(©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Efficient Data Plane Protection for SDN

Daniel Merling, Wolfgang Braun, Michael Menth
University of Tiibingen, Department of Computer Science, Germany

Abstract—Software-defined networks (SDN) usually require
intervention of a controller to restore connectivity in case of link
or node failures. To avoid this dependence, a fast failover function
enables switches to locally detect a failure and deviate affected
traffic. In this paper, we develop fast reroute (FRR) methods
leveraging that feature and the principle of loop-free alternates
(LFAs) from IP networks for network-wide configuration. We
explain how LFAs, remote LFAs, and novel explicit-path LFAs
may be implemented with OpenFlow so that SDN with general
destination-based routing can be protected. An advanced loop
detection and termination function is suggested to prevent loops
that may be caused by FRR in case of severe failures. We evaluate
the FRR methods on a large set of representative network
topologies and compare them with existing FRR methods. Classic
rLFAs from IP networks generate many loops in case of node
failures so that they are not appropriate for SDN. One developed
protection method is particularly suitable for SDN as it can
protect all flows in a network against any single link and node
failure. The solution is efficient because it secures most traffic
also in case of dual failures, leads to short backup paths, and
requires in most networks only a few additional forwarding
entries per node. The latter is important as OpenFlow switches
can accommodate only a moderate number of forwarding entries
in their flow tables.

Index Terms—Software-Defined Networking, OpenFlow, Pro-
tection, Loop-Free Alternates, Scalability

I. INTRODUCTION

Software-defined networks (SDN) decouple the data plane
from the control plane. An occurring failure needs to be
detected and communicated to a controller which then recon-
figures affected paths. Depending on the number of affected
flows, this imposes high load on the controller in a critical
situation and may take considerable time to complete. In case
of in-band signalling, the network elements and the controller
may be even disconnected due to the failure. Local fast-reroute
(FRR) implies that a node (point of local repair, PLR) can
locally detect a failure and deviate affected traffic so that it
eventually reaches its destination. OpenFlow supports only a
basic fast failover function that needs to be applied network-
wide in an appropriate way, for which we develop and evaluate
a concept in this paper.

Existing FRR mechanisms for MPLS or IP networks could
be ported to SDN, but this approach suffers from two major
problems. Either, existing FRR mechanisms require lots of

The authors acknowledge the funding by the Deutsche Forschungsgemein-
schaft (DFG) under grant ME2727/1. The authors alone are responsible for
the content of the paper.

additional forwarding entries or they cannot protect all traffic
against at least single link failures (SLF) and single node
failures (SNF) without creating loops. The first is prohibitive
because OpenFlow switches have flow tables of only moderate
size so that only a few additional forwarding entries can
be accommodated for protection purposes. The second is
not acceptable for SDN because unprotected flows remain
disconnected or FRR-caused loops persist until the controller
comes to rescue.

Coverage denotes the percentage of affected flows that can
be protected against a set of considered failure scenarios.
As SDN are sensitive against failures, 100% (full) coverage
against all SLF and SNF is desired. That means, a link
or switch may break or be unplugged from the network
and the data plane remains operational for all flows without
intervention of the controller. In addition, high coverage for
all dual link failures (DLF) and all combinations of single
link and node failures (SLF+SNF) is also desirable. FRR
mechanisms with full coverage against SLF but without a limit
for packet redirections may cause loops in case of node failures
or multiple link failures. To prevent FRR-generated loops, loop
detection and termination (LDT) is recommendable for SDN.

In this paper, we pursue the vision of a robust data plane
for SDN through FRR methods with full coverage against SLF
and SNF and with LDT. It should be efficient in the sense that
it (1) entails only a few additional forwarding entries in the
flow tables, (2) does not lead to excessive path lengths, and
(3) yields high coverage for DLF and SLF+SNF. Loop-free
alternates (LFAs) have been proposed for FRR in IP networks.
We describe their adaptation to SDN with general destination-
based routing and propose novel LFAs with explicit paths
(eLFAs). We develop an advanced LDT (ALDT) mechanism
that avoids erroneous packet drops after first redirect of
existing solutions. We devise various protection methods on
that base and explain how the discussed features may be
implemented with OpenFlow. We define metrics to measure
coverage, path length, and additional forwarding entries, and
compare various existing and novel FRR methods on a large
set of representative network topologies. The results reveal
that one of our proposed methods meets the goals and the
discussion clarifies that the use of other standardized FRR
methods in SDN would be inferior.

In Section II we review related work regarding FRR meth-
ods for IP and MPLS networks as well as existing approaches
to protect the SDN data plane. Section III gives a more detailed
overview of available LFA variants and an LDT scheme. In

(©IEEE International Conference on Network Softwarization (NetSoft 2018), June 2018, Montreal, Canada

Section IV we suggest novel LFA-based protection methods
for SDN and ALDT, and show how they can be imple-
mented in OpenFlow. Section V introduces our methodology
and performance metrics. We present performance results
in Section VI discuss them in Section VII and point out
issues for further research. Finally, we summarize the work
in Section VIII and draw conclusions.

II. RELATED WORK

FRR methods for MPLS and IP networks [1], [2] have been
an active research area over the last two decades and many
standards have evolved or are still under review. We survey
them and report activities to protect the SDN data plane.

MPLS-FRR offers one-to-one backup and facility backup
with link and node protection [3]. One-to-one backup deviates
traffic from the PLR to the destination bypassing the potential
failure along an alternative preconfigured path. Multiple paths
towards the same destination may be merged to reduce state
overhead. With facility backup, traffic is tunneled around a link
to its next-hop or around a node to its next-next-hop depending
on whether link or node protection is desired.

For IP networks, not-via addresses [4] inject for every
unidirectional link in the network an additional entry in the
routing tables. These addresses are used to tunnel traffic
around a failed link or node along shortest paths leading to a
similar path layout as MPLS FRR facility backup with shortest
paths [5]. With loop-free alternates (LFAs), a PLR reroutes
traffic to a neighbor [6] which avoids loops. They do not
induce additional forwarding entries in routing tables but have
limited coverage. Remote LFAs (rLFAs) [7]-[9] complement
the coverage of LFAs by forwarding traffic to remote next-
hops using tunnels, but do not require additional entries,
either. We describe (r)LFAs in more detail in Section III.
Coverage of LFAs can be further increased by optimizing
link costs [10] and coverage of (r)LFAs was extended by
adding links to the network [11]. A self-configuring extension
of LFAs [12] uses probes to configure LFAs, and increases
flow coverage by installing alternative hops in other nodes
than the PLR that are activated in failure cases to avoid loops.
With segment routing (SR) [13], forwarding state in nodes
may be traded against forwarding state in packet headers.
In that context, topology-independent LFAs (TI-LFAs) [14]
provide explicit-path tunnels when rLFAs are not available.
They are conceptually similar to our proposed eLFAs but rely
on multiple labels added to the packet. SR may also be used
in IP networks to avoid microloops that may occur after a
failure during the rerouting process [15]. Such loops can be
avoided in SDN by appropriate link update orders. Failure
insensitive routing (FIR) [16] utilizes interface-specific tables
to encode failure information. Depending on the interface
the packet is forwarded to a pre-computed failure avoiding
backup path. Multiple routing configurations (MRCs) [17]
leverage multiple routing topologies such that at least one
is working in case of a failure. A packet affected by a
failure is pinned to a working topology. This approach at
least doubles the number of forwarding entries. Maximally

redundant trees (MRTs) [18] compute in a distributed manner
a set of red and blue forwarding entries such that at least
one of them works in case of a failure, i.e., full coverage is
provided. Affected traffic is pinned to the appropriate color and
forwarded accordingly. MRTs triple the number of forwarding
entries of conventional IP networks. MRTs may lead to long
backup paths [19]. Combining MRTs with LFAs may reduce
backup path length and link load in case of failures [20].
The IETF standardizes (r,TI-)LFAs and MRTs. Independent
Directed Acyclic Graphs (IDAGs) [21] compute disjoint paths
to guarantee protection against any single link or node failure
with only two forwarding entries in every node per destination.
While many efforts were made to protect against failures
of the SDN control plane [22], there are only a few advances
securing the SDN data plane. The controller may reconfigure
the network in case of a network failure. The authors of [23]
measured that their controller reacts within 80 — 100 ms in
their testbed. They also underlined that the restoration time
depends on the number of flows to be restored, path lengths,
traffic bursts in the control network, and is likely to take an
order of magnitude longer for larger networks. Similar result
are observed for centralized IP routing [24]. OpenFlow 1.1
provides a fast-failover action which was not available before.
The authors of [25] developed a similar local failover scheme
based on MPLS-TP. They added a bidirectional forwarding
detection (BFD) component to an OpenFlow switch to locally
detect failures and switch packets to other interfaces without
intervention of the controller. For the Open vSwitch, link
failures can be detected within 3 — 30 ms depending on BFD
configuration [26]. SlickFlow encodes primary and backup
paths in packet headers [27]. Its viability was shown through a
prototype in a virtual testbed. SPIDER proposes an alternative
to OpenFlow’s fast failover action based on additional state in
the OpenFlow pipeline [28]. SPIDER leverages packet labels
to carry reroute and connectivity information. The path layout
is inspired by MPLS crankback routing and can be optimized.
In [29] we leveraged the idea of normal LFAs together with
a simple LDT scheme which may erroneously drop packets
after first redirect for FRR in SDN. This mechanism cannot
protect against all single link failures. [30] encodes either a
failed link or node in a packet label, but protects only against
single failures. MRCs have been applied to SDN in [31].

III. STATE OF THE ART: LOOP-FREE ALTERNATES

We explain LFAs and rLFAs in more detail. We report their
naive application to SDN including a simple LDT mechanism.

A. Loop-Free Alternates

IP networks leverage shortest path routing based on a single
set of link weights to avoid loops. In that context, LFAs have
been proposed for FRR [6]. In Figure 1, the node P acts as
PLR, i.e., it detects that the normal next-hop NH towards
destination D is not reachable and locally redirects the traffic
via the precomputed neighbor PQ)g. This neighbor is called a
loop-free alternate (LFA) and must be chosen such that loops
are avoided when the redirected traffic is further forwarded

on shortest paths towards its destination. Thus, LFAs are
destination-specific.

Not all neighbors of a PLR may be used as LFAs because
some cause loops for specific destinations when used for
traffic redirection. LFAs reveal different protection and loop
avoidance capability. We reflect that by notation if needed, e.g.,
{LPNP}-{DS,nDS}-LFAs, and explain it in the following.
Some LFAs deviate traffic around an unreachable next-hop
and provide node protection (NP). Others deviate traffic only
around the link towards an unreachable next-hop such that
the deviated traffic is forwarded via the next-hop further
downstream. Such LFAs provide only link protection (LP).
Thus, we distinguish LP- and NP-LFAs. LFAs may cause
loops in case of a node failure (e.g., LP-LFAs) or in case
of multiple failures. LFAs closer to the destination than the
PLR are denoted downstream (DS) LFAs (DS-LFA), others
are called nDS-LFAs (non-DS). Loops can be avoided by
using only DS-LFAs. The authors of [5] illustrate LFAs for
any combination of {LP,NP}-{DS,nDS}-LFAs. Several papers
have shown that the coverage by LFAs may be rather low [10],
[11], [32] and that a significant amount of loops may occur in
case of node failures [29].

Single hop S
= — — . Shortest path |

2zzzz-=--: Shortest path |
tunnel \

L PQ,
P——NH-———- D

Backup route .
L

Default route

Fig. 1. A normal LFA (PQo) is a neighboring node of the PLR P while
a remote LFA (PQ1) is reachable only via a tunnel. Traffic sent to (r)LFAs
reaches the destination D without returning to the PLR.

B. Remote LFAs (rLFAs)

Remote LFAs (rLFAs) [7]-[9] complement the coverage of
LFAs. Figure 1 illustrates the concept. In case of a failure, the
PLR tunnels affected traffic to another non-neighboring node
PQ, along shortest paths. From PQ);, the traffic is carried
along shortest paths to its destination. P@Q; is denoted an
rLFA. rLFA computation methods are proposed in [7], [8], [9].
First, LP or NP must be chosen as requirement. In case of LP,
the so-called P-space comprises all nodes that are reachable
from the PLR via shortest paths without traversing the link to
the unreachable next-hop NH. In case of NP, NH must not be
traversed. The Q-space is the set of nodes that can reach the
desired destination D via shortest paths without traversing the
link between PLR and NH if LP is required; otherwise the
traffic must not traverse NH. The intersection of the P-space
and the Q-space yields potential PQ nodes. It is recommended
to choose the PQ node closest to the PLR and use a tie-breaker
if needed [7, Sect. 5.2.2]. As the set of PQ nodes is smaller
when NP is required instead of LP, it is more likely to find an
rLFA for LP than for NP. The Q-space may contain reachable
neighbors of the PLR; they may be used as normal LFAs
because the PLR does not need a tunnel to redirect traffic
to them. Thus, the presented method computes both LFAs and
rLFAs. The Q-space may be approximated to save computation
time [7] which may reduce its size in a few networks.

The extended P-space contains also those nodes that are
reachable from all reachable neighbors of the PLR. The
authors of [9] have shown that rLFAs based on the extended
P-space provide full protection against SLF if shortest path
routing in the network uses unit link costs. This result does
not hold for networks with non-unit link costs.

Also rLFAs can be categorized into DS and nDS, but DS-
rLFAs cannot prevent loops. A simple counterexample is a ring
with two failures with a packet addressed to the other side of
the ring. The neighbors of the failures may try to change the
direction of the packet through rLFAs, which leads to a loop.

C. Simple Application of LFAs to SDN with Loop Detection
and Termination (LDT)

In [29] we apply LFA principles to SDN. We assume that all
traffic in the network is addressed to edge nodes. This limits
the set of potential destination addresses so that one proactive
forwarding entry per edge node is sufficient. OpenFlow’s fast
failover function is used for traffic redirection to LFAs if
the next-hop is not reachable. The path layout for all flows
followed shortest paths based on a single set of link costs
and LFAs were chosen accordingly. This mechanism cannot
protect against all single link failures. Furthermore, a LDT
mechanism was defined and an implementation for OpenFlow
1.1 was suggested. Every node in the network is associated
with an ID. A loop detection (LD) label (e.g., MPLS label)
is added to a packet containing a bit string where each bit
represents one node ID. If a node redirects a packet using an
LFA which may cause a loop, it sets its own ID in the LD label.
If a node receives a packet with its own ID activated in the LD
label, it drops the packet as it obviously caused a loop. This
behavior can be implemented with only a single additional
flow entry per node. In large networks, the LD label size may
not suffice to represent the IDs of all nodes. Therefore, nodes
are partitioned into ID sets and every node in an ID set is
associated with the same ID. With this workaround, nodes drop
packets from preceding upstream PLRs if they belong to the
same ID set. This can be considered as a false positive which
may occur already after a first redirect. The authors showed
that these erroneous packet drops are rather rare if the LD label
is large enough and the IDs are assigned appropriately to the
nodes. Nevertheless, erroneous packet drops are an undesired
deficiency.

IV. LFA-BASED FAST REROUTE FOR SDN

We leverage LFA principles to protect general destination-
based forwarding in SDN, i.e., a restriction to shortest paths
based on a single set of link costs is not needed. We present
advanced LDT (ALDT) to stop potential loops caused by
(r)LFAs; in contrast to existing LDT, ALDT avoids erroneous
packet drops after first redirect. We propose rLFAs with
explicit-path tunnels (eLFAs) to complement existing (r)LFAs
in order to achieve 100% coverage against SLF and SNF. We
define various LFA-based protection methods for SDN that
differ in complexity and coverage. Finally, we explain how the
proposed mechanisms can be implemented with OpenFlow.

A. (r)LFA Protection for SDN with General Destination-Based
Forwarding

We first explain how LFAs may be leveraged for protection
of SDN and then we consider rLFAs for that purpose.

1) Application of LFAs to SDN: With destination-based
routing, the set of paths from all sources to a destination forms
a destination-based tree with explicit paths. Each such tree can
be represented as shortest paths tree with destination-specific
link costs. The cost of a link in the tree is set to 1 while
other link costs are set to the number of nodes. These link
costs are used for that destination’s LFA computation. This
yields a path layout that avoids loops because traffic follows
the shortest paths of its destination’s set of link costs before
and after redirection.

2) Application of rLFAs to SDN: Application of rLFAs
is similar, but the extended P-space for rLFA construction
must be defined in a different way. It contains all nodes N
that may be reached from the PLR or from its reachable
neighbors over the destination-specific tree towards N without
traversing the potentially failed link or node, respectively. This
ensures that if a PLR redirects traffic towards a node PQ
by means of encapsulation, the traffic eventually reaches that
node PQ by following the PQ-specific shortest paths. Node
PQ decapsulates the traffic so that the traffic is carried from
PQ to its destination D via D-specific shortest paths.

B. Advanced Loop Detection and Termination (ALDT)

The simple LDT may erroneously drop packets after first
redirect. We present advanced LDT (ALDT) which may erro-
neously drop packets only after second redirect so that it avoids
dropping traffic erroneously in any single failure scenario.
With ALDT, any redirecting node conceptually activates its
ID in the LD label unless the packet was redirected for the
first time. As OpenFlow does not provide a feature for this be-
haviour, we propose a supported workaround in Section IV-E4.

C. rLFAs Using Explicit-Path Tunnels (eLFAs)

Some destinations cannot be protected with (r)LFAs, e.g., in
the presence of non-unit link costs or when NP is required. If
(r)LFAs with desired properties towards a destination D cannot
be found, we propose to set up an explicit-path tunnel from
the PLR to a closest node eQ in D’s Q-space. In case of a
failure, the PLR can redirect the traffic destined towards D
via the explicit-path tunnel to eQ from where it reaches its
destination D. Such an explicit-path exists if PLR and D are
still connected in the network. We denote such LFAs as eLFAs.
Their path layout depends on protection requirements: while
an NP-eLFA tunnel does not traverse the PLR’s next-hop NH
for destination D, an LP-eLFA tunnel does not traverse just
the link PLR—NH between PLR and NH. Explicit-path tunnels
require additional flow entries in any node along the explicit
path. Therefore, eLFAs are more complex than rLFAs.

D. LFA-Based Protection Methods for SDN

We define protection methods specifying which types of
LFAs (LFA, rLFA, eLFA) may be considered for precomputa-

tion and configuration in potential PLRs. Moreover, they de-
termine an order of preference if multiple LFAs with different
properties are available. We first explain how LFAs and rLFAs
are computed for IP networks and denote these protection
methods as classic. Then, we propose protection methods with
loop avoidance (LA).

1) Classic Protection Methods: We differentiate two classic
(C) protection methods that leverage only normal LFAs or
both normal LFAs and rLFA. We call them LFA-C and rLFA-
C, respectively. For computation of rLFA-C, we leverage the
method reported in Section III-B and choose LP and the
extended P-space to maximize coverage. If this yields multiple
PQ nodes, we prefer a PQ node closest to the PLR and the
lowest node ID for tie breaking. This selection gives preference
to normal LFAs. LFA-C is computed accordingly but only
normal LFAs are used.

2) Protection Methods with Loop Avoidance (LA): In an
SDN context, LFA precomputation can be carried out by a
server with sufficient resources. This facilitates a classification
of available (e,r)LFAs into LP and NP, DS and nDS. We lever-
age this classification for a ranking-based selection of LFAs
that maximizes coverage while avoiding loops if possible. We
explain the ranking. Our first goal is to maximize protection,
our second criterion is operational simplicity, and our third
criterion is loop avoidance. Therefore, we prefer NP-(e,r)LFAs
to LP-(e,r)LFAs in the first place, LFAs to rLFAs and rLFAs
to eLFAs in the second place, and DS-LFAs to nDS-LFAs in
the third place. Table I compiles the resulting ranking of LFA
types by protection capability, operational simplicity, and loop
avoidance capability. As an NP-(r,e)LFA bypasses a potentially
failed next-hop, only LP-(r,e)LFAs can be used to protect a last
link of a flow’s path. Therefore, LP-(r,e)LFAs are also needed
in any network in spite of their lower protection capability.

TABLE I

RANKING OF LFA TYPES ACCORDING TO PROTECTION CAPABILITY,
OPERATIONAL SIMPLICITY, AND LOOP AVOIDANCE CAPABILITY.

Rank LFA type Rank LFA type Rank | LFA type
1 NP-DS-LFA 4 NP-eLFA 7 LP-rLFA
2 NP-nDS-LFA 5 LP-DS-LFA 8 LP-eLFA
3 NP-rLFA 6 LP-nDS-LFA

In the following we define four different protection methods
that leverage different types of LFAs. When multiple LFAs are
available, the ranking from Table I is applied to select a best
candidate, IDs are used for tie-breaking.

a) LFA-LA: Only normal LFAs may be used. This
method has been proposed in connection with simple LDT
and was studied for datacenter networks in [29].

b) rLFA-LA: Normal LFAs and rLFAs may be used.

c¢) eLFA-LP-LA: Normal LFAs, rLFAs and eLFAs with
tunnels for LP may be used.

d) eLFA-NP-LA: Normal LFAs, rLFAs and eLFAs with
tunnels for LP and NP may be used.

Our goal is full coverage against SLF and SNF and we
do not want to limit how often a packet can be redirected.
Under such conditions, loops occur if the destination of a flow
fails because then packets are redirected without a chance to

reach the destination. To avoid such loops, we combine these
methods with ALDT. Figure 2 summarizes properties of the
protection methods that derive from the properties of involved
LFA types.

Loop

avoidance O C O O
Full coverage

against SLF © © O O
Full coverage °
against SNF

Additional

entries © O
Known as | Classic LFAs | Classic rLFAs | LD-LFAs

Fig. 2. Properties of LFA-based protection methods.
Legend: o = only for unit link costs; e = independent of link costs.

E. Implementation of LFA-Based Protection Methods

We first describe how normal LFAs, rLFAs, and eLLFAs can
be supported with OpenFlow. Then, we suggest an implemen-
tation of ALDT for normal LFAs and LFAs using tunnels.

1) Implementation of LFAs: OpenFlow uses a forwarding
pipeline consisting of several tables. A flow table matches
incoming packets against flow entries. OpenFlow 1.1 [33]
introduces group tables with fast failover actions. For the
implementation of an LFA, an entry in the flow table needs to
point at an entry in the group table with the group type fast-
failover. This entry contains a list of so-called action buckets
with forwarding actions for the primary next-hop and one or
more secondary next-hops (LFAs). If the primary next-hop
works, it is selected for packet forwarding, otherwise the next
working secondary next-hop is selected.

2) Implementation of rLFAs: rLFAs leverage tunnels to
deliver traffic towards other nodes along shortest paths. As
tunnel endpoints are existing IP addresses, additional flow
entries along the tunnels are not needed. However, OpenFlow
does not provide actions for encapsulation with an additional
IP header. We point at two workarounds for this shortcoming.

A first option is to create for each required tunnel endpoint
an additional interface on the switch to perform the desired
encapsulation. The controller can leverage the OF-CONFIG
protocol [34] to set up these tunnel interfaces.

A second option is to extend the OpenFlow protocol and
the switches with appropriate actions for IP encapsulation and
decapsulation. This has been implemented in [35]. It allows
the controller to use OpenFlow instead of OF-CONFIG to
configure the IP tunnels.

3) Implementation of eLFAs: eLFAs leverage tunnels to
deliver traffic to other nodes along explicit paths. We suggest
to encapsulate corresponding traffic with a new IP address
that is specific to the explicit path of the eLFA. Moreover,
the controller installs additional forwarding entries for this IP
address on the nodes along the explicit path. Tunneling may
be performed like for rLFAs.

4) Implementation of ALDT: We explain why ALTD cannot
be implemented with OpenFlow in a straightforward way.
We present a conceptual workaround, describe how it can be

implemented for normal LFAs with OpenFlow and extend it
for LFAs using tunnels.

a) Limitation of OpenFlow for Implementation of ALDT
and Conceptual Workaround: The ALDT mechanism uses
an LD label containing IDs to indicate whether a node of a
specific ID set already redirected the packet. Any redirecting
node activates its ID in the LD label unless the packet was
redirected for the first time. However, this behaviour cannot
be implemented with current versions of OpenFlow because
conditional setting of header values are not supported at the
group table stage or later in the pipeline.

We propose a solution pursuing the following idea. A redi-
recting node sets the ID in the LD label if the corresponding
LFA may cause a loop. The next-hop immediately clears this
ID if the packet was redirected for the first time. Other nodes
drop the packet if they find their own ID in the LD label. Thus,
deactivating the ID immediately after first redirect guarantees
that a packet with at most one redirection is erroneously
dropped by a downstream node with the same ID.

b) ALDT Implementation for Normal LFAs: We define
the LD label containing a potential-loop bit (PLB), an auxiliary
PLB (APLB), and a field for ID encoding. When an IP packet
enters the SDN domain, the LD label is pushed with all bits
set to zero. If a node redirects a packet using an LFA that may
cause a loop, it activates the APLB and its own ID in the LD
label. If the next-hop detects the PLB and APLB set to ‘01°,
the packet was redirected for the first time. Then, all IDs are
cleared and the PLB is activated. To detect and stop potential
loops, nodes check whether the PLB and their own ID are set
in the LD label of a packet and drop it in that case.

We propose an MPLS label as LD label which provides 20
bits for PLB, APLB, and ID field. MPLS labels belong to the
optional features of OpenFlow 1.1 — other implementations
may be possible as well (see [29]). To support the proposed
behavior, the OpenFlow packet processing pipeline may be
configured with an MPLS table as a first stage. It is used to
match on a packet’s LD label in order to possibly modify
the LD label using a set-field action or to drop the packet
after loop detection. The next stage is a matching IP table to
support packet forwarding followed by a group table with the
fast-failover instructions. The latter modify the LD label using
a set-field action in case of a redirect.

¢) ALDT Implementation for LFAs Using Tunnels: To
support rLFAs and eLFAs, ALDT must cope with tunneling.
We propose two different solutions which depend on switch
capabilities. The first solution requires tunnel interfaces that
insert the encapsulating IP header between the existing IP
header and the MPLS label. In that case, no changes to the
previous description are needed. This is the preferred solution
and the base for the coverage analysis in the remainder of the
paper. The second solution may be used if the above switch
behaviour is not available. We propose that the PLR encapsu-
lates the IP/MPLS packet with an additional IP/MPLS header.
An unused bit of the DSCP/ECN field in the encapsulating IP
header should be activated to mark that the packet belongs to
a tunneling LFA (rLFA, eLFA). We call it tunneling-LFA bit

(TLB). Furthermore, the PLB and the ID for the PLR should
be activated in the LD label of the outer MPLS header upon
encapsulation. This helps the PLR to detect if it receives the
packet again and drop it. As this variant ignores all previous
redirects in the LD label of the outer MPLS header, further
redirects of the packet must be avoided, leading to slightly
lower coverage for multiple failures than the first variant. To
enforce this behavior, nodes require an additional rule to drop
traffic with both an activated TLB and activated APLB.

V. EVALUATION METHODOLOGY

We explain the methodology to evaluate LFA-based protec-
tion methods. We describe the general approach, the metrics
of interest, the studied topologies, and the generation method
for non-unit link costs.

A. General Approach

Although the proposed protection methods can protect gen-
eral destination-specific forwarding by design, we focus in our
evaluation only on shortest path routing based on a single
set of link costs to reduce the parameter space. Thus, for a
given network topology including link costs, we precompute
LFAs for a specific protection method using the shortest path
principle. In case of equal-cost paths, we use the node ID as a
tie breaker to determine consistent single paths. We consider
SLF, SNF, DLF and SLF+SNF as potential failure scenarios
S. We consider all source-destination pairs F and call them
flows. For each failure s € S, we calculate the path layout for
each flow f € F and analyze it.

B. Performance Metrics

Based on the path layout and installed eLFAs, we determine
coverage, path lengths, and additional entries.

1) Average Coverage: We consider only flows whose path
is affected by a failure. A flow is working (+) if it has working
source and destination nodes and a working path between them
can be found in the network. The traffic of a working flow may
arrive (+a), loop (+1), or be dropped (+d), depending on how
well the applied protection method works. A flow is failed
(-) if source or destination is down or if there is no working
path between them due to a failure. Then, traffic may loop (-1)
or be dropped (-d). We consider the flow states (+a) and (-d)
as protected. We consider the flow state (+d) as unprotected,
and the flow states (+1) and (-1) as looped. To characterize the
coverage, we classify all affected flows for all scenarios s € S
as protected, unprotected, or looped. For a given protection
method and set of failure scenarios S, we calculate coverage
values averaged over all affected flows in a network and all
failures s € S.

2) Maximum Path Lengths: Based on the path layout for
a protection method we derive the length of all affected but
working flows for which traffic can be successfully forwarded.
We consider only the longest path length of a flow in any
s € §. We compute the average and maximum path length of
all considered flows.

3) Additional Entries: Let n be the number of nodes in the
network. To support destination-based forwarding, any node
requires n — 1 forwarding entries. eLFAs leverage explicit-
path tunnels which impose additional forwarding entries in
the nodes along their paths. The number of additional entries
is node-specific. Therefore, we compute both the average and
the maximum percentage of additional entries over all nodes.

C. Network Topologies under Study

We chose for the evaluation 205 wide area, research, and
commercial networks from the Topology Zoo [36] as well
as three datacenter topologies (fat-tree, DCell, BCube) that
have been studied in [29]. To deliver a compact view on the
performance results from all network topologies, we report
average values for coverage and complementary cumulative
distribution functions (CCDFs) for path lengths and additional
entries.

D. Non-Unit Link Costs

Link costs have a significant impact on coverage of LFA-
based protection methods [9]. Therefore, we perform experi-
ments with unit link costs and non-unit link costs. However,
the Topology Zoo lacks both link costs and real traffic data
[36]. For that reason we construct non-unit link costs according
to the recommendation in [37]. We derive the link-specific
load imposed by a homogeneous traffic matrix for shortest-
path routing and unit link costs. The link cost is the inverse
of the resulting link load multiplied by the largest link load
so that the smallest link cost is 1. This algorithm results into
link costs with average mean of 6.4 and average coefficient
of variation of 1.0 over all 208 topologies. Hence, the method
produces significantly different non-unit link costs.

VI. PERFORMANCE EVALUATION

We compare the LFA-based protection methods for SDN of
Section IV-D with regard to coverage, path length, and addi-
tional entries using the methodology presented in Section V.

A. Coverage

We first consider unit link costs. Figure 3(a) illustrates
average coverages from 208 topologies for different protection
methods and various sets of failure scenarios. Subfigure (i)
shows that the existing methods LFA-C and LFA-LA cannot
protect 32% of the flows. In contrast, fLFA-C and the novel
methods rLFA-LA and eLFA-{LPNP}-LA achieve full cov-
erage. This result for rLFA-C and unit link costs has been
proven in [9].

Subfigure (ii) reports for the classic methods LFA-C and
rLFA-C lots of loops (17% and 34%) in case of SNF, which is
rather unsatisfactory in an SDN context. As rLFA-C provides
full coverage against SLF and does not limit the number of
redirects per packet, it causes loops when a flows’s destination
fails. This finding is also relevant for IP networks. For LFA-LA
we observe more protected traffic for SNF than for SLF which
seems counterintuitive. However, SNF affect more flows than
SLF so that the comparative base is different. Moreover, LFA-
LA terminates flows with failed destinations instead of creating

(i) SLF (ii) SNF

90
80
70 70

60 60

Flow coverage (%)
® © B
g 8 8

Flow coverage (%)
2
8

50 50

LFA-C
LFA-LA
rLFA-C

rLFA-LA
eLFA-LP-
LA
eLFA-NP-
LA

LFA-C
LFA-LA
rLFA-C

rLFA-LA

eLFA-LP-
LA
eLFA-NP-
LA

existin
9 (iiiy DLF

>
]
<
R

(iv) SLF+SNF

90 90

80 80
70 70
60 60

50 50

Flow coverage (%)
8
Flow coverage (%)
2
8

LFA-C
LFA-LA
rLFA-C

rLFA-LA
eLFA-LP-
LA
eLFA-NP-
LA

LFA-C
LFA-LA
rLFA-C

rLFA-LA

eLFA-LP-
LA
eLFA-NP-
LA

[Protected | Unprotected ll Looped
(a) Unit link costs.

(i) SLF (ii) SNF

100
90
80

70 70

60 60

50 50

Flow coverage (%)
® © B
g8 8 8
Flow coverage (%)

rLFA-LA
eLFA-LP-

=

LA
LFA-LA
rLFA-C

rLFA-LA
eLFA-LP-

LFA-C
LFA-LA
rLFA-C

eLFA-NP-
LA
LFA-C
LA
eLFA-NP-
LA

existing

<]
<
LA

n
(iii) DLF (iv) SLF+SNF

90 90

80 80
70 70
60 60

50 50

Flow coverage (%)
E;
I
g
Flow coverage (%)
E;
|
.

LFA-C
LFA-LA
rLFA-C

rLFA-LA
eLFA-LP-
LA
eLFA-NP-
LA

LFA-C
LFA-LA
rLFA-C

rLFA-LA

eLFA-LP-
LA
eLFA-NP-
LA

M Protected Unprotectedll Looped

(b) Non-unit link costs.

Fig. 3. Coverage averaged over 208 topologies depending on protection
method and set of failure scenarios.

loops. These flows count as protected rather than looped,
which also increases the coverage of LFA-LA compared to
LFA-C. Apart from that, these two methods have the same
amount of unprotected traffic. Both rfLFA-LA and eLFA-LP-
LA avoid loops and yield only a minor fraction of less than 1%
unprotected flows. The novel eLFA-NP-LA is the only method
protecting all traffic by design. Without ALDT, (r)LFA-LA and
eLFA-{NP,LP}-LA would suffer from a very similar amount
of loops as rLFA-C.

Subfigures (iii) and (iv) show that no protection method
achieves full coverage for DLF and SLF+SNF, but rLFA-LA
and eLFA-{LPNP}-LA come close with 2-3% unprotected
traffic although they are not designed for that purpose.

Figure 3(b) provides corresponding results for non-unit link
costs. Subfigure (i) shows that LFA-C, rLFA-C, LFA-LA,
and rLFA-LA protect less traffic than for unit link costs,
in particular rLFA-{C,LA} lose full coverage against SLF,
which is significant and has not been quantified before. In
contrast, eLFA-{LPNP}-LA still achieve full coverage by
design. Subfigure (ii) reveals that for SNF the fraction of
unprotected traffic with rLFA-LA and eLFA-LP-LA is still
small but visibly larger than for unit link costs. eLFA-NP-LA
achieves again full coverage against SNF by design. Subfigure
(>iii) and (iv) reveal that with non-unit link costs more traffic
remains unprotected in the presence of multiple failures than
with unit link costs.

1.0
— Rerouting
08 - - eLFA-LP-LA
eLFA-NP-LA
=06 - MPLS-FB-LP
3 L -~ MPLS-FB-NP
004

20
Path length | (hops)

Fig. 4. CCDF of average and maximum path lengths for different protection
methods, unit link costs, and SLF.

B. Path Lengths

Figure 4 illustrates the CCDF of the average and maximum
path lengths of affected flows observed over 208 topologies in
case of SLF. For a meaningful comparison, we consider only
protection methods with full coverage against SLF. Rerouting
provides a lower bound for path length as it reestablishes
shortest paths after a failure. MPLS facility backup with LP
and NP (MPLS-FB-{LP,NP}), respectively, are widely used
FRR methods and also serve for comparison [3]. MPLS-FB-
NP yields slightly longer maximum path lengths than MPLS-
FB-LP in most networks while it is vice-versa for the average
path length. Differences between the two methods are small for
both metrics. eLFA-{LP,NP}-LA lead to very similar average
values that are slightly lower than those of MPLS-FB-NP.
Maximum path lengths for eLFA-LP-LA are smaller than or
equal to those of eLFA-NP-LA and both are very similar to
those of MPLS-FB-{LP,NP}. The presented results are derived
for unit link cost networks. Under such conditions, rLFA-
LA yields exactly the same paths as eLFA-LP-LA so that
corresponding curves are omitted. Path lengths for non-unit
link costs are slightly longer than those of unit link costs.
As the results do not provide any further insights, we omit
corresponding figures.

C. Additional Entries

With destination-based routing, any node in the network
requires one entry for each other node in the forwarding table.

The protection methods eLFA-{LPNP}-LA require additional
entries. Figures 5(a) and 5(b) present CCDFs of the average
and maximum percentage of additional entries per node,
evaluated over all investigated networks. The results are very
topology-dependent.

1.0;
\ -o- eLFA-NP-LA

084 — MPLS-FB-LP
- MPLS-FB-NP

--avg
— max
~
S S .
] 100 200 300
Additional entries x (%)
(a) Unit link costs.
1.0F
o~ eLFA-NP-LA
081, eLFA-LP-LA
‘ ~ MPLS-FB-LP
<061 4 - MPLS-FB-NP
A
X b
0044 o avg
“‘\ — max
aﬁ\
0.2 \‘b \x
\%@
0.0 J{;-td-o%-k """)
0 100 200 300 400 500

Additional entries x (%)
(b) Non-unit link costs.
Fig. 5. CCDFs for additionally needed forwarding entries.

Figure 5(a) shows additional entries for unit link costs. We
omitted curves for eLFA-LP-LA because it does not induce
any additional entries for unit link costs. The comparable
MPLS-FB-LP requires in 22% of the networks 50%—-200%
additional entries per node on average, 50% of the networks
have at least one node with more than 100% additional entries,
and 9% a node with even more than 200% state overhead.

eLFA-NP-LA leverages NP-eLFAs to provide full coverage
against SLF and SNF. Nevertheless, more than 56% of the
topologies do not need explicit-path tunnels, 97% require less
than 50% additional entries on average, and the average state
overhead does not exceed 66%. Also maximum numbers of
entries are very low: 80% of the networks require at most 50%
more entries per node and only 7% of the networks exhibit
at least one node with more than 100% additional entries.
The comparable MPLS-FB-NP method imposes in 40% of the
networks more than 100% state on average per node, in 12%
even more than 200%. More than 75% of the networks have at
least one node with 100% and more overhead, and 57% have

a node with a state overhead between 200% and 500%.

Figure 5(b) reports additional entries for non-unit link costs.
With non-unit link costs, eLFA-LP-LA install indeed a few
explicit-path tunnels but the average number of additional
entries remains below 50% for almost all networks. Only 25%
of the networks exhibit a node with more than 100% additional
entries. This is very little compared to MPLS-FB-LP which
causes slightly more additional entries for non-unit link costs
than for unit link costs. eLFA-NP-LA requires roughly three
times more additional entries than with unit link costs. But
still, 94% of the networks require less than 100% additional
entries on average and only 24% of the networks exhibit a
single node with more than 200% additional entries. MPLS-
FB-NP needs only slightly more additional entries compared
to unit link costs. This is again a multiple of the required
additional entries needed by eLFA-NP-LA.

VII. DISCUSSION

In Section IV we proposed novel LFA-based protection
methods and investigated them with some existing FRR meth-
ods in Section VI. In the following, we discuss main results
in a wider context and point out topics for further research.

A. Summary

We evaluated the different LFA-based protection methods
on a large set of 208 representative topologies using unit and
non-unit link costs with regard to coverage, path lengths, and
additional entries. The classic use of LFAs and rLFAs (LFA-
C, rLFA-C) cannot protect all traffic in case of non-unit link
costs and generally suffers from a large fraction of loops or
unprotected traffic in case of SNF. Therefore, they cannot
sufficiently protect SDN. However, a combination of LFAs,
rLFA, and eLFAs (eLFA-NP-LA) seems appropriate for that
purpose. It provides full coverage against all SLF and SNF for
unit and non-unit link costs and protects a very large fraction
of affected traffic in case of multiple failures. Potential loops
are reliably detected and terminated. eLFA-NP-LA requires
less than 50% additional entries in most networks. MPLS-FRR
facility backup imposes significantly more additional entries
(70%—-200%) in most networks. IDAGs cause 100% additional
rules. MRTSs require 200% more state and not-via addresses
require d - 100% more state where d is the average node
degree. eLFA-NP-LA does not extend path lengths compared
to MPLS-FRR facility backup which has the same path layout
as not-via addresses while MRTs lead to even longer paths
[19]. Finally, MPLS-FRR facility backup, not-via addresses,
and MRTs cannot protect traffic on backup paths as long as it
is tunneled or marked. This is different for LFA-based methods
by design. Thus, eLFA-NP-LA can efficiently protect SDN
with regard to additional entries, backup path lengths, and
coverage even against multiple failures.

B. Future Work

We proposed several attractive LFA-based FRR protection
methods for SDN. A next step is the deployment of the
proposed mechanisms on a real SDN testbed, preferably in
OpenFlow due to its wide adoption, possibly also in P4.

The optimization potential for rLFAs and eLFAs may be
studied. rLFAs and eLFAs may be chosen to minimize path
length rather than distance to the PLR. If several PLRs use
explicit-path tunnels towards the same eLFA, the tunnels may
be merged to save additional entries. The potential for such
savings can be increased by choosing eLFAs that can be
shared by many PLRs and for different destinations. The traffic
engineering potential to avoid overload on backup paths may
be investigated.

ALDT supports multiple packet redirects, which may be
beneficial in the presence of multiple failures. However, pack-
ets may be dropped only when traversing a node for the third
time. This may consume too much bandwidth in case of a
failure. ALDT can also be adapted to drop packets after second
redirect. Both approaches may be studied taking traffic rates
and link bandwidths into account.

VIII. CONCLUSION

In this work, we proposed how local fast failover functions
may be used in software-defined networks (SDN) to restore
connectivity without intervention of the controller in case of
all single link and node failures if topologically feasible. This
is challenging as SDN switches can accommodate only a
moderate number of forwarding entries in their flow tables.

We showed how the concept of (remote) loop-free alternates
((r)LFAs) from IP networks can be applied for fast reroute
(FRR) in SDN that use general destination-based forwarding.
We suggested explicit-path LFAs (eLFAs) to increase flow
coverage against failures. We proposed rank-based selection
of (e,ry)LFAs to maximize coverage and minimize operational
complexity. To avoid FRR-caused loops, we developed an
advanced loop detection and termination (ALDT) function. We
explained how these features may be implemented in Open-
Flow and used them to define new protection methods. They
differ in coverage and operational complexity and leverage
ALDT for loop avoidance (LA).

We evaluated these novel and some existing FRR methods
on a set of 208 representative topologies with unit and non-
unit link costs. Classic rLFAs protect against all single link
failures, but require unit link costs for that purpose and are
likely to create loops in case of node failures. In contrast, the
novel “eLFA-NP-LA” method provides full coverage against
single link and node failures, leads to comparable or shorter
path lengths than other existing FRR approaches (MPLS-FRR
facility backup, not-via addresses, LFAs, rLFAs, MRTs), and is
superior in terms of additional forwarding entries and coverage
in case of multiple failures.

REFERENCES

[1] S. Rai et al., “IP Resilience within an Autonomous System: Current
Approaches, Challenges, and Future Directions,” IEEE Communications
Magazine, vol. 43, no. 10, Oct. 2005.

[2] A. Raj and O. Ibe, “A Survey of IP and Multiprotocol Label Switching
Fast Reroute Schemes,” Computer Networks, vol. 51, no. 8, 2007.

[3] P. Pan, G. Swallow, and A. Atlas, “RFC4090: Fast Reroute Extensions
to RSVP-TE for LSP Tunnels,” May 2005.

[4] S. Bryant, S. Previdi, and M. Shand, “RFC6981: A Framework for IP

and MPLS Fast Reroute Using Not-Via Addresses,” Jul. 2013.
[5] R. Martin, M. Menth, M. Hartmann, T. Cicic, and A. Kvalbein, “Loop-

Free Alternates and Not-Via Addresses: A Proper Combination for IP
Fast Reroute?” Computer Networks, vol. 54, no. 8, Jun. 2010.

[6]
[7]
[8]
[9]

[10]

(11]
[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]
[27]
[28]

[29]

[30]
[31]
[32]
[33]
[34]
[35]
[36]

(371

A. Atlas and A. Zinin, “RFC5286: Basic Specification for IP Fast
Reroute: Loop-Free Alternates ,” Sep. 2008.

S. Bryant, C. Filsfils, S. Previdi, M. Shand, and N. So, “RFC7490:
Remote Loop-Free Alternate (LFA) Fast Reroute (FRR),” Apr. 2015.
P. Sarkar (Ed.) et al., “RFC8102: Remote-LFA Node Protection and
Manageability,” https://tools.ietf.org/html/rfc8102, Mar. 2017.

L. Csikor and G. Retvari, “On Providing Fast Protection with Remote
Loop-Free Alternates: Analyzing and Optimizing Unit Cost Networks,”
Telecommunication Systems, 2015.

L. Csikor, J. Tapolcai, and G. Retvari, “Optimizing IGP link costs
for improving IP-level resilience with Loop-Free Alternates,” Computer
Communications, vol. 36, no. 6, pp. 645 — 655, Mar. 2013.

G. Retvari, J. Tapolcai, G. Enyedi, and A. Csaszar, “IP Fast ReRoute:
Loop Free Alternates Revisited,” in IEEE Infocom, Apr. 2011.

W. Tavernier et al., “Self-configuring Loop-free Alternates with High
Link Failure Coverage,” Telecommunications Systems, vol. 56, no. 1,
pp. 85-101, May 2014.

A. Farrel and R. Bonica, “Segment Routing: Cutting Through the Hype
and Finding the IETF’s Innovative Nugget of Gold,” IETF Journal,
vol. 13, no. 1, Jul. 2017.

A. Bashandy et al, “Topology Independent Fast Reroute us-
ing Segment Routing,” https://tools.ietf.org/html/draft-bashandy-rtgwg-
segment-routing-ti-Ifa, Jul. 2017.

A. Bashandy er al, “Loop Avoidance Using Segment Routing,”
https://tools.ietf.org/html/draft-bashandy-rtgwg-segment-routing-uloop,
Jul. 2017.

S. Nelakuditi et al., “Fast Local Rerouting for Handling Transient Link
Failures,” IEEE/ACM Trans. on Networking, vol. 15, no. 2, Apr. 2007.
A. Kvalbein et al., “Fast IP Network Recovery Using Multiple Routing
Configurations,” in IEEE Infocom, Apr. 2006.

A. Atlas et al., “RFC7812: An Architecture for IP/LDP Fast Reroute
Using Maximally Redundant Trees (MRT-FRR),” Jun. 2016.

M. Menth et al., “Performance Comparison of Not-Via Addresses and
Maximally Redundant Trees (MRTs),” in IEEE/IFIP IM, Apr. 2013.
K. Kuang, S. Wang, and X. Wang, “Discussion on the Combination of
Loop-Free Alternates and Maximally Redundant Trees for IP Networks
Fast Reroute,” in IEEE ICC, June 2014.

S. Cho, T. Elhourani, and S. Ramasubramanian, “Independent Directed
Acyclic Graphs for Resilient Multipath Routing,” IEEE/ACM Transac-
tions on Networking, vol. 20, no. 1, pp. 153 —-162, Feb. 2012.

Y. E. Oktian et al., “Distributed SDN Controller System: A Survey on
Design Choice,” Computer Networks, vol. 121, pp. 100-111, 2017.

S. Sharma et al., “OpenFlow: Meeting Carrier-Grade Recovery Require-
ments,” Computer Communications, vol. 36, no. 6, 2013.

K.-W. Kwong, L. Gao, R. A. Guerin, and Z.-L. Zhang, “On the
Feasibility and Efficiency of Protection Routing in IP Networks,” IEEE/
ACM Transactions on Networking, vol. 19, no. 5, Oct. 2011.

J. Kempf et al., “Scalable Fault Management for OpenFlow,” in /EEE
International Conference on Communications (ICC), 2012.

N. L. van Adrichem et al., “Fast Recovery in Software-Defined Net-
works,” in EWSDN, Sep. 2014.

R. M. Ramos et al., “SlickFlow: Resilient Source Routing in Data Center
Networks Unlocked by OpenFlow,” in LCN, Oct. 2013.

C. Cascone et al., “SPIDER: Fault Resilient SDN Pipeline with Recov-
ery Delay Guarantees,” in IEEE NetSoft, June 2016.

'W. Braun and M. Menth, “Loop-Free Alternates with Loop Detection for
Fast Reroute in Software-Defined Carrier and Data Center Networks,”
Journal of Network and Systems Management, vol. 24, no. 3, 2016.

N. L. M. van Adrichem et al., “Backup Rules in Software-Defined
Networks,” in IEEE NFV-SDN, Nov 2016.

S. Cevher et al., “Multi Topology Routing Based IP Fast Re-Route for
Software Defined Networks,” in IEEE ISCC, 2016.

P. Francois ef al., “An Evaluation of IP-Based Fast Reroute Techniques,”
in ACM CoNEXT, 2005.

OpenFlow Switch Consortium et al., “OpenFlow Switch Specification
Version 1.1.0,” Decemeber 2011.

OpenFlow Switch Consortium et al., “OpenFlow Management and
Configuration Protocol 1.2 (OF-Config 1.2),” April 2015.

S. Li et al., “Flexible Traffic Engineering: When OpenFlow Meets Multi-
Protocol IP-Forwarding,” IEEE Comm. Letters, vol. 18, no. 10, 2014.
S. Knight et al., “The Internet Topology Zoo,” IEEE Journal on Selected
Areas in Communications, vol. 29, no. 9, Oct. 2011.

S. Halabi, “OSPF Design Guide,” Cisco Systems, Tech. Rep., Apr. 1996.

