
c©2016 Springer. Personal use of this material is permitted. Permission from Springer must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution

to servers or lists, or reuse of any copyrighted component of this work in other works.

Loop-Free Alternates with Loop Detection for Fast
Reroute in Software-Defined Carrier and Data Center
Networks

Wolfgang Braun · Michael Menth

Abstract Loop-Free Alternates (LFAs) are a local

fast-reroute mechanism defined for IP networks. They

are simple but suffer from two drawbacks. Firstly, some

flows cannot be protected due to missing LFAs, i.e.,

this concept does not provide full protection coverage,

which depends on network topology. Secondly, some

LFAs cause loops in case of node or multiple failures.

Avoiding those LFAs decreases the protection coverage

even further. In this work, we propose to apply LFAs

to OpenFlow-based networks. We suggest a method for

loop detection so that loops can be avoided without

decreasing protection coverage. We propose an imple-

mentation with OpenFlow that requires only a single

additional flow rule per switch.

We further investigate the percentage of flows that

can be protected, not protected, or even create loops in

different types of failure scenarios. We consider realistic

ring and mesh networks as well as typical topologies for

data center networks. None of them can be fully pro-

tected with LFAs. Therefore, we suggest an augmented

fat-tree topology which allows LFAs to protect against

all single link and node failures and against most double

failures.

Keywords Software-Defined Networking · OpenFlow ·
Resilience · Loop-Free Alternates · Scalability

This work has been supported by the German Federal Min-
istry of Education and Research (BMBF) under support code
16BP12307 (EUREKA-Project SASER). The authors alone
are responsible for the content of the paper.

Wolfgang Braun · Michael Menth
University of Tübingen, Department of Computer Sci-
ence, Sand 13, 72076 Tübingen, Germany E-mail:
{wolfgang.braun,menth}@uni-tuebingen.de

1 Introduction

Software-defined networking [1](SDN) has gained a lot

of attention in the recent years due to its ability to pro-

gram the network and facilitate fast and simple intro-

duction of new features and services. Many SDN appli-

cations require fine-grained flow definitions and a large

number of forwarding rules. However, flow tables in

OpenFlow switches have only moderate size and, there-

fore, scalability problems easily occur. As an example,

inter-domain routing information is so extensive that it

cannot be stored by contemporary, commercially avail-

able OpenFlow switches [2].

Resilience to failures is a challenging topic for

OpenFlow-based SDN due to its separation of the con-

trol and data plane. Controllers may fail and require

backups. In case of link or node failures, predecessor

nodes just drop packets until the failure is detected and

traffic is rerouted. Involving the controller for that pur-

pose takes time, therefore, local fast reroute techniques

are beneficial. If switches send traffic and communicate

with their controller over the same physical infrastruc-

ture, they may become unreachable for their controllers

if links or nodes fail. OpenFlow offers features to auto-

matically forward traffic to alternate next-hops if an

interface is down without intervention of a controller.

However, there is no recommendation how to leverage

this mechanism for the operation of networks.

Resilience mechanisms for OpenFlow networks

should protect against all single link failures, they

should handle node and multiple failures appropriately,

in particular they should not worsen the situation, and

they should generate only little overhead in OpenFlow

forwarding tables due to their moderate size. Especially

the last requirement makes the design of resilient Open-

Flow networks challenging because it rules out many

straightforward solutions.

3 LOOP-FREE ALTERNATES (LFAS)

In IP networks, traffic may be locally rerouted to

an alternate next-hop if the regular next-hop is not

reachable if this deviation does not create a forwarding

loop. This mechanism is known as Loop-Free Alternate

(LFAs). LFAs are well understood, simple, and already

available on most modern IP routers. However, they

cannot protect all single link failures and their protec-

tion coverage depends on the network topology. Some

LFAs cause microloops in case of node failures or in

case of multiple failures. Avoiding such LFAs generally

reduces the protection coverage even further.

In this work, we propose to apply LFAs to

OpenFlow-based networks. We suggest a method for

loop detection so that loops can be avoided without

decreasing protection coverage. We propose an imple-

mentation with OpenFlow that requires only a single

additional flow rule per switch. We further investigate

the percentage of flows that can be protected, not pro-

tected, or even create loops in different types of failure

scenarios. We consider realistic ring and mesh networks

as well as typical topologies for data center networks.

None of them can be fully protected with LFAs. There-

fore, we suggest an augmented fat-tree topology which

allows LFAs to protect against all single link and node

failures and against most double failures.

The remainder of the paper is structured as fol-

lows. Section 2 discusses related work in the area of

fast reroute and scalability for OpenFlow. We present

the concept of LFAs in Section 3. Section 4 explains

how LFAs can be implemented with OpenFlow and

we propose the loop-detecting LFAs. We present our

evaluation methodology in Section 5. In Section 6 and

Section 7 we present the coverage statistics for carrier-

grade and data center networks, respectively. We sum-

marize and discuss our future work in Section 8. Finally,

Section 9 concludes this work.

2 Related Work

In [3], the restoration process of OpenFlow in carrier-

grade networks was analyzed. They measured the time

a controller re-configures the switches in a real testbed

when network failures occur. Their results show that

the controller reacts within 80 and 130 ms. They also

state that the restoration time will be a magnitude

higher for large networks and, therefore, local protec-

tion schemes are required.

Local failure protection is considered in [4]. They

introduce a bidirectional forwarding detection (BFD)

component to the OpenFlow switch design to achieve

fast protection. A BFD component is responsible to

monitor the ports by sending hello and echo messages

frequently over the links to detect network failures. The

authors show the viability of the approach using exper-

iments based on MPLS Transport Profile. A similar ap-

proach is presented in [5]. The authors also provide fast

protection using BFD for the Open vSwitch and ana-

lyze the protection switching times. They were able to

show that the implementation was able to react within

3 and 30 ms depending on different BFD configurations.

The SlickFlow approach [6] provides resilience in

data center networks (DCN) using OpenFlow and is

based on source routing. Primary and alternative

backup paths are encoded in the packet header and

OpenFlow primitives enable hardware-based forward-

ing. The authors showed positive benefits in a virtual-

ized testbed on DCN topologies.

IP fast reroute (FRR) is an important topic for the

routing working group in the IETF and various ap-

proaches are discussed: LFAs [7], remote LFAs (rLFAs)

[8,9], not-via addresses, and maximally redundant trees

[10]. LFAs and rLFAs are simple and require no addi-

tional forwarding entries but cannot protect against all

single link failures. The latter mechanisms provide full

coverage but require additional forwarding entries. The

combination of LFAs and not-via addresses cannot sig-

nificantly reduce the required state [11,12]. MPLS FRR

[13] defines several ways to protect the network against

failures but explicit backup paths require additional en-

tries which can be reduced by the use of shared tunnels.

A comparison of IP-based and MPLS FRR is given in

[14].

Inter-domain routing for OpenFlow is improved us-

ing wildcard compression in [2]. However, the required

forwarding state is still challenging and there is not

much space left in the forwarding entries for backup

paths. Another compression for Access Control Lists

(ACLs), i.e., applicable to OpenFlow table entries, is

proposed in [15]. This method preserves space in the

forwarding table that can be used for backup paths.

In [16] a reliability analysis of data center networks

is given. The authors investigate the reliability poten-

tial of three data center topologies: fat-tree, BCube, and

DCell networks. The authors investigate maximum and

average relative sizes of the connected components after

failures. Other metrics are the diameter of the compo-

nents and path stretches. In our study, we investigate

the resilience of LFAs in these topologies, focusing on

the applied protocol and required signaling instead of

the graph properties of the topologies.

3 Loop-Free Alternates (LFAs)

Loop-Free Alternates (LFAs) [7] were proposed by the

IETF for IP fast reroute (IP FRR). LFAs are simple but

2

4 OPENFLOW-BASED LFAS WITH LOOP DETECTION

S B

A P

D

2
3

2

1
1

2

Fig. 1: Example network for LFA computation.

cannot protect against all single link and node failures.

They do not require additional forwarding entries but

a forwarding entry has to contain a list of alternate

next-hops.

The idea of LFAs is very simple: if a failure occurs,

packets can be sent to an alternative neighbor instead

of the regular next-hop if this redirection will not cause

a loop. For each hop that may fail, we have to determine

all potential LFAs. The forwarding device can select one

or more valid alternates using a tiebreaker or ECMP,

respectively. Some LFAs can protect against (1) single

link failures, (2) node failures, and even (3) multiple

network failures depending on the use of the following

three LFA conditions. The protection level is a policy

decision of the network operator. We only require the

distance function dist(u, v) to determine whether neigh-

bors fulfill these conditions. No additional computation

is required because dist(u, v) is already required for the

primary hop computation. We will explain the condi-

tions by example with the network shown in Figure 1.

Packets are sent from source S towards destination D

on the shortest path through node P .

The loop-free condition (LFC) protects against sin-

gle link failures. A neighbor N of S fulfills the condition

if

dist(N,D) < dist(N,S) + dist(S,D) (1)

holds. In the example, this is true for the nodes A (LFC:

2 < 5) and B (LFC: 3 < 5) because the distance from

them towards destination is smaller than the redirection

over S.

The node-protecting condition (NPC) prevents the

selection of neighbors that may cause a loop if the pri-

mary next-hop has failed. A neighbor is node-protecting

if its shortest path to the destination does not lead over

P . The condition is defined as

dist(N,D) < dist(N,P) + dist(P,D). (2)

Consider that node P in the example has failed. Node

A fulfills the LFC but not the NPC (2 6< 2). Packets

sent to A will loop because S is a simple LFA for A to

D (LFC: 3 < 4). Node B is node protecting (3 < 5)

and packets sent to B will not traverse P .

The downstream condition (DSC) protects against

multiple failures by only redirecting traffic to neighbors

that are closer to the destination:

dist(N,D) < dist(S,D). (3)

Node B is not downstream (3 6< 3) and packets would

loop between B and S when both S → P and B → D

are failing because S is a simple LFA for B towards D

(3 < 5). A is downstream (2 < 3) and will not cause a

loop even if A → P has failed because S is not down-

stream for A towards D (3 6< 2). Note that DSC and

NPC are orthogonal, i.e., a downstream LFA can either

be node protecting or not.

In this work we compute three kinds of LFAs. First,

simple LFAs that only fulfill the loop-free condition

(LF-LFAs) which may cause loops when node or mul-

tiple failures occur. Second, node-protecting LFAs that

both fulfill LFC and NPC (NP-LFAs) that prevent

loops for single link and single node failures, and fi-

nally loop-preventing LFAs that fulfill the downstream

condition (DS-LFAs).

4 OpenFlow-Based LFAs with Loop Detection

In this section, we propose LFAs with loop detection

that use additional failure information in the packet

header to drop looping packets. We discuss how LFAs

with and without loop detection can be implemented

with OpenFlow. Then, we discuss how failure informa-

tion can be encoded in packets with little packet over-

head.

4.1 Improving LFAs with Loop Detection

When LFAs for a network are computed to protect

against node failures, the node protecting condition can

exclude neighbors that protect against single link fail-

ures. In general, this leads to fewer alternate next-hops

that are allowed to be selected. In addition, if only link

failures occur, there may be an LFA available but it

is not allowed to be chosen due to the more restricted

condition.

Our LFA approach selects LFAs with the highest

protection first and reverts to less protecting LFAs if

necessary, i.e., we select potential LFAs with degrading

degree of protection: (a) NPC and DSC, (b) DSC, (c)

LFC and NPC, and (d) LFC only. LFAs of category (a)

cannot loop and LFAs with (b)-(d) may loop depend-

ing on the exact failure scenario. Therefore, we apply

a mark for LFAs (b)-(d) into the packet header. This

mark encodes the failure detecting node. Packets either

are successfully redirected towards the destination or a

3

4.3 Computing IDs for Fixed Bit Lengths 4 OPENFLOW-BASED LFAS WITH LOOP DETECTION

loop occurs. In the latter case, the node can check if

the packet contains its location mark and prevents the

loop by dropping the packet.

It is important that marks can be incrementally ap-

plied to a packet that is sent on alternative paths when

multiple failures occur. We explain this with the exam-

ple network shown in Figure 1. Consider that packets

are sent from S to D and the links S → P and A→ P

have failed. Packets have to be redirected over A be-

cause there is no LFA of category (a) and A is an LFA

of category B. The mark for node S is applied and redi-

rected to A. The packet is not dropped because it has

no mark for node A and S is an LFA of category d for

A. The mark for A is applied and the packet is sent

to S. The loop can be successfully detected in S if the

mark of A does not overwrite the mark of S.

Such marks can be implemented using a bit string of

a certain length n. Each node has an ID i with 1 ≤ i ≤ n
and its mark corresponds to the i-th bit in the string. If

the number of available bits in the field is greater than

or equal to the number of nodes, the loop detection is

optimal. If there are more nodes in the network than

available bits, we share IDs across nodes. This can cause

false positives when detecting loops and, thus, can lead

to unnecessary packet drops. We provide an algorithm

to compute appropriate IDs in Section 4.3 and analyze

the impact of various bit lengths in Section 6. We refer

LFAs with loop detection to LD-LFAs.

4.2 Implementation in OpenFlow and State

Requirements

OpenFlow data plane resilience requires OpenFlow 1.1
[17] or later and such an OpenFlow switch contains

both flow tables and a group table. A flow table consists

of multiple entries and each entry consists of a match

and instructions. Flow table entries match packets to

flows and each flow entry can define various actions or

refer to a group table entry for advanced packet process-

ing. Note that the flow tables have to reside in TCAM

which is expensive and limited in size but enables fast

packet processing. The group table must not be stored

inside TCAM and can be part of less expensive memory.

A group table entry can be referenced by multiple

flow table entries and handles all related packets in the

same fashion. The group table entry contains a group

type, a counters field, and a field for action buckets. The

group type defines the kind of group. Backup paths can

be implemented using the fast failover group type. The

action buckets are used to implement the primary and

secondary paths. For fast failover groups, each action

bucket has an associated port which defines its liveness

and triggers the use of a bucket.

We explain the group table for simple LFAs by the

example given in Section 4.1. Packets are sent from S

to D. The switch at S contains a flow table entry that

matches specific header fields, e.g., its IP address and

this entry refers to a group entry. The group entry has

type fast failover and consists of two action buckets.

The first action bucket contains the action to “forward

to P” and the second bucket “forward to A”. If the link

to node P goes down, packets are immediately sent over

the next live defined bucket, i.e., to node A. Note that

no additional flow table entries are required for LFAs.

LFAs with loop detection are implemented similarly.

Consider that the ID for S is 1 and represented by the

fifth bit in a bit string with 5 bits. We add an addi-

tional flow table entry that matches for exactly that

bit using the wildcard expression ****1 and its action

is “packet drop”. Thus, only packets that loop back to

S, i.e., are marked with ID 1, will be dropped. The first

action bucket of the group is unchanged. The second

action bucket now contains two actions: “apply ID 1”

and “forward to A”.

In OpenFlow, all header fields that are not required

for the forwarding process and additional labels have

the potential for ID encoding. For example, the DSCP

and ECN field (8 bits) of an IP header can be used if

they are not needed in the OpenFlow network. How-

ever, they are often required in network operation and

we suggest the usage of an additional MPLS label which

provide up to 20 bits for ID encoding.

4.3 Computing IDs for Fixed Bit Lengths

When each node has a unique ID, switches do not er-

roneously detect forward loops. Thus, we want to avoid

that two nodes that are part of the same backup path

have the same ID. We have developed an algorithm that

computes IDs for nodes in such a way that each node

with ID x is least interfering towards nodes with the

same ID x.

Algorithm 1 assigns IDs 0 ≤ i < nb to nodes that

we call colors in the following. Initially, the set of uncol-

ored nodes U comprises all nodes V and the set of col-

ored nodes V is empty. Then, nodes v ∈ U are assigned

a color c[v] in the order of descending node degree δ.

Thus, the first nb nodes are assigned different colors. Af-

terwards, a node v is assigned a color such that it inter-

feres the least with the colors of already colored nodes.

We define the interference inverse to the hop distance

dist(u, v) of two nodes u, v having the same color. We

compute the overall color interference cif [i] for a color

i and the color interfering the least is assigned. The

algorithm terminates if all nodes are colored.

4

6 RESULTS FOR CARRIER-GRADE NETWORKS 5.2 Metrics

Algorithm 1: ID assignment for length-restricted

bit label.
input : G = (V, E), distance function dist, and number

of bits nb

output: c[v]

U = V // set of uncolored nodes
C = ∅ // set of colored nodes
i = 0 // start color
while U 6= ∅ do

// choose node v with highest node degree
v ← argmaxv∈U (δ(v));
if i ≤ nb then c[v]← i;
else

// initialize color interference
foreach u ∈ C do

cif [u]← 0;
end

// compute color interference
foreach u ∈ C do

cif [c[u]]← cif [c[u]] + 1
dist(v,u)

;

end

// assign least interfering color
c[v]← argmin0≤j≤nb

(cif [j]);

end
C ← C ∪ {v};
U ← U \ {v};
i← i+ 1;

end

Note that, the proposed algorithm can be changed

very easily in an SDN environment. The computation

runs in a logically centralized control plane and, thus,

only a few elements must be updated.

5 Methodology

In this section we discuss how we analyze the protection

of the various LFA approaches for different failure cases.

We define multiple kinds of failure scenarios and explain

the term protection and coverage in detail.

5.1 Failure Scenarios

A failure scenario s is a set of failed links and nodes. We

define several failure scenarios that cover types of net-

work failures. The set Sl,n contains all failure scenarios

where l links and n nodes have failed.

We analyze all single link failures S1,0 and all sin-

gle node failures S0,1. We also consider multiple failure

scenarios because LFAs do not require additional for-

warding state to protect against multiple failures. For

that purpose we use all double link failures S2,0 and the

combination of single link and single node failures S1,1.

We do not consider scenarios with additional simultane-

|T | |V| avg(|V|) |E| avg(|E|) δ

TS 37 4 – 82 25 4 – 82 24.6 1.89
TR 68 6 – 103 31 6 – 103 34.6 2.2
TM 82 6 – 76 32 10 – 105 44.9 2.96

Table 1: Statistics for the topology sets. For each topol-

ogy set we provide the number of topologies |T |, nodes

|V|, and bidirectional edges |E|. We also provide the

average node degree δ.

ous failed elements because their probability is usually

significantly lower than two failing elements [18].

5.2 Metrics

In our analysis, we route the flows using shortest paths

for a specific failure scenario s through the network

while applying certain fast reroute algorithms. We in-

vestigate whether the flow (1) successfully reaches the

destination, (2) is dropped because s removed all phys-

ical paths to its destination, (3) is dropped although

a physical path to the destination still exists, and (4)

causes a microloop. We denote flows as protected if (1)

or (2) hold, as unprotected if (3) applies, and as looped

if (4) holds. We consider all possible flows in the net-

work and calculate the percentage of protected, unpro-

tected, and looped flows for a single failure scenario

s. Considering a set of failure scenarios S, we average

these values over all failures contained in that set.

6 Results for Carrier-Grade Networks

In this section we quantify the percentage of flows that

LFAs can protect, cannot protect, or for which LFAs

cause loops. The latter can be avoided through loop de-

tection. We discuss the considered networks, study the

performance of different types of conventional LFAs,

and compare it to the one of LFAs with loop detection.

Finally, we discuss the impact of the bit length for the

ID encoding in packets.

6.1 Carrier-Grade Networks under Study

We evaluate the fast reroute mechanisms for various

networks from the topology zoo [19]. We classify these

topologies into three categories: star topologies TS , ring

topologies TR, and mesh topologies TM . Table 1 pro-

vides an overview of the selected networks. We omit TS
in our analysis due to the lack of alternate neighbors.

5

6.3 Flow Analysis for LFAs with Loop Detection 6 RESULTS FOR CARRIER-GRADE NETWORKS

Fig. 2: Percentage of protected flows in mesh topologies.

6.2 Flow Analysis for LFAs without Loop Detection

We evaluate the percentage of protected, unprotected,

and looped flows for various types of LFAs and for vari-

ous failures sets. As LFAs can protect significantly fewer

flows in ring topologies than in mesh topologies, we con-

duct our study separately for mesh and ring topologies.

Figures 2 (a) and (c) show the percentage of protec-

tion in mesh topologies TM for LF-LFAs and DS-LFAs.

For single link failures, LF-LFAs protect approximately

68.1% of the flows which is 2.3 times more effective com-

pared to DS-LFAs that only protects about 29.5%.

LF-LFAs cause loops for the other failure scenario

sets. There is a similar protection ratio in S2,0 but LF-

LFAs cause loops for approximately 1.2% of the traffic.

For S0,1 and S1,1, a significant number of loops occur.

29.2% of the traffic loops in single node failure scenarios

and 19.1% in S1,1. DS-LFAs protect a similar amount

of traffic but cause no loops in these scenarios.

Figures 3 (a) and (c) show the percentage of protec-

tion for ring topologies TM for LF-LFAs and DS-LFAs.

The coverage of LFAs is clearly reduced for all failure

scenarios for LF-LFAs. For single link failures, 23.4%

less traffic is protected which corresponds to 44.7%.

The protection for double link failures is reduced from

67.2% to 59.1%. The number of caused loops is gener-

ally reduced. In particular, for S0,1 the amount of loops

is reduced by 21.2% to 8%. We observe a reduction by

14.4% to 4.7% for S1,1. We explain this behavior due to

the fact that the overall number of available LFAs is sig-

Fig. 3: Percentage of protected flows in ring topologies.

nificantly smaller in ring structures. DS-LFAs perform

very similarly in mesh topologies and ring topologies.

The protection for NP-LFAs is shown in Figure 2

(b) and Figure 3 (b). For all topologies, we observe that

loops are significantly reduced compared to LF-LFAs:

there are no loops for single link or node failures and

only a minimum amount of traffic (< 0.5%) loops for

multiple failures. The protection for single and double

link failures is reduced to 40% by approximately 28.9%

and 27%, respectively. The protection is only slightly

reduced for ring topologies.

6.3 Flow Analysis for LFAs with Loop Detection

With loop detection, all LF-LFAs can be used for fast

reroute because potential loops can be detected and

prevented by dropping packets. In this section, we eval-

uate the performance of LFAs with loop detection when

unique IDs can be assigned per node to record redi-

recting nodes which prevents any erroneously detected

loops. The results for LD-LFAs are shown in Figure 2

(d) and Figure 3 (d).

The protection against single link failures is equiv-

alent to simple LF-LFAs with corresponds to 68.1%

in mesh and 44.7% in ring topologies. LD-LFAs pre-

vents all loops for all network scenarios which can also

be achieved with DS-LFAs. However, LD-LFAs provide

significantly more coverage. We observe an improve-

ment of approximately 36% – 38% for single and double

link failures, 13.6% for single node failures, and 20% for

6

7 RESULTS FOR DATA CENTER NETWORKS

Fig. 4: Percentage of protected flows in large mesh and

ring networks for DS-LFAs and LD-LFAs with varying

bit lengths. Bit lengths of 8 or 16 are sufficient and

their protection is comparable to unlimited ID lengths

in large networks.

single link and node failures in mesh topologies. There

is less improvement in ring topologies which correspond

to about 6.5% – 14.2% more coverage in the different

scenarios.

6.4 Impact of Number of Bits Available for ID

Encoding

In this section we discuss the impact of the bit length

for ID encoding. The number of available bits for the ID

can be a limiting factor for protection coverage in large

networks. If there are more nodes than available IDs,

some nodes share the same ID. If packets are redirected

over an LD-LFA and traverse a node with the same ID,

the packet is discarded although there is no microloop.

Therefore, we analyze the impact of the bit length

on networks that consist of 50 or more nodes. There

are 14 mesh and 11 ring networks of the required size

in TM and TR. We compare DS-LFAs and LD-LFAs

with varying bit lengths. The percentage of protected

flows is illustrated in Figure 4. We observe significantly

more protected flows for LD-LFAs compared to DS-

LFAs even for short bit lengths. LD-LFAs protect 12.4%

– 29.2% more traffic for single link failures than basic

LFAs. Very short bit lengths lead to clearly less pro-

Fig. 5: The fat-tree topology with k = 4 consists of four

pods and supports up to 16 servers (green nodes).

tection than LD-LFAs with long bit lengths, i.e., a bit

length of 64 protects 1.4 times more traffic than a bit

length of 3. Bit length 8 leads to 51% and bit length 16

to 54.6% protection. The difference in protection cov-

erage of bit lengths from 16 to 64 is negligible.

In ring topologies we observe the same basic trend

as in mesh topologies. However, the differences between

DS-LFAs and LD-LFAs are generally less significant

which can be explained by the reduced availability of

LFAs in ring structures.

7 Results for Data Center Networks

In this section we analyze data center networks which

structurally differ from carrier-grade networks. We pre-

sent and discuss three common data center topologies

with regard to protection with LFAs. We briefly de-

scribe each data center topology, discuss its structure,

and provide the protection statistics for the LFA vari-

ants discussed in this paper. Moreover, we suggest an

augmented fat-tree topology that provides higher pro-

tection coverage for LFA than its normal variant.

7.1 Fat-Tree Networks

Fat-tree topologies [20] leverage largely commodity

Ethernet switches to interconnect servers in a hierarchi-

cal fashion. A fat-tree topology is parameterized with

k which denotes both the number of ports of a switch

and the number of pods which are described later in

this section. The number of servers in the topology are

determined by these parameters. Figure 5 shows a fat-

tree topology with k = 4 that consists of four pods.

In the following we discuss the different parts of the

topology.

A fat-tree consists of a core layer, an aggregation

layer, and an edge layer of switches. The edge layer

switches connect to the servers. A so-called pod consists

of a set of edge and aggregation switches where every

edge switch is connected to every aggregation switch.

Every aggregation switch is connected to several core

7

7.2 Link-Augmented Fat-Tree Networks 7 RESULTS FOR DATA CENTER NETWORKS

Fig. 6: Percentage of protected flows in fat-tree with

k = 6. All LFA variants (LF, NP, DS, LD) provide

identical protection.

switches but in such a way that any core switch has

only a single connection to every pod. Nevertheless, ag-

gregation or core switches can fail while there is still

an alternative path available between any pair of edge

switches. The maximum size of that structure is lim-

ited by the number of switch ports. Given k ports, k
2

servers per edge switch and both k
2 edge and aggre-

gation switches are supported per pod. Thus, an edge

switch has k
2 to its servers and another k

2 to the ag-

gregation switches within the pod. Every aggregation

switch connects k
2 core switches. Thus, up to (k

2)2 core

switches may be used. With this design, k2

4 servers can

be supported per pod and k3

2 servers can be supported

in total. That means, a fat-tree built of 48-port switches

can support up to 27,648 servers. Considering the fact

that each server may host multiple virtual machines,

large data centers can be constructed using the fat-tree

topology.

For the evaluation of fat-trees, we generate only two

pods for parameter k = 6 and interconnect them re-

dundantly with 4 core switches. Due to the symmetry

of fat-trees, this reduction is without loss of generality

regarding with regard to resilience aspects.

The results are shown in Figure 6. We observed two

key findings. Firstly, we obtain the same coverage re-

sults for all LFA variants. Secondly, LFAs do not gen-

erate loops in any considered failure scenarios.

In case of single link failures, LF-LFAs can protect

only 70.8% of the flows while 29.2% cannot be protected

in spite of the high physical redundancy. The reason

is that LFAs are only available on the same level or

the next level towards the destination. Therefore, core

routers lack LFAs if a link towards a pod fails. In a

similar way, aggregation switches lack LFAs if their link

towards the edge switch fails. For single node failure,

89% of the flows can be protected. Again, core switches

cannot find LFAs if the next-hop fails. Finally, 81.9%

of the flows can be protected in case of single link and

Fig. 7: Augmented fat-tree topology with k = 8 and

two pods.

node failures. We conclude that the overall protection

is higher than in carrier-grade mesh networks but LFAs

cannot achieve full coverage in fat-trees.

7.2 Link-Augmented Fat-Tree Networks

We augment the fat-tree topology using additional links

in the individual switch layers. This enables the po-

tential for more alternate next-hops that may be se-

lected as LFA in failure cases. Figure 7 illustrates a

link-augmented fat-tree topology using k = 8 and two

constructed pods. We consecutively connect two neigh-

boring switches in each layer using an additional link.

We also connect the first and the last switch in the layer.

Thus, each switch layer is transformed into a ring.

Due to additional links within the switch layer, some

ports cannot be used to connect servers which reduces

the total number of servers supported by the augmented

fat-tree. In the following we discuss the trade-off be-

tween the normal and the link-augmented fat-tree

topology. Each switch requires two ports to be reserved

for the additional links. The number of switches is re-

duced by two in the core layer, in the aggregation and

edge layer. Finally, the number of servers per edge

switch is also reduced by two. Therefore, the topology

supports k − 2 pods with each k−2
2 aggregation and

edge switches. Therefore, the total number of servers is
(k−2)3

4 . There are up to 24,334 servers supported with

48-port switches which leads to a reduction of approx-

imately 12% to the unmodified topology with 27,648

servers.

In the following, we assume k = 8 for the link-

augmented fat-tree topology because the number of

servers in total and per pod are equal to an unmod-

ified fat-tree topology with k = 6. This allows for easy

comparison to the unmodified fat-tree presented in Sec-

tion 7.1. We generate only two pods instead of the pos-

sible six pods.

The results are shown in Figure 8. We can see that

LF-LFAs can protect against all single link failures but

up to 31.6% of the flows cause loops when node or

multiple failures are considered. NP-LFAs fully pro-

8

7 RESULTS FOR DATA CENTER NETWORKS 7.3 BCube Networks

Fig. 8: Percentage of protected flows for the augmented

fat-tree topology with k = 8. In a very few multiple

failure cases (S2,0, S1,1), LD-LFAs cannot protect less

than 0.3% of the traffic, which is not visible in the fig-

ure.

tect against single node failures and only generates mi-

nor percentages for loops (≤ 0.2%). Coverage in sin-

gle link failure scenario is reduced to 80%. DS-LFAs

completely remove all loops but provides less coverage

(68.4% – 88.2%) overall. LD-LFAs fully protect sin-

gle link and node failures and protects almost all flows

when multiple failures occur. Only a small amount of

flows

(≤ 0.3%) cannot be protected. This may happen, e.g.,

when two links towards a destination edge switch fail.

Packet drops only occur in scenarios where pack-

ets are sent from one pod to another and the multiple

failures are located between the core layer and the des-

tination pod. We illustrate such a case by the example

in Figure 7. Consider that packets are sent from the

first server in the first pod to the first server of the sec-

ond pod in Figure 7. The packet traverses to the first

core switch up the tree. The link from the core switch

to the second pod fails. There are only two LFAs avail-

able: the second or the last core switch and the packet

is sent towards one of them. In this example, we as-

sume that the last core switch is chosen and that there

is another failure between the last core switch and the

pod, i.e., caused by a link or node failure. The first and

the seventh switch are both LFAs. The first core switch

fulfills the node protecting condition while the second

Fig. 9: BCube1 network with n = 4 and k = 1 consists

of 4 BCube0 cells. The cells are interconnected using an

additional layer of switches.

only fulfills the loop-free condition. Thus, the first core

switch is selected and the packet is sent to this switch.

The packet is eventually dropped by the loop detection

of LD-LFAs.

LFAs can protect against multiple failures within

the same pod. Moreover, interacting virtual machines

in a data center are often placed as close together as

possible, i.e., in the same server or in the same pod [21],

so that these cases are quite rare in practice. Thus, we

highly recommend the use of LD-LFAs in

link-augmented fat-tree topologies because of its high

coverage and minimal state requirements of one for-

warding entry per switch. There is full protection

against all single failures and almost all flows can be

protected in multiple failure scenarios.

7.3 BCube Networks

BCube is a specifically designed data center topology

intended for shipping-container based, modular data

centers [22]. They are built from commodity off-the-
shelf (COTS) mini-switches and servers. The servers are

interconnected with multiple switches using multi-port

network cards and the servers participate in the for-

warding process. BCube is a recursively defined topol-

ogy where a level-1 BCube is built from multiple level-0

BCubes.

In the following, we describe the structure of BCube

networks by example. Figure 9 shows a BCube network

with parameters n = 4 and k = 1 where n represents

the number of ports per switch and k is the number of

levels in the BCube. BCube1 is built from four basic

BCube0. Each BCube0 consists of one n-port switch

that is connected to n servers. The switch is used for

the communication within the BCube.

The BCube1 is built from the BCube0 by connect-

ing them using an additional layer of switches in such a

way that the i-th switch of the layer is interconnected to

the i-th server of each BCube. Therefore, a server must

provide k + 1 network interfaces to support a BCubek
architecture. Traffic from a BCube0 to another traverses

9

7.4 DCell Networks 7 RESULTS FOR DATA CENTER NETWORKS

Fig. 10: Percentage of protected flows in BCube with

n = 4 and k = 1. All LFA variants (LF, NP, DS, LD)

provide identical protection.

the switch layer above. A BCube2 is constructed in the

same way by connecting four BCube1 using an addi-

tional layer of 16 switches. In general, the i-th layer

consists of ki switches. Note that servers are used for

forwarding and, therefore, computing resources must be

allocated for the forwarding process. Additional details

on BCube networks and their construction can be ob-

tained from the proposing publication [22].

We analyzed BCube networks of different size by

altering the n and k parameter. We only provide the

results for n = 4 and k = 1 because they are also

representative for BCubes that are parameterized with

higher port number n and number of levels k.

We found three key observations. (1) All LFA vari-

ants provide exactly the same protection. (2) There

are no forwarding loops for all considered scenarios in-

cluding multiple link and node failures. (3) Protection

against failures is very low. Only 18.8% of the flows

can be protected against single link failures and 19.1%

against single node or multiple failures.

We can explain these results by the structure of

BCubes. Consider the fact that a link within a BCube0
fails. The packets must be sent over a different BCube

to reach the destination. However, there are only two

hops in the BCube necessary while the redirection using

a different BCube clearly consists of more hops. Thus,

there is no neighbor that is a valid LFA because the

basic loop-free condition cannot be fulfilled.

For BCube-to-BCube communication, there are

cases where alternate paths have the same length as

the primary path and, thus, can be used as LFA. We

explain this by the example shown in Figure 9. Consider

that the first server of the first pod sends traffic to the

second server of the second pod. There are two equal-

length paths towards the destination. Firstly, the traffic

can be sent to the second server in the first BCube and

then to the destination using the second switch in the

connecting layer. Secondly, the traffic can be sent to-

Fig. 11: DCell1 with n = 4 and k = 1 consists of 5

DCell0 cells (blue). Each switch (red node) is part of

one DCell0. Traffic from one cell to another is forwarded

using servers (green nodes).

wards the first server in the second BCube and from

there using the switch in the BCube. However, traffic

sent from the first server in the first cube to the first

server of second cube cannot be protected using LFAs.

We conclude that neither basic LFAs nor enhanced

LFAs with loop detection can sufficiently protect flows

against in link or node failures in BCube networks.

7.4 DCell Networks

DCell networks are proposed in [23] and are similar to

BCube networks with respect to recursive definition,

use of COTS hardware and mini-switches, and packet

forwarding using servers instead of expensive forward-

ing switches. A DCell can be constructed incrementally

and scales to large numbers of servers. The main differ-

ence between a BCube and DCell is that while BCube

connects smaller BCubes into a larger one using an ad-

ditional switch layer, DCell directly connects smaller

cells to larger ones without the use of any additional

switches at all. Thus, there are only switches inside a

single cell.

We now discuss the structure of DCells in more de-

tail. A DCell1 with n = 4 and k = 1 is shown in Fig-

ure 11. It consists of five DCell0 and each of those cells

contains an n-port switch and n servers. Servers within

the cell communicate with each other using the switch.

To form a DCell1, the DCell0 are fully meshed if

treated as a virtual node. This means that each server

of a DCell0 connects to a server of a different DCell0.

Therefore, we require an additional port of each server

for an additional level of DCells resulting in k + 1 net-

work ports for each server. Packets destined into a dif-

ferent DCell are forwarded using the servers.

DCellk cells are constructed in the same fashion

as DCell1 by connecting each smaller cell with each

other in a full mesh. A DCellk is constructed using

gk = tk−1 + 1 DCellk−1 where tk−1 is the number of

10

8 DISCUSSION AND FUTURE WORK

Fig. 12: Percentage of protected flows for the DCell

topology with n = 4 and k = 1.

servers inside a DCellk−1. Therefore, the total number

of servers in a DCellk is tk = gk · tk−1. For a single

DCell0 there are t0 = n servers and g0 = 1 holds. For

example, a DCell3 with n = 6 can support up to 3.26

million servers. Exact details how to construct a DCelln
network and how to connect the individual ports of each

server to servers of different cells can be obtained from

the proposal in [23].

We present the results for the DCell network with

n = 4 and k = 1. The results are similar for larger
networks and additional results do not provide further

insights. The results are shown in Figure 12. The results

for LF-LFAs and NP-LFAs are the same and there are

a few loops for less than 1% of the flows when multi-

ple failures occur. The protection is low for single and

double link failures with approximately 22–23% of all

traffic flows. The coverage is about 40–51% for node or

multiple failures scenarios.

Downstream LFAs cannot protect any flows for sin-

gle link failures but for larger DCells a small amount

of flows (≤ 7%) can be protected in S1,0. Moreover,

DS-LFAs has significantly less coverage than the basic

LFAs and varies from 4% to 28.4% protected flows for

node and multiple failure scenarios.

LD-LFAs provide similar protection as LF-LFAs

and NP-LFAs but remove all loops and, thus, has

slightly higher protection. Similar to BCube, LFAs can-

not be recommended as protection mechanism for DCell

networks.

8 Discussion and Future Work

We addressed resilience and scalability issues in Open-

Flow networks with LFAs) which are standardized in

the IETF. Basic LFAs can cause microloops in the case

of node and multiple failures. It is possible to achieve

loop prevention with basic LFAs at the cost of protec-

tion coverage. We adopted LFAs to OpenFlow and de-

veloped an additional loop detection mechanism that

prevents microloops in the case of node and multiple

failures to minimize the coverage loss caused by more

restrictive LFAs. We analyzed this trade-off of tradi-

tional LFAs compared to LFAs with loop detection in

OpenFlow networks.

We found that basic LFAs can protect about 70%

of the traffic in mesh networks for single link failure

scenarios. However, approximately 30% of node failures

lead to extra loops. Allowing only downstream LFAs

that cannot cause loops in case of node failures, reduces

the protected traffic to only 40% for single link failures.

LFAs with loop detection successfully protect the 70%

of the traffic for single link failures and prevents loops

for multiple or node failures.

We observed similar results for ring networks, but

the overall protection coverage and the number of mi-

croloops is much lower. Only 44.7% of the traffic can

be protected when single link failures are considered.

However, the amount of looping traffic is reduced by

21.2% to 8% when node failures occur.

We investigated the impact of the length of the

bit string for ID encoding in large networks. A visi-

ble amount of traffic is dropped if the bit string for the

ID is only 3 bits long. When bit string lengths of 16 and

more bits are used, hardly any erroneous packet drops

occur.

Finally, we analyzed three different types of data

center topologies. There is a low coverage of about 18

– 22% in the DCell and BCube networks for single link

failure scenarios. However, we found that LFAs protect

approximately 70 – 82% of the traffic in the fat-tree net-

work. We developed the link-augmented fat-tree topol-

ogy variant that allows for full protection with LD-LFAs

for single link and single node failures. Moreover, less

than 0.3% of flows cannot be protected when multiple

failures occur.

We recommend the implementation of LFAs in

SDNs when flow table limitation are of concern in an

SDN network. These limitation may be caused by inter-

domain routing or fine-grained flow rules of an SDN

application. LFAs only require a minimum amount of

additional state of one entry per switch to implement

the loop detection mechanism. Protection coverage can

be high or low depending on the network topology.

11

References

We will further investigate the use of LFAs for

OpenFlow networks. We will integrate remote LFAs

(rLFAs) in OpenFlow-based SDN which can protect

100% traffic for single link failures when the network

is configured with unit link costs. We will apply loop

detection also for rLFAs and investigate its protection

with regard to different failure scenarios. The objective

is to enhance rLFAs to protect against all single link

failures with introducing a minimum amount of addi-

tional forwarding entries.

9 Conclusion

Loop-free alternates (LFAs) are used for local fast re-

route in IP networks. They mostly cannot protect all

traffic and some LFAs may cause loops in case of node

or multiple failures. Avoiding such LFAs reduces the

protection coverage even further. However, LFAs can

be easily implemented with OpenFlow’s fast failover

group. We proposed loop detection for LFAs in

OpenFlow-based networks and an implementation that

requires only a single additional forwarding rule per

switch. It allows the use of all LFAs without creating

loops and, thereby, increases the protection coverage

if extra loops in failure cases must be avoided. In our

evaluation on multiple mesh and ring networks, normal

LFAs can protect 30% and of the traffic without cre-

ating extra loops while LD-LFAs increases this value

to 70%. To detect loops, LD-LFAs set header bits to

indicate nodes having rerouted the packet. An approx-

imation allows to use labels with fewer bits than the

number of nodes to scale the mechanism to large net-

works and minimize header overhead at the expense

of packet loss in some failure cases. Our study shows

that this packet loss is low for label sizes of 16 or more

bits. Furthermore, we showed that LD-LFAs can pro-

tect only little traffic for typical data center topologies

like BCube or DCell. It protects around 70% of the

traffic with fat-trees. Augmenting fat-trees with a few

extra links allows LD-LFAs to protect 100% of the traf-

fic for all single link and node failures and even in case

of multiple failures almost all traffic can be protected.

References

1. N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communications

Review, vol. 38, no. 2, pp. 69–74, 2008.
2. W. Braun and M. Menth, “Wildcard Compression

of Inter-Domain Routing Tables for OpenFlow-Based
Software-Defined Networking,” in European Workshop on
Software Defined Networks (EWSDN), Sep. 2014, pp. 25–
30.

3. S. Sharma, D. Staessens, D. Colle, M. Pickavet, and
P. Demeester, “OpenFlow: Meeting Carrier-Grade Re-
covery Requirements,” Computer Communications, 2012.

4. J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takàcs,
and P. Sköldström, “Scalable Fault Management for
OpenFlow,” in IEEE International Conference on Com-
munications (ICC), 2012, pp. 6606–6610.

5. N. L. van Adrichem, B. J. van Asten, and F. A. Kuipers,
“Fast Recovery in Software-Defined Networks,” in Euro-
pean Workshop on Software Defined Networks (EWSDN),
Sep. 2014, pp. 61–66.

6. R. M. Ramos, M. Martinello, and C. E. Rothenberg,
“SlickFlow: Resilient Source Routing in Data Center Net-
works Unlocked by OpenFlow,” in IEEE Conference on

Local Computer Networks (LCN), Oct. 2013.
7. A. Atlas and A. Zinin, “RFC5286: Basic Specification for

IP Fast Reroute: Loop-Free Alternates ,” Sep. 2008.
8. S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So,

“Remote LFA FRR,” http://tools.ietf.org/html/draft-
rtgwg-remote-lfa, May 2013.

9. L. Csikor and G. Retvari, “IP Fast Reroute with Remote
Loop-Free Alternates: the Unit Link Cost Case,” in IEEE

International Workshop on Reliable Networks Design and
Modeling (RNDM), 2012.

10. M. Menth and W. Braun, “Performance Comparison
of Not-Via Addresses and Maximally Redundant Trees
(MRTs),” in IFIP/IEEE International Symposium on In-

tegrated Network Management (IM), Ghent, Belgium, Apr.
2013.

11. R. Martin, M. Menth, M. Hartmann, T. Cicic, and
A. Kvalbein, “Loop-Free Alternates and Not-Via Ad-
dresses: A Proper Combination for IP Fast Reroute?”
Computer Networks, vol. 54, no. 8, pp. 1300 – 1315, Jun.
2010.

12. M. Hartmann and D. Hock and M. Menth, “Routing Op-
timization for IP Networks with Loop-Free Alternates,”
Computer Networks, vol. 95, pp. 35 – 50, 2016.

13. P. Pan, G. Swallow, and A. Atlas, “RFC4090: Fast
Reroute Extensions to RSVP-TE for LSP Tunnels,” May
2005.

14. M. Pioro, A. Tomaszewski, C. Zukowski, D. Hock,
M. Hartmann, and M. Menth, “Optimized IP-Based
vs. Explicit Paths for One-to-One Backup in MPLS
Fast Reroute,” in International Telecommunication Net-

work Strategy and Planning Symposium (Networks), War-
saw, Poland, Sep. 2010.

15. C. R. Meiners, A. X. Liu, and E. Torng, “Bit Weaving:
A Non-prefix Approach to Compressing Packet Classi-
fiers in TCAMs,” IEEE/ACM Transactions on Networking,
vol. 20, no. 2, pp. 488–500, Apr. 2012.

16. R. Couto, M. Campista, and L. Costa, “A Reliability
Analysis of Datacenter Topologies,” in IEEE Globecom,
Dec. 2012, pp. 1890–1895.

17. OpenFlow Switch Consortium and others, “OpenFlow
Switch Specification Version 1.1.0,” 2011. [Online]. Avail-
able: http://archive.openflow.org/documents/openflow-
spec-v1.1.0.pdf

18. M. Menth, M. Duelli, R. Martin, and J. Milbrandt,
“Resilience Analysis of Packet-Switched Communica-
tion Networks,” IEEE/ACM Transactions on Networking,
vol. 17, no. 6, pp. 1950 – 1963, Dec. 2009.

19. S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The Internet Topology Zoo,” IEEE Journal
on Selected Areas in Communications, vol. 29, no. 9, pp.
1765 –1775, Oct. 2011.

12

References References

20. M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,
Commodity Data Center Network Architecture,” ACM

SIGCOMM Computer Communications Review, vol. 38,
no. 4, pp. 63–74, Aug. 2008.

21. M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, and
G. Wang, “Meridian: An SDN Platform for Cloud Net-
work Services,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 120–127, 2013.

22. C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu, “BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers,” in ACM SIGCOMM, Barcelona, Spain, Aug.
2009.

23. C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu,
“Dcell: A Scalable and Fault-tolerant Network Structure
for Data Centers,” ACM SIGCOMM Computer Communi-

cations Review, vol. 38, no. 4, pp. 75–86, Aug. 2008.

Author Biographies

Wolfgang Braun studied computer science and math-

ematics at the University of Tuebingen in Germany and

received his diploma degree in 2012. Since then, he is

a researcher at the Department of Communications at

the University of Tuebingen and pursuing his PhD. His

main research interests include software defined net-

working, OpenFlow, routing scalability, resilience mech-

anisms, and traffic engineering.

Michael Menth is professor at the Department of

Computer Science at the University of Tuebingen, Ger-

many and chairholder of Communication Networks. His

special interests are performance analysis and optimiza-

tion of communication networks, resource management,

resilience issues, smart grids, and future Internet. He

holds numerous patents and received various scientific

awards for innovative work.

13

