive
users compete for the bandwidth of a link without ABC, the
bandwidth is shared proportionally to the transmission rates.
This yields a configured unfairness of U, = 1;—%).

The major intention of ABC is fair bandwidth sharing. We
characterize the fairness of the bandwidth sharing result by the
throughput ratio Tz = % where T; is the average throughput
per user in UG;. If T = 1 holds, the bandwidth is shared
fairly among users in both groups. In case of Tz > 1, users

in UGy receive higher throughput than users in UGy, and in
case of T < 1, users in UG are advantaged. Maximizing per-
user fairness means bringing 7Tz close to 1. The widely used
fairness index of Jain [34] is at most 1 and does not reveal
the advantaged user group.

4) Simulation Accuracy: For each experiment with TCP
flows, we discarded a warmup phase of 15 s and collected
simulation data over additional 10 s. We report mean values
over 50 runs. The TCP sources were randomly started within
the first 5 s of the simulation. In case of CBR users only, we
report mean values over 100 runs with only 3 s warmup phase,
30 s data collection, and randomly start the traffic sources
within the first second. We omit confidence intervals for the
sake of better readability.

B. Performance of ABC with CBR Traffic

We show how two competing CBR users (user 0 and 1 in
UGy and UG)) share the bandwidth of a bottleneck link with
and without ABC. We keep the transmission rate of user 1
fixed at R} € {2.5,5,7.5} Mb/s and study the throughput Ty of
user 0 depending on its transmission rate R?. The dashed lines
in Figure [3] show the results without ABC. The throughput T;
of user 0 increases with increasing transmission rate R?. Thus,
there is no incentive for user O to respond to congestion.

—_
o

751 ,\\ T - A

25}]
R!=(7.5,5, 2.5) Mb/s

ThroughputTD of user 0 (Mb/s)

D L L n n
0 10 20 30 40 50
Transmission rate R? of user 0 (Mb/s)

Fig. 3. Throughput 7y of user O on a link with C, = 10 Mb/s with (solid
line) and without ABC (dashed line). ABC parameters are R = R} = 1 Mb/s
and y=3.

With ABC, user 0 and 1 are assigned equal reference rates
of R(,)’1 =0.05 Mb/s. The figure shows that the throughput of
user 0 increases with increasing transmission rate R? up to
a certain value, and then remains constant or even decreases
with a further increase of transmission rate R?. For R} =2.5
Mb/s, user O can transmit up to 7.5 Mb/s but not more so that
the throughput of user 1 (71 = 2.5 Mb/s) is hardly impacted
by user 0. As user 1 does not exceed his fair share of 5
Mb/s while user 0 does so for larger transmission rates, ABC
preferentially drops packets of user O so that the traffic of user
1 is protected. Similar holds for R} =5 Mb/s. This is different
if user 1 also exceeds his fair share. With R! = 7.5 Mb/s, user
0 approximatively obtains his fair share of 5 Mb/s in a range

5 Mb/s < R? < 7.5 Mb/s, but then his throughput diminishes
as his activity is larger than the one of user 1. Thus, user 0O
can maximize his throughput 7 by sending at an appropriate
rate. We conclude that ABC gives incentives to users to apply
congestion control in order to maximize their throughput.

C. Performance of ABC with TCP and CBR Traffic

We consider a single heavy user sending CBR UDP traffic
at rate R?, competing for the bandwidth of the bottleneck link
with u; = 10 light users with a single TCP flow each. All users
are assigned the same reference rate of R, = 0.05 Mb/s. We
study the throughput ratio of heavy and light users for various
differentiation factors y € {0,2,3} and for bottleneck delays
Dy, € {5,50} ms. Figure ff| compiles the results.

—
o

Throughput ratio TR
S = N W e O3 N 0 W

0 5 10 15 20
Transmission rate R? of UDP user (Mb/s)

Fig. 4. Throughput ratio 7Tz of a CBR user and 10 TCP users.

With y =0, ABC is disabled. The figure shows that the
throughput ratio T exceeds a value of 10 already for a trans-
mission rate of R? =15 Mb/s, i.e., the CBR user monopolizes
the link and TCP users starve for larger transmission rates R"
of the CBR user. Thus, bandwidth sharing among TCP and
CBR users without ABC is highly unfair.

For our standard differentiation factor Yy =3, ABC is enabled
and keeps the throughput ratio 7r between 0.6 and 1.5 for
Dy, =50 ms and between 0.2 and 1.2 for a bottleneck delay of
Dy, =5 ms even if the transmission rate R is larger than the
link bandwidth. Thus, ABC can well protect TCP users from
greedy or unresponsive users.

A lower differentiation factor y =2 still limits the unfairness
between CBR and TCP users compared to without ABC, but
it leads to significantly larger throughput ratios 7z than y= 3,
especially for longer RTTs. Thus, ¥ =3 is a good choice for
ABC configuration. More evidence on the impact of y will be
given in the next section.

D. Performance of ABC with TCP Traffic

We investigate the impact of ABC parameters, AQM pa-
rameters, and ECN-enabled TCP flows. We show that ABC
supports unequal capacity sharing and can significantly de-
crease upload times. In almost all conducted experiments, the

bandwidth utilization of the bottleneck link is 100%. Thus,
ABC shows no negative impact on link utilization.
1) Impact of ABC Parameters:

a) Impact of Differentiation Factor y: We study the
impact of y for various combinations of number of users
uo/uy and bottleneck delays D, as these parameters influence
the congestion level on the bottleneck link. The configured
unfairness is U, = fo — ? = 99—0 =10 in all considered scenar-
ios. Table [[] shows that the throughput ratio 7 without ABC
(y=0) is about Tr ~ 10. ABC with increasing 7y decreases
Tk significantly so that 7z may even fall below 1.0 for large
values of y. Exact numbers depend on the congestion level
which is low for D, =50 ms and up/u; = 1/10 flows, and
high for D, =5 ms and up/u; =9/90 flows. We recommend
Y = 3 because it assures even under challenging conditions
(uo/uy = 1/10 and Dj, = 50 ms) a relatively large bandwidth
share for light users (Tx = 1.36). In this case, the light users
achieve lower throughput than the heavy user because they
cannot fully exploit their relatively large fair capacity share
due to the long RTT and their single TCP flow. Smaller
bottleneck delays D, effect that light users adapt their rate
faster and can better exploit their fair share. More users ug/u;
effect that all users get a smaller fair share that light users
with only a single flow can better exploit than large shares.
Light users can obtain an even larger capacity share than
heavy users in other scenarios (7Tgx = 0.88 for up/u; =9/90
and D, =50 ms, Tg = 0.91 for up/u; =9/90 and D, =5
ms). Larger differentiation factors 7y fuel this effect so that we
discourage their use. Throughput ratios below 1 are not ideal
but we prefer them to throughput ratios larger than 1 under all
conditions because a heavy user could reduce his transmission
rate to improve his throughput. Thus, ABC gives incentives to
heavy users to apply appropriate congestion controls and not
to bypass their effect by increasing the number of flows. As
TCP variants differ in aggressiveness, the experiments may
yield slightly different results for other versions of TCP.

TABLE I
THROUGHPUT RATIO 7g DEPENDING ON DIFFERENTIATION FACTOR 7.

Dy, users differentiation factor y
(ms) | up/u; 0 1 2 3 4 5
50 1/10 10.02 | 2.68 | 1.71 | 1.36 | 1.20 | 1.10
9/90 1020 | 1.51 | 1.03 | 0.88 | 0.82 | 0.80
5 1/10 10.14 | 1.90 | 1.26 | 1.03 | 0.94 | 0.89
9/90 10.76 | 1.37 | 1.01 | 091 | 0.87 | 0.84

b) Impact of Activity Inertia I: We study the impact
of the activity inertia I € [0.15,4.8] for ¥ =3 and the same
congestion levels (Dy, ug, u1) as above. The inertia I has hardly
any impact on the throughput ratio 7 (without figure).

c) Impact of Reference Rate R,: We study the impact
of the reference rate R, for different numbers of heavy and
light users up/u; and for different bottleneck link delays
Dy. All users are configured with the same reference rate
R,. Figure [5] shows that heavy and light users receive about
the same throughput as long as the reference rate is small

enough. If a critical rate is exceeded, heavy users receive up
to 10 times more throughput than light users. This critical
rate depends on the number of users. It is about 1 Mb/s
for 1/10 users and 0.1 Mb/s for 9/90 users, and it is almost
independent of the bottleneck delay D;. We follow that the
sum of the reference rates of all users should not exceed
the bottleneck’s bandwidth. This result can also be obtained
from analytical studies. However, the numerical results for
1/10 users show that slight overbooking does not harm:
(up+uy) R, =11-1 Mb/s = 11 Mb/s > 10 Mb/s = C,. Even
though the critical rate depends on the number of users, ABC
can be configured independently of that knowledge because
it works well for smaller reference rates, too. Thus, an upper
bound for a user’s reference rate R™ = % can be computed
as the fraction of the bottleneck bandwidth C, and an upper
bound on the number of active users u,,,, on that bottleneck
resource.

—e—D, =5 ms, unf’u1=1.‘10
1M0F —— Dh=5 ms, uufu1=9.’9[l
o D =50 ms, uni'uf‘lHO
8+ .o Dh=50 ms, UDJ'LH:Q/QD

Throughput ratio TR
(2]

4t

21 K

B £ e g

1072 107" 10° 10!

Reference rate Rr (Mb/s)

Fig. 5. Throughput ratio 7Tz depending on reference rate R,.

d) Impact of Activity Weight wy: We studied wy €
{0.9,0.99,0.999,0.9999} for the same scenarios as above, but
do not show results. The values wy € {0.9,0.9999} cause
clearly increased throughput ratios under some conditions
while wyq € {0.99,0.999} lead to throughput ratios near 1
under all tested conditions. Therefore, we use wy = 0.99 in
our studies.

2) Impact of AOM Parameters: We show that ABC requires
appropriate AQM probability functions to maximize per-user
fairness. We discuss the probability functions listed in Table ITI]
first for the low-congestion scenario (D, =50 ms and uy/u; =
1/10 users) and then for the high-congestion scenario (D =5
ms and up/u; =9/90 users).

With pf-11-23-24-0 a step function is implemented. Packets
are accepted for queue occupancies 0 — 23 packets and dropped
if the queue holds 24 packets which limits the maximum queue
length. It leads to a throughput ratio of about 7z = 10. A
step function essentially disables ABC as there is no queue
occupancy level with a drop probability 0 < p < 1. The latter
is prerequisite for differentiation in Equation (5). The single-
slope functions pf-11-{11,17,22}-24-0 accept all packets for

TABLE III
IMPACT OF PROBABILITY FUNCTIONS.
Dy, 50 ms 5 ms
uouy 1/10 9/90
prob. function Tr Qavg (pkts) Tr Qavg (pkts)

pf-11-23-24-0 9.96 17.28 10.09 23.27
pf-11-22-24-0 4.30 18.21 2.05 22.68
pf-11-17-24-0 2.32 15.21 0.92 20.00
pf-11-11-24-0 1.85 9.91 0.88 16.87
pf-11-17-24-0.1 1.38 11.36 0.90 19.60
pf-11-17-24-0.01 1.36 13.42 0.91 19.95

occupancies 0 — {11,17,22} packets, drop all packets for occu-
pancy 24, and drop packets with linearly increasing probability
in between. Function pf-11-22-24-0 allows differentiation only
for occupancy 23, which already reduces the throughput ratio
from 9.96 to 4.30 compared with the step function. Functions
pf-11-17-24-0 and pf-11-11-24-0 provide 6 and 12 occupancy
levels for differentiation and reduce the throughput ratio fur-
ther to 2.32 and 1.85, respectively. We observe for the latter
two single-slope functions that average queue lengths Q¢ are
so short that drop probabilities are mostly zero, which does not
allow differentiation. The reason is that the drop probability
of the first occupancy level with a non-trivial probability of
a single-slope function is so large that the queue length stays
mostly below that occupancy level in case of low congestion.
Therefore, we consider double-slope functions (pf-11-17-24-
{0.01,0.1}) whose probability first linearly increases to a small
value and then again linearly to 1. They lead to longer average
queue lengths being closer to the range where differentiation is
possible. They cause the lowest throughput ratio of Tz = 1.36.
We choose pf-11-17-24-0.01 as default for our experiments.
More complex functions are possible. In particular PIE is
interesting AQM candidate as it keeps queuing delay low.
In contrast, CoDel is not compatible with ABC as its drop
mechanism does not use probabilities.

The high-congestion scenario (D, =5 ms, up/u; = 9/90)
leads to clearly larger average queue lengths Q,,, so that the
queue length is mostly in a range that allows differentiation
of drop probabilities. This leads to lower throughput ratios T.
The step function again disables ABC.

3) Impact of ECN-Capable Flows: We study ABC for
ECN-capable flows whose packets are marked instead of
dropped by the AQM. As the queue can grow significantly,
we investigate queues with a buffer sizes of 24 and 50
packets. Almost any high-load occupancy level (occupancy
12-23) in the short queue yields a non-trivial drop probability
while the long queue has additional occupancies 25-50 where
any packet is marked or dropped without any possibility for
differentiation. Throughput ratio and average queue lengths are
compiled for this setting in Table including comparative
results without ECN.

We observe that the throughput ratio Ty is larger for ECN
and a buffer size of Q. = 24 packets than without ECN,
especially for long RTT. This can be explained as follows.
Since packets of heavy users are rather marked than dropped,

TABLE IV
IMPACT OF ECN-ENABLED FLOWS.

scenario D, =50 ms D, =5 ms
ECN Up / uj Tr Qavg Tr Qavg
1710 1.23 12.57 1.03 16.31
off 3/30 1.05 16.31 | 0.93 17.66
9/90 0.88 | 18.43 | 0.91 18.95
on 1710 2.40 7.26 1.92 | 14.64
Omax = 3/30 3.58 | 11.69 1.81 18.49
24 pkts 9/90 2.15 18.26 | 1.66 | 21.43
on 1/10 2.63 7.32 3.05 14.05
Omax = 3/30 5.98 13.53 | 3.68 | 21.61
50 pkts 9/90 520 | 22.71 | 3.76 | 25.00

heavy users strongly contribute to high-load positions of the
queue in case of congestion. Then, tail-drops become more
likely hitting both heavy and light users. This diminishes the
degree of differentiated treatment for heavy and light users and
increases the throughput ratio due to the configured unfairness.
As another consequence, the average queue length Q,,, may
increase, especially in high-load scenarios. In case of long
Dy, and only a few users (1/10), we observe reduced queue
lengths and diminished resource utilization around 90% for
both the short and the long queue size. As the AQM marks
packets instead of dropping them, the queue increases quickly
to an occupancy level without differentiation. Therefore, light
user flows are also hit by marked or dropped packets. This
significantly throttles the overall traffic rate and the few users
are not able to increase their rates fast enough to keep the pipe
filled.

With a buffer size of Q4 = 50 packets, the throughput
ratio increases even further to values between 3 and 4 or 5
and 6, especially for many flows. The average queue length
QOuve increases to a range where all packets are marked or
dropped and differentiation based on activity values is no
longer possible. Therefore, flows of heavy and light users are
treated equally as long as the queue stays in this range, which
increases the throughput ratio.

Thus, ABC does not work well with ECN under some
conditions, in particular for long queue sizes. Therefore, we
recommend that ABC-enabled AQMs disregard ECN, i.e.,
ECN-capable packets should be dropped instead of marked.

4) Unequal Capacity Shares: ABC is designed to sup-
port unequal capacity shares by configuration of appropriate
reference rates. We investigate to what extent a privileged
user can exploit this bandwidth share with a single TCP
flow. We assume UGy holds only the privileged user with
a single flow and being configured with a scaled reference
rate of RV = s-R!. UG, holds multiple users with a single
flow each. Table [V| shows for multiple congestion levels that
the throughput ratio 7 increases with the scaling factor s.
The growth is sublinear and depends on the congestion level.
However, further experiments have shown that the privileged
user can fully leverage his increased bandwidth share when
using multiple flows.

5) Reduced Upload Times: ABC can reduce upload times
for occasional transactions of moderate size. We model a
single “probe” user who transmits a probe of 1 MB on

TABLE V
THROUGHPUT RATIO T; FOR A PRIVILEGED USER WITH A SINGLE FLOW
AND A SCALED REFERENCE RATE RY =5 R} .

D, (ms) | no. users scaling factor s

uo/u; I 2 4 8 16

1/1 1.01 1.55 | 2.47 | 3.78 4.30

50 1/10 1.00 | 1.68 | 2.75 | 4.62 7.85
1/100 1.01 | 1.85 | 3.03 | 5.07 7.39
171 1.00 | 1.88 | 3.25 | 595 | 1045
5 1/10 1.00 | 1.82 | 3.23 | 571 | 10.39
1/100 1.01 | 2.00 | 3.78 | 598 | 1091

application layer. Background traffic is produced by u; users.
They send with f] saturated TCP flows each and have started
transmission long before the probe user. Upload times for the
probe are compiled in Table [VI} Without ABC, the upload
time significantly increases with the overall number of flows
(u1 - fi+1) and it is longer for D, = 50 ms than for D, =5
ms.

TABLE VI
UPLOAD TIMES (S) WITH AND WITHOUT ABC.
Dy, ABC B fi=1 fi=4

(ms) MB) | uy=10 | uy=20 | uy =10 | u; =20

no n/a 20.3 29.2 47.7 85.2

0 9.6 17.9 12.3 21.7

0.25 8.2 15.7 10.4 17.6

50 yes 0.5 6.1 10.7 8.3 14.0

0.75 22 5.7 6.7 8.1

1 24 2.7 33 54

1.25 2.1 33 33 5.2

no n/a 10.3 20.2 342 61.4

0 9.6 17.6 10.1 18.8

0.25 6.9 13.7 8.3 14.0

5 yes 0.5 4.6 9.5 5.6 10.0

0.75 1.3 5.4 4.0 6.4

1 1.0 1.3 1.0 1.4

1.25 1.0 1.0 1.0 1.0

We perform the same experiments with ABC while varying
the burst allowance B for all users. Table shows that
ABC significantly reduces the upload time for multiple flows
per background user (f; =4) or for D, = 50 ms while its
improvement a single flow per background user (f; = 1)
and for D, =5 ms is comparatively low. For multiple flows
(f1 =4), ABC reduces the upload time substantially because it
partitions the bottleneck bandwidth equally among users. With
a single user and a long delay of Dj; = 50, the upload time is
still clearly shorter than without ABC because the activity of
the probe user remains lower than the one for background
users for a while, leading to lower drop probabilities and
improved throughput. Increasing the burst allowance B reduces
the upload time even further until B exceeds the size of the
probe plus protocol overhead and retransmitted packets. For
very large B, the upload time is orders of magnitude shorter
than without ABC. ABC essentially prioritizes the probe over
other traffic as long as the burst allowance prevents the activity
meter’s fill state to go negative so that probe packets have an
activity of zero. Therefore, this feature needs to be handled
carefully. Appropriate values for the burst allowance B depend
on the context.

V. CONCLUSION

Activity-based congestion management (ABC) enables
users in an ABC domain to obtain a fair share of a bot-
tleneck capacity in case of congestion. An activity meter
at the network edge equips the user’s traffic with activity
information, and an extension of active queue management
(AQM) in routers or switches inside the network leverages
the packets’ activity to adapt the AQM’s loss/mark probability.
ABC is scalable because it does not require per-user states or
additional queues inside the network.

We simulated ABC with constant-bitrate (CBR) traffic, CBR
and TCP traffic, and with TCP traffic only. ABC gives better
treatment to flows not exceeding their fair share, incentivizing
the use of congestion control algorithms. ABC protects TCP
users against CBR traffic. We showed that with ABC, heavy
and light users can obtain about equal bandwidth shares on
a congested link and investigated configuration issues. ABC
supports unequal capacity shares if desired and reduces upload
times for transactions with moderate burst sizes significantly.

Future work should demonstrate the technical viability of
ABC by implementation. ABC should be adapted to specific
use cases and its benefits should be quantified in these con-
texts. The interplay of ABC with other congestion control
algorithms and traffic needs further study. A combination of
ABC with AQM algorithms like PIE seems feasible and may
enforce both fairness among users and low latency.

ACKNOWLEDGEMENTS

The authors thank Bob Briscoe and David Wagner for their
helpful comments.

REFERENCES

[1] B. Briscoe Ed., R. Woundy Ed., and A. Cooper Ed., “RFC6789:
Congestion Exposure (ConEx) Concepts and Use Cases,” Dec. 2012.

[2] Broadband Internet Technical Advisory Group (BITAG), “Real-Time
Network Management of Internet Congestion,” Broadband Internet Tech-
nical Advisory Group (BITAG), Tech. Rep., Oct. 2013.

[3] Sandvine Incorporated ULC, “Network Congestion Management: Con-
siderations and Techniques — An Industry Whitepaper,” Sandvine Incor-
porated ULC, Tech. Rep., Oct. 2015.

[4] R. Pan, P. Natarajan, F. Baker, B. VerSteeg, M. Prabhu, C. Piglione,
V. Subramanian, and G. White, “PIE: A Lightweight Control Scheme
To Address the Bufferbloat Problem,” http://tools.ietf.org/html/draft-ietf-
agm-pie, Nov. 2015.

[5] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” http://tools.ietf.org/html/draft-ietf-
agm-codel, Dec. 2015.

[6] B. Briscoe, “Network Performance Isolation using Congestion Policing,”
http://tools.ietf.org/html/draft-briscoe-conex-policing, Feb. 2014.

[71 S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind, “RFC6817: Low
Extra Delay Background Transport (LEDBAT),” Dec. 2012.

[8] B. Briscoe, “Initial Congestion Exposure (ConEx) Deployment Ex-
amples,” http://tools.ietf.org/html/draft-briscoe-conex-initial-deploy, Jan.
2012.

[9] D. Kutscher, F. Mir, R. Winter, S. Krishnan, Y. Zhang, and C. J.

Bernados, “Mobile Communication Congestion Exposure Scenario,”

http://tools.ietf.org/html/draft-ietf-conex-mobile, Oct. 2015.

B. Briscoe and M. Sridharan, “Network Performance Isolation in

Data Centres using Congestion Policing,” http://tools.ietf.org/html/draft-

briscoe-conex-data-centre, Feb. 2014.

C. Bastian, T. Klieber, J. Livingood, J. Mills, and R. Woundy,

“RFC6057: Comcast’s Protocol-Agnostic Congestion Management Sys-

tem,” Dec. 2010.

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]
(32]
[33]

[34]

A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation of a
Fair Queuing Algorithm,” in ACM SIGCOMM, 1989.

A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the Data Center Network,” in USENIX Syposium on Networked Systems
Design & Implementation (NSDI), 2011.

R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys & Tutorials, vol. 15, no. 3, pp. 1425-1476, 2013.

S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397413, Aug. 1993.

K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, May 2012.

R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A Lightweight Control Scheme to
Address the Bufferbloat Problem,” in IEEE Workshop on High Perfor-
mance Switching and Routing (HPSR), 2013.

R. Pan, B. Prabhakar, and K. Psounis, “CHOKEs: a Stateless Active
Queue Management Scheme for Approximating Fair Bandwidth Allo-
cation,” in [EEE Infocom, Tel Aviv, Israel, 2000.

K. Ramakrishnan, S. Floyd, and D. Black, “RFC3168: The Addition of
Explicit Congestion Notification (ECN) to IP,” Sep. 2001.

B. Briscoe, “Flow Rate Fairness: Dismantling a Religion,” ACM SIG-
COMM Computer Communications Review, vol. 37, no. 2, Apr. 2007.
B. Briscoe, A. Jacquet, C. di Cairano-Gilfedder, A. Salvatori, A. Sop-
pera, and M. Koyabe, “Policing Congestion Response in an Internetwork
using Re-feedback,” in ACM SIGCOMM, Portland, OR, Aug. 2005.

A. Jacquet, B. Briscoe, and T. Moncaster, “Policing Freedom to Use
the Internet Resource Pool,” in Re-Architecting the Internet (ReArch),
Madrid, Spain, Dec. 2008.

B. Briscoe, “Re-feedback: Freedom with Accountability for Causing
Congestion in a Connectionless Internetwork,” PhD thesis, Department
of Computer Science, University College London, 2009.

M. Kiihlewind and R. Scheffenegger, “TCP Modifications for
Congestion Exposure,” http://tools.ietf.org/html/draft-ietf-conex-tcp-
modifications, Oct. 2015.

M. Mathis and B. Briscoe, “RFC7713: Congestion Exposure (ConEx)
Concepts, Abstract Mechanism, and Requirements,” Dec. 2015.

D. Wagner, “Congestion Policing Queues — A New Approach to Man-
aging Bandwidth Sharing at Bottlenecks,” in International Conference
on Network and Services Management (CNSM), 2014.

S. Baillargeon and I. Johansson, “ConEx Lite for Mobile Networks,” in
Capacity Sharing Workshop (CSWS), 2014.

I. Stoica, S. Shenker, and H. Zhang, “Core-Stateless Fair Queueing:
A Scalable Architecture to Approximate Fair Bandwidth Allocations
in High-Speed Networks,” IEEE/ACM Transactions on Networking,
vol. 11, no. 1, Feb. 2003.

M. Menth, B. Briscoe, and T. Tsou, “Pre-Congestion Notification (PCN)
— New QoS Support for Differentiated Services IP Networks,” IEEE
Communications Magazine, vol. 50, no. 3, Mar. 2012.

B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C.
Snoeren, “Cloud Control with Distributed Rate Limiting,” in ACM
SIGCOMM, Kyoto, Japan, Aug. 2007.

A. Varga, “INET-2.4.0 released,” http://inet.omnetpp.org/, Jun. 2014.
——, “OMNeT++ 4.4.1 released,” http://www.omnetpp.org/, Oct. 2014.
S. ‘Wand, “Network Simulation Cradle,”
http://research.wand.net.nz/software/nsc.php, 2012.

R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,”
DEC, Tech. Rep. Research Report TR-301, Sep. 1984.

http://inet.omnetpp.org/
http://www.omnetpp.org/

