
c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

Scaling Home Automation to Public Buildings:

A Distributed Multiuser Setup for OpenHAB 2

Florian Heimgaertner, Stefan Hettich, Oliver Kohlbacher, and Michael Menth

University of Tuebingen, Department of Computer Science, Tuebingen, Germany,

Email: {florian.heimgaertner,menth,oliver.kohlbacher}@uni-tuebingen.de, stefanhettich@gmail.com

Abstract—Home automation systems can help to reduce energy
costs and increase comfort of living by adjusting room temper-
atures according to schedules, rules, and sensor input.

OpenHAB 2 is an open-source home automation framework
supporting various home automation technologies and devices.
While OpenHAB is well suited for single occupancy homes, large
public buildings pose additional challenges. The limited range
of wireless home automation technologies requires transceivers
distributed across the building. Additionally, control permissions
need to be restricted to authorized persons.

This work presents OpenHAB-DM, a distributed OpenHAB 2
setup with extensions introducing user authentication, access
control, and management tools for decentralized OpenHAB node
deployment.

I. INTRODUCTION

Open-source home automation systems like OpenHAB [1]

and FHEM [2] can help to reduce energy costs and increase

living comfort in private homes. Heating, lighting, roller

shutters, and various other devices can be controlled according

to schedules or based on events and complex rule sets.

Large public buildings could also benefit from open-source

building automation. However, home automation solutions tar-

geting single occupancy houses lack several features required

for large public buildings with hundreds of rooms.

Most new buildings are designed with building automation

in mind and include appropriate wiring and devices. For

retrofitting in existing buildings, the most convenient way to

connect temperature sensors, radiator valves, presence detec-

tors, and temperature control switches to a home automation

controller are wireless technologies like enOcean [3] or z-

Wave [4]. The limited range of wireless transceivers is suffi-

cient for most single occupancy houses. Figure 1 compares

the situation in small residential buildings to large public

buildings. While a single transceiver directly connected to the

home automation controller can reach devices in the entire

home, in large buildings multiple transceivers are required to

achieve sufficient wireless coverage. To manage all devices

from a single controller instance, a method to connect the

distributed transceivers to the central controller is needed.

The objective of this work was to develop an extensible

and user-friendly open-source solution for controlling a large

number of devices distributed over a wide area. OpenHAB was

selected as base framework because of its support for various

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1-1. The authors alone are responsible for
the content of the paper.

Fig. 1. The range of a single wireless transceiver is sufficient for small resi-
dential buildings (left). In large public buildings (right), multiple transceivers
are required for full wireless coverage.

home automation technologies through extension modules.

To leverage the flexibility of OpenHAB for large public

buildings, we propose OpenHAB-DM1, a distributed multi-

user setup of a modified version of OpenHAB 2. OpenHAB-

DM uses OpenHAB slave controllers on low-power hardware

providing connectivity and hardware abstraction for wire-

less transceivers. Automation features and user interfaces of

OpenHAB are exclusively provided by a central master con-

troller running on regular server hardware. A publish/subscribe

(pub/sub) middleware is used to connect the slave controllers

to the master controller.

A single user interface for building automation in a large

public building increases the need for authenticating users

and restricting access to room configurations to the actual

occupants of a room. Additionally, special permissions are

required for administration and facility management staff. We

propose a modification to the OpenHAB 2 software adding

user authentication and means to restrict access based on group

membership of a user.

This work is structured as follows. We give an overview

of OpenHAB and the MQTT middleware in Section II. Sec-

tion III describes the distributed OpenHAB architecture and

presents the modifications made to OpenHAB. We present a

use case for OpenHAB-DM in Section IV and discuss related

work in Section V. Finally, we summarize this work and draw

conclusions in Section VI.

II. DESCRIPTION OF BASE TECHNOLOGIES

In this section, the main building blocks of this work

are introduced. We describe the home automation framework

OpenHAB and the pub/sub middleware MQTT.

1https://github.com/uni-tue-kn/openhab-dm

Global Internet of Things Summit (GIoTS 2017), June 2017, Geneva, Switzerland



Fig. 2. The virtual layer of OpenHAB consists of items that are linked to
the channels of things in the physical layer

A. OpenHAB

The Open Home Automation Bus (OpenHAB) is an open-

source home automation controller implemented in Java.

OpenHAB is a vendor-independent solution for home automa-

tion. It supports a large number of home automation tech-

nologies such as various types of wireless sensors, switches,

and actuators. The current development branch OpenHAB 2

is based on the Eclipse SmartHome (ESH) [5] framework.

OpenHAB 2 and ESH are available under the terms of the

Eclipse Public License.

Figure 2 illustrates the relationship between things, chan-

nels, and items, which are the basic concepts of OpenHAB

and ESH. Things are physical devices or services that can

be connected to the system. A thing provides functional-

ity through one or multiple channels. Things and channels

constitute the physical layer of ESH. Items are objects of

ESH’s virtual layer. They are abstract representations of the

functions provided by a channel. An item is connected to

a channel using a link. Items have a state and can receive

commands. A wireless radiator valve may be an example

for a thing providing two channels. The first channel is a

sensor measuring the room temperature. The second channel

is a actuator adjusting the valve position. Those channels

are represented in OpenHAB as two items, the first giving

the actual temperature, the second providing the set-point

temperature.

User interaction and automation tasks only operate on item

level. Technical details are hidden by the abstraction provided

by the bindings. Bindings are extension modules connecting

devices and external services to OpenHAB. They implement

communication protocols and convert data formats to provide

an abstract representation of hardware or network services in

form of things, channels, and items. As shown in Figure 3,

bindings are connected to an event bus for asynchronous com-

munication with other OpenHAB components. They receive

commands from the event bus, translate them into hardware-

or service-specific formats and send them to the devices or

services using the respective communication protocols. The

state of items is kept in a data structure called item repository.

The item repository is updated when state changes are received

from the event bus and can be queried by automation logic and

user interfacess.

Fig. 3. Architecture of OpenHAB 2. OpenHAB controls sensors, actuators,
and network services by sending commands and receiving state updates over
an event bus. Bindings connect hardware and network services to the event
bus by translating and forwarding events.

OpenHAB automation is based on events, rules, scripts,

and actions. Events represent state or time changes. Rules

execute scripts or actions after being triggered by events.

Scripts contain reusable code that can be used by multiple

rules. Rules and scripts are written in a scripting language

using a Java-like syntax. Actions are predefined Java methods

that can be used in rules and scripts.

OpenHAB provides multiple interfaces for interaction with

users and applications. System configuration and administra-

tion tasks can be performed using the Paper UI web inter-

face. For user access to the home automation functionality,

OpenHAB provides the web interfaces Basic UI and Clas-

sic UI. While Basic UI and Classic UI provide the same set

of features, they are presented in different look-and-feels. A

ReSTful [6] web service provides an API for mobile apps.

The web interfaces also use the ReST API for AJAX calls.

OpenHAB and ESH are modular systems consisting of

OSGi [7] bundles. Apache Karaf [8] and the Eclipse

Equinox [9] framework are used as runtime environment.

B. MQTT

The pub/sub communication paradigm decouples commu-

nication partners in space, time, and synchronization [10].

Data is sent by publishers to a broker which forwards data

to interested subscribers.

The MQ Telemetry Transport (MQTT) [11] is a broker-

based, light-weight pub/sub middleware which runs on top

of TCP/IP. Communication in MQTT is organized in topics.

A topic is an abstract representation of a unidirectional in-

formation channel and is addressed using its unique name.

By subscribing to a topic a subscriber expresses its interest

to receive data published to that topic. The MQTT broker

keeps track of topic subscriptions and forwards data received

from the publishers to the subscribers of corresponding topics.

MQTT topics are organized in a hierarchical name space. Like

in Unix file system paths, the hierarchy levels are separated by

forward slashes. Topics can be subscribed either using fully



Fig. 4. An OpenHAB master controls sensors and actuators through the
wireless transceivers of multiple slaves using broker-based pub/sub commu-
nication.

qualified topic names or using wildcards replacing one or

multiple hierarchy levels. MQTT is not specifically designed

for home automation purposes. However, it is marketed as

a pub/sub middleware for the Internet of Things (IoT) and

has gained a certain popularity in the home automation com-

munity. In our work we use the open-source MQTT broker

Mosquitto [12].

III. OPENHAB-DM: A DISTRIBUTED MULTIUSER

OPENHAB 2 SETUP FOR LARGE PUBLIC BUILDINGS

We propose OpenHAB-DM, consisting of an OpenHAB 2

master controller and multiple slave controllers interconnected

by MQTT. This section describes the distributed system and

the extensions and modifications made to OpenHAB 2 for

implementing user authentication and access control.

A. Interconnection of Distributed OpenHAB Controllers

In the following, we motivate our work, describe the archi-

tecture of the system, and present the extensions to OpenHAB

for management of slave controllers.

1) Motivation and Concept: To connect distributed wireless

transceivers to a central controller over IP networks, gateways

are required. For some wireless systems, technology-specific

gateways are available. However, this approach would require

the deployment of new gateways to support additional wireless

technologies. Instead, we use multiple OpenHAB instances

running on low-cost and low-power hardware as technology-

independent gateways. Figure 4 illustrates the interconnection

of OpenHAB slaves to an OpenHAB master. Slave controllers

equipped with wireless transceivers are distributed over the

building to ensure full wireless coverage. The slave controllers

are connected to the master controller using the MQTT

pub/sub middleware.

2) Architecture: We propose an architecture composed of

a central master OpenHAB controller, an MQTT broker, and

multiple distributed slave OpenHAB controllers. The master

controller provides the user interfaces, runs automation tasks,

and authenticates the users. A large number of slave controllers

are distributed over the building. The slave controllers con-

nect to sensors and actuators through the attached wireless

transceivers using the appropriate bindings. The slaves operate

without web user interfaces.

To visualize item states and run automation tasks, represen-

tations of the slaves’ items need to be present at the master

Fig. 5. Architecture of a distributed OpenHAB-DM system. Master and slave
controllers are connected by coupling their event buses over MQTT.

Fig. 6. Master and slave controllers communicate over the MQTT pub/sub
middleware. Each item at the slaves is mapped to a pair of MQTT topics for
exchanging state updates and commands with a shadow item at the master.

controller. In this work, we use the term shadow item to

describe the representation of a remote item at the master

controller. Figure 6 illustrates the use of the MQTT middle-

ware to synchronize the state of items at the slave controllers

and shadow items at the master controller. OpenHAB provides

MQTT bindings [13] which can be used to interconnect

multiple OpenHAB instances. At the slave controllers, we

use the event bus binding level of the MQTT binding. This

mode of operation exposes the entire event bus of the slave

controller to the pub/sub middleware. For each item available

at the slave, two MQTT topics are created. One MQTT topic

is used for publishing item state updates. A second MQTT

topic is used for receiving commands for the item from the

master controller. At the master controller, item binding level

is used. For each slave item managed by the master controller,

a shadow item needs to be created at the master. The shadow

items are implemented by the MQTT bindings and need to be

configured with the correct item types and the MQTT topics

of the corresponding remote items.

The overall architecture is shown in Figure 5. The bindings

installed at the slaves are connected to the slaves’ event buses.



Fig. 7. Screenshot of the management UI used for configuration of OpenHAB
slave nodes and remote items.

Events on the event bus of a slave are propagated to the event

bus of the master via the MQTT middleware. At the master,

they are made available to user interfaces and automation

logic. Commands are issued by users or automation tasks at

the master. The commands are propagated through MQTT to a

slave’s event bus and are processed by the respective bindings.

We use a Mosquitto broker co-located with the master

controller.

3) Management of slave nodes: To configure the OpenHAB

slaves via the master’s web interface, we implemented a node

management component for OpenHAB. Figure 7 shows a

screenshot of the node management UI. The web interface

can be used to view the slave status or install bindings and

other extensions on slaves. Also items can be added to the

slaves. For native OpenHAB 2 bindings, the node manage-

ment component can create the items using the ReST API.

For legacy OpenHAB 1 bindings, items require a file-based

configuration. We have implemented remote configuration of

items for selected OpenHAB 1 bindings. When adding items,

the node management component automatically creates the

corresponding shadow items at the master.

B. Authentication and Access Control

OpenHAB 2 currently has no concept of users, roles, or

permissions. We modified the OpenHAB software to au-

thenticate users and restrict permissions depending on group

membership. In the following, we explain our concept of roles

and permissions in OpenHAB. We show how this modification

was implemented and point out its limitations.

1) Groups and Permissions: Items in OpenHAB can be

organized into groups. An example of a group hierarchy is

shown in the left part of Figure 8. One or multiple parent

groups can be assigned to an item. Also, groups can be parent

groups of other groups. The group hierarchy forms a directed

graph with groups as vertices, parentship as edges, and items

Fig. 8. Example of a group hierarchy. Groups and parents exist in OpenHAB.
Users, their membership in groups, and restricted access to web interfaces are
introduced by OpenHAB-DM.

as sinks. The edges are directed from parent groups to child

groups or items.

While originally intended for visualization, aggregation, and

configuration purposes, we adopt this group concept for per-

mission management in OpenHAB-DM. Our implementation

uses groups to determine whether a user is allowed to access

an item. By mapping users to groups, they are added to the

graph as source vertices with membership as edges directed

to groups. Figure 8 illustrates the groups and permission

concept of OpenHAB-DM. Items are organized in a hierarchy

of groups. Users can be members of groups at any level of

the hierarchy. If a directed path from a user to an item exists,

the user is permitted to access the item.

Roles, e.g., admin, are implemented as special groups

without parents or children. They are used to grant access to

management interfaces or override access restrictions to items.

2) Implementation: As explained in Section II-A,

OpenHAB provide several user interfaces. Besides Paper UI

for administration, Basic UI and Classic UI are available for

regular user operations. In a default OpenHAB 2 deployment,

those user interfaces are accessible to anyone inside the local

area network without authentication.

OpenHAB-DM implements user authentication for the

OpenHAB web user interfaces. Users are required to provide

credentials to log in and access the items they are permitted to

use. The credentials entered by the user are verified using an

internal user database or by asking an external authentication

backend (e.g., LDAP). After a user is authenticated, we store

user data in a session and the user can access the user

interfaces. Session data is managed using the Java Servlet API

at the server side, and stored in session cookies at the client.

OpenHAB-DM uses a modified HTTPContext to test if a

session has been established and if a user is permitted to access

a resource. If the session is valid but the user is not permitted

to access an item, an error message is displayed. If no valid

session is found, the user is redirected to a login form to ask

for credentials.



Fig. 9. Screenshot of the management UI for configuration of users, roles,
and permissions.

To authenticate to the ReST API, ReST clients include an

authentication token with each request. The token is generated

by the server upon authentication with the user credentials and

stored locally by the client. A client submitting a request to

the ReSTful web service without a valid authentication token

will receive an HTTP 401 (Unauthorized) response. Requests

are blocked, if a user does not have sufficient permissions

to access a resource. In this case, an HTTP 403 (Forbidden)

response is generated. This mechanism is implemented using

a ContainerRequestFilter.

For use of the ReST API through JavaScript code from

inside the web interfaces, a token is generated after successful

user authentication and stored in a separate cookie. To protect

session cookies and authentication tokens, access to the web

interfaces and the ReST API should be possible over HTTPS

only.

For both the ReST API and the web interface, only items a

user may access should be visible. To achieve this, a filter is

added to the methods enumerating the items.

Users only connect to web user interfaces or the ReST API

at the master controller. The master enforces access control

centrally according to the parent groups of the shadow items. A

user database shared between master and slaves is not required,

because access to the slaves is only possible via the master.

Instead, the slaves only know a single admin user account

which is used by the master for accessing the ReST API.

For management of user accounts, assigning group mem-

berships, and setting permissions for the ReST API, a new

web interface component was developed. Figure 9 shows a

screenshot of this management interface. Access to the user

management component requires membership in the admin

group.

3) Limitations: The authentication and access control im-

plementation for OpenHAB-DM is not compatible with the

existing mobile OpenHAB client apps. The mobile apps cur-

rently do not implement the functionality to supply user cre-

dentials and authentication tokens to the ReST API. Therefore,

authentication at the ReSTful web service is not yet supported.

IV. USE CASE

Energy costs make up a notable part of the operating

costs in large public buildings. Among those energy costs,

heating expenses are especially hard to control. In traditional

business buildings with fixed working hours, heating costs

can be optimized centrally by using timers to adjust the flow

temperature and circulation, and per room by tuning thermo-

static valves. However, this approach is no longer sufficient

with flexible time programs, part-time employment, occasional

telecommuting, business travels, shared office space, and mul-

tipurpose rooms. Fixed temperature presets no longer match

variable room allocation schemes. Additionally, the period of

time when flow temperature can be substantially reduced is

becoming smaller due to flexible working hours.

To prevent employees from freezing in cold rooms for the

first hours after start of work, two solutions are commonly

used. Either, radiator valves are left open even if the room is

unused, or the flow temperature is raised to reduce the heat-

up time. Those solutions are unfavorable both from a financial

and an environmental point of view.

To cope with those challenges, we propose using a soft-

ware system to control valves according to schedules or user

configuration.

OpenHAB-DM enables using this technology to adjust

room temperatures in large public buildings, e.g. using room

schedules in CalDAV calendars. Users can be granted the

permissions to control single rooms or groups of rooms using

a central web frontend. Office rooms can be configured to pre-

heat before the beginning of individual working hours. Room

temperatures can be automatically reduced if the occupants

are on vacation, or automatically raised if presence of persons

is detected. This approach can reduce energy costs while not

interfering with diverging and unusual working hours.

V. RELATED WORK

In this section we give an overview of other open-source

home automation solutions.

Freundliche Hausautomatisierung und Energie-Messung

(FHEM) [2] is a home automation server implemented in Perl.

FHEM is open-source software available under the terms of

the GNU General Public License (GPL) v2. It supports various

home automation protocols and technologies, e.g., EnOcean,

HomeMatic, MAX!, Phillips HUE, etc. Additionally, cam-

eras, online calendars, or weather data can be integrated.

Several interfaces are available for interaction with FHEM.

Applications can use XML or JSON based web services, or

the request/response based telnet interface. Users can connect

to one of the various web frontends or use mobile apps.

Adding new devices to FHEM is particularly simple. Device

representations are automatically created in the system as

soon as data is received from the device. For automation



purposes, macros containing sequences of commands can be

executed at defined times or upon reception of an event. FHEM

focuses on home automation in private premises. While the

system can be protected from unauthorized access using HTTP

Basic Authentication, multiple users with different permissions

or fine-grained access control schemes are not supported.

Connecting distributed FHEM instances is neither supported.

HomeAssistant [14] is a home automation system imple-

mented in Pyhton 3. HomeAssistant is open-source software

available under the terms of the MIT license. It is based on a

modular architecture. Extension modules provide support for

sensors, actuators, weather data, automation services, online

calendars, and user interfaces. The system provides an in-

tegrated user and administration web interface that can be

password protected. Events are used to trigger automation

tasks. HomeAssistant includes a concept of multiple persons

whose presence or absence can be used as a condition for

automation rules. However, for the system persons are like

sensors providing input data, e.g., by tracking their mobile

phones. Multiple users with different permissions do not exist

in HomeAssistant. Controlling remote instances of HomeAs-

sistant from a central instance is not supported.

ioBroker [15] is a home automation system implemented

in JavaScript and based on node.js. It is open-source software

available under the terms of the MIT license. ioBroker is a

modular system that can be extended using adapters. Various

adapters are available for popular protocols and technolo-

gies, such as HomeMatic, MQTT, or EnOcean. ioBroker is

the successor of CCU.IO, which was quite popular with

the HomeMatic user community previously. Adapters imple-

mented for CCU.IO can be used with ioBroker. ioBroker

supports multihost mode, a distributed mode of operation.

The primary purpose of multihost mode is load balancing

but it can also be used to install adapters on distributed

ioBroker instances. ioBroker supports multi-user operation and

users can also be organized in groups. However, permissions

can only be used to restrict administrative functions. Access

control on device- or item-level is not supported.

MyController.org [16] is a home automation system im-

plemented in Java. It is open-source software available under

the terms of the Apache License 2.0. MyController.org uses

JavaScript or Groovy for writing automation rules. MyCon-

troller.org includes a single web frontend that is used for both

administration and user access. It includes user management

and supports a sophisticated system of roles and permissions.

MyController.org can connect to external services and includes

a built-in MQTT broker but distributed operation is not sup-

ported.

The Open Building Automation System (OpenBAS) [17]

is a building automation platform currently developed at

UC Berkeley. It is open-source software available under the

terms of the 2-clause BSD License. OpenBAS is focused on

control of heating, ventilation, and air conditioning (HVAC)

in small and medium business buildings. OpenBAS is based

on sMAP [18] which was also developed at UC Berkeley.

sMAP uses gateways called sMAP sources that provide access

to devices over a ReST API. OpenBAS only supports devices

connected via sMAP sources so there is no use case for

interconnection of multiple OpenBAS instances. OpenBAS

includes a web frontend for both administration and user

access. The frontend is password-protected, but role-based

access control for specific devices is not implemented.

VI. CONCLUSION

In this paper, we proposed OpenHAB-DM, a distributed

multi-user setup of OpenHAB 2. We showed, how OpenHAB

slave controllers can be used to connect distributed wireless

transceivers to a central OpenHAB master controller over a

pub/sub middleware. The presented authentication and access

control extensions enable multi-user operation in OpenHAB

with fine-grained permissions based on item groups. The node

management tool simplifies deployment and operation of the

slave controllers and enables configuration of remote devices

via the user interface of the central master controller.

Our enhancements to OpenHAB2 enable the reuse of ex-

isting technology for private homes in public buildings with

large numbers of rooms and users.

Future work includes integration of additional external au-

thentication backends such as Shibboleth or Active Directory,

and possibly extensions for mobile apps to support authenti-

cation.

REFERENCES

[1] K. Kreuzer et al., “OpenHAB - empowering the smart home,” 2016.
[Online]. Available: https://www.openhab.org/

[2] R. Koenig et al., “FHEM Home Automation Server,” 2015. [Online].
Available: http://fhem.de/fhem.html

[3] EnOcean Alliance, “EnOcean - The World of Energy Harvesting Wire-
less Technology,” EnOcean Technology Whitepaper, 2015.

[4] Z-Wave Alliance, “Z-Wave,” 2015. [Online]. Available: http://www.z-
wave.com

[5] Eclipse Foundation, “Eclipse SmartHome,” 2014. [Online]. Available:
https://www.eclipse.org/smarthome/

[6] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Dissertation, University of California, 2000.

[7] OSGi Alliance, “Open Service Gateway initiative,” 2014. [Online].
Available: https://www.osgi.org

[8] Apache Foundation, “Apache Karaf,” 2014. [Online]. Available:
http://karaf.apache.org/

[9] Eclipse Foundation, “Eclipse Equinox,” 2016. [Online]. Available:
http://www.eclipse.org/equinox

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
Many Faces of Publish/Subscribe,” ACM Computing Surveys, vol. 35,
no. 2, pp. 114 – 131, 2003.

[11] A. Stanford-Clark and A. Nipper, “MQ Telemetry Transport,” 2014.
[Online]. Available: http://www.mqtt.org/

[12] Eclipse Foundation, “Mosquitto - an Open Source MQTT Broker,”
2016. [Online]. Available: https://mosquitto.org/

[13] OpenHAB, “OpenHAB MQTT Binding,” 2013. [Online]. Available:
https://github.com/openhab/openhab/wiki/MQTT-Binding

[14] P. Schoutsen et al., “HomeAssistant,” 2016. [Online]. Available:
https://home-assistant.io/

[15] ioBroker Team, “ioBroker - Automate Your Life,” 2016. [Online].
Available: http://www.iobroker.net/?lang=en

[16] J. Kandasamy et al., “MyController.org - The Open Source Controller,”
2015. [Online]. Available: http://www.mycontroller.org/

[17] D. Culler et al., “OpenBAS,” 2016. [Online]. Available:
http://sdb.cs.berkeley.edu/sdb/OpenBAS/

[18] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler, “sMAP -
a Simple Measurement and Actuation Profile for Physical Information,”
in ACM Conference on Embedded Networked Sensor Systems (SenSys),
Nov. 2010.


