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Abstract—Hands-on computer networking labs are essential
in many computer science curricula. They are conducted either
on physical testbeds consisting of PCs, routers, switches, cables,
etc., or on fully virtualized testbeds. The latter consist of only
virtual machines (VM) that can be interconnected via software
configuration. Fully virtualized testbeds require less resources
(hardware, space, energy) than physical testbeds but students
miss important hands-on experience with networking equipment.
In this work, we present a semi-virtualized testbed: students
are given physical access to networking interfaces of VMs
via patch panels so that they can interconnect them through
cables. Similarly to virtualized testbeds, the semi-virtualized
testbed requires only little hardware and maintenance effort
while preserving the hands-on experience of physical testbeds.
We present a Python-based orchestration platform for several
virtual student workspaces on a single physical server. Each
virtual student workspace contains several VMs acting as clients,
servers, and routers that can be configured by students. It is made
available to a physical workspace on a 19-inch cabinet consisting
of a thin client and patch panels allowing students to physically
interconnect their VMs with cables.

I. INTRODUCTION

Practical courses are an important part of networking educa-
tion. Students learn to configure devices and interconnect them
with cables and switches. Such courses are traditionally based
on physical testbeds consisting of PCs, routers, and switches.
While offering real hands-on experience, this approach has
the drawback that it requires lots of space, energy, and
maintenance effort. With progress in virtualization technology,
fully virtual testbeds emerged and were used in some net-
working courses. In these testbeds, PCs, routers, and switches
run as virtual machines (VM) on a server, thereby avoiding
some shortcomings of physical testbeds. However, fully virtual
testbeds do not provide hands-on experience which is an
important learning target and fun factor of practical networking
courses. We believe that hands-on experience is an important
part of networking labs. We obsevrve students having prob-
lems realizing limitations and problems with physical cabling
regarding available ports, cables etc. as well as problems
organizing their cabeling work. Therefore it is important to
give them the opportunity to use real cables as part of the
learning experience. In this paper we focus on lab systems
that allow hands-on experience. We distinguish between three
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different types of architectures depicted in Figure 1. Tradi-
tionally, a student workspace consists of a physical testbed
that allows to interconnect several computers and routers. An
entire lab system is composed of several such testbeds and
an additional server to provide infrastructure services (IS).
As an alternative to a physical testbed, a semi-virtualized
testbed with a dedicated server per student workspace may
be used. Computers and routers run as VMs on the dedicated
server and a patch panel allows to interconnect their interfaces
with cables. The testbed consists of a physical and a virtual
workspace (PW, VW) and the VW runs on the virtualization
server. Due to the PW, the testbed is only semi-virtualized.
This preserves all benefits of physical testbeds. In this work,
we present a semi-virtualized testbed cluster with a central
server for multiple student workspaces. The central server
hosts the IS and the VWs for multiple testbeds that are mapped
to different PWs.

Phsyical

[ s | ee || we
testbeds

]
EEn
o

pWw W
CeeJ[ec][®]

PW}—

VWs: Semi-virtualized

VW:
L ]fec]lx]

Semi-virtualized testbeds
with dedicated servers

* *  [[dle][x]f testbed cluster
oo with centralized server
PW [ e[l [n]

El Server l:l Special purpose machine
Fig. 1: Three types of lab systems for networking education
with hands-on experience.

At the University of Tuebingen we offer practical network-
ing courses since 2004. Initially, our curriculum was based on
the concept of Liebeherr and Zarki [1] using physical testbeds.
In 2012, we reworked the lab content and substituted the
physical testbed by semi-virtualized testbeds with dedicated
servers [2], [3]. Recently, we further elaborated that approach
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towards a testbed cluster with a centralized server.

Virtual testbeds can be easily managed with the help of an
orchestration framework. Such frameworks are widely used
and a common technology today. In contrast, orchestrators
for semi-virtualized testbeds which fit the requirements for
practical networking courses are hardly found. A reason for
that is that orchestrators for semi-virtualized testbeds are not
trivial to implement as they depend on the actual hardware
platform and components used in the testbed. Moreover, they
need to map virtual components to physical hardware.

In this work we present an architecture for a semi-
virtualized testbed cluster with a central server offering mul-
tiple student workspaces. It facilitates automatic orchestra-
tion and simplified management and introduces multiple new
features that are enabled through the new architecture. The
single server is based on the x86 platform and makes use of
current virtualization techniques such as VT-x [4], VT-d [5],
VT-c [6], and SR-IOV [7]. They enable VM performance
close to physical machines, in particular regarding network
throughput. For orchestration purposes, we developed the
“Lab Orchestrator for Semi-virtualized Testbeds” (LOST). It
is a Python-based platform for orchestration of VMs in a
semi-virtualized environment. It makes use of the kvm [8]
hypervisor to run VMs and leverages features of libvirt [9] to
manage them.

LOST groups several student VMs into virtual workspaces
and maps them to physical workspaces. The physical
workspaces enable the students to interact with the VMs in a
similar way as with physical machines and configure network
topologies with the help of cables and switches. In addition,
LOST supports usage of USB devices plugged into physical
workspaces by associating them with student VMs.

LOST supports different types of VMs with different roles
(clients, servers, and routers). It instantiates them from tem-
plates that are derived from a base image. To improve the
manageability and to speed up orchestration of VMs, we devel-
oped a layered concept for file system access of VM images:
a jointly used base image and additional layers for typing and
individualization reduce memory copies upon instantiation of
VMs.

The rest of the paper is structured as follows. Section II
gives an overview of different lab environments. In Section III,
we explain the general concept of the semi-virtualized testbed
cluster architecture. LOST and its features are introduced in
Section IV. The hardware and software platform of the testbed
are presented in Section V. Section VI concludes this work.

II. RELATED WORK

Hands-on networking courses are quite common in com-
puter science and IT education. Therefore, various concepts
for networking lab infrastructure have been published. This
section reviews different approaches.

In [1] Liebeherr and Zarki provide a manual for a hands-on
Internet lab. The book contains a course syllabus and instruc-
tions for setting up the lab hardware. The student workspaces
consist of 4 physical Linux PCs and 4 Cisco routers each. The

authors of [10] describe a networking lab testbed based on
3 PCs, one laptop computer, and two multi-protocol routers.
Additionally, central networking equipment is proposed for
management purposes and inter-testbed connectivity.

Emulab [11] is a testbed platform for networking research.
It allows to connect physical nodes or VMs over virtual net-
works. Topologies and link characteristics are modeled using
VLANs and transparent traffic shaping nodes. In addition,
simulated nodes can be integrated into experiments. A similar
implementation for teaching purposes is described in [12]. The
physical nodes can be connected by configuring VLANS in a
web interface instead of plugging cables.

Other hands-on labs are entirely built on VMs. The authors
of [13] propose a setup with 120 PCs and routers running
as Xen VMs on a single host, connected by virtual switches.
dVirt [14] is a virtual BGP testbed using Xen VMs as routers.
V-Lab [15] is a remote access lab with VMs on a XenServer
cluster. VMs are configured and connected using VLANS via
a web-based management panel.

Mininet [16] is a virtual network experiment testbed based
on lightweight containers instead of VMs. Its main focus is
SDN. Mininet emulates multiple nodes and links in multiple
containers on a single machine. Their virtual interfaces are
directly connected to a software switch.

The authors of [17] describe a reconfigurable network lab
based on VMware. Ethernet interfaces of the physical machine
can be assigned to VMs to provide physical access to network
interfaces of VMs. This approach requires at least as many
physical network interface cards (NICs) as virtual NICs. As
the number of pluggable NICs per machine is limited, we use
a different approach which can support more virtual interfaces
than the number of Ethernet ports on a host.

In previous work [2], [3], we described the predecessor of
the lab platform presented here. In contrast to this architecture,
it required one server per workspace. Each server hosted eight
VMs acting as clients, servers, and routers. All VMs are
individual Linux installations managed with puppet [18]. Dy-
namic orchestration is not possible. The students have access
to the VMs directly through the server which is equipped
with an additional graphics card, i.e. the server is used as
a workstation.

III. CONCEPT

In this section, we present the overall architecture for the
semi-virtualized student testbed cluster. A single lab server
hosts multiple virtual workspaces that are mapped to physical
workspaces for physical user access. Additional infrastructure
VMs are used to provide services for the virtual workspaces
and the students. We suggest an optimized, layered storage
organization for VMs to reduce management overhead and
to improve software consistency. The technical realization of
the mapping is described in Section V as it depends on the
hardware platform of the lab server. Finally, we compare the
new concept for semi-virtualized student testbed cluster with
other approaches regarding acquisition cost, energy consump-
tion, and maintenance effort.
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Fig. 2: Architecture of the semi-virtualized lab infrastructure
on a single server.

A. Architecture of the Semi-Virtualized Testbed

Figure 2 shows the overall architecture of the semi-
virtualized testbed. A single lab server hosts virtual
workspaces (VWs) with student VMs (SVMs) as well as in-
frastructure VMs (IVMs). A physical workspace (PW) consists
of a set of devices giving access to the SVMs of a virtual
workspace. The “Lab Orchestrator for Semi-virtualized lab
Testbeds” (LOST), presented in detail in Section IV, is a
collection of scripts that run on the host and on IVMs. It
sets up the virtual workspaces and maps them through a core
switch to the physical workspaces so that students can interact
with SVMs and interconnect them with cables and unmanaged
switches.

A virtual workspace is a set of SVMs that represent a
students’ workspace on the server. Figure 2 illustrates a typical
setup which consists of three client (C) SVMs, three server (S)
SVMs, and two router (R) SVMs. All virtual workspaces use
the same setup which is defined by a template for LOST.
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Fig. 3: The physical workspace provides access to the desktop
and outlets of the virtual workspace.

A physical workspace is the actual workspace that allows
students to interact with the VMs. Figure 3 depicts a physical
workspace. It consists of a 19 inch cabinet, a thin client for the
student user interface, and I/O devices. The cabinet contains
the following components. The PW switch is a managed
switch at the bottom of the cabinet. It connects the cabinet via
the core switch to the lab server hosting the VMs like shown
in Figure 5. The PW switch demultiplexes the interfaces of
the VMs in the corresponding virtual workspace to individual
switch ports. The ports for the network interfaces of clients
and server VMs are connected to a patch panel at the top-
most position in the cabinet. The ports for interfaces of the
routers are connected to custom-designed front-panels that

look like traditional routers (see Figure 3). To enable the
students to set up more complex network topologies, two
additional unmanaged switches are placed on a compartment
sheet in the middle position of the cabinet. For experiments
involving wireless technology based on IEEE 802.11, a Wi-Fi
access point is placed on the top of the cabinet and USB Wi-
Fi dongles for selected VMs are provided. These dongles can
be plugged into a USB hub that is mounted on the left side
of the cabinet and connected to the server.

B. Interconnection Network and VW-PW Mapping

Figure 4 gives an overview of the internal structure of the
single server lab infrastructure and the connection between
the different components. In the figure, the server hosts three
VWs and each VW holds three VMs. Each SVM of a VW
contains one infrastructure network interface (INI) and at least
one student network interface (SNI) which can be configured
by the students. The number of SNIs depends on the role of
the SVM. All INIs are connected through an internal bridge
per VW on the host to an IVM that provides infrastructure
support (see Section III-C). The patch panel of a PW contains
outlets for the SNIs so that they are physically accessible and
the students can perform the cabling for the labs. To that
end, all SNIs are realized as virtual interfaces on a two-port
NIC that is connected to the core switch. The mapping of
virtual interface to physical interface depends on the absolute
numerical identifier of the virtual interface. All even numbers
are mapped to the first port of the two-port NIC and all odd
numbers are mapped to the second port of the two-port NIC.
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Fig. 4: Overview of componets, services, and connections of
the single server testbed.

Figure 5 illustrates the mapping of the SNIs to the patch
panel and the connection of the thin clients to the lab
server. To distinguish the different interfaces, each is placed
in a unique VLAN [19] with the following tag scheme:
SpwSsvm_num$interface_num. That means, all VLAN
tags consist of a three-digit number with the most significant
digit specifying the physical workspace, the second-most sig-
nificant digit specifying the SVM, and the least significant
digit specifying the interface within an SVM. VLAN tags
are automatically added/stripped at the transition from SVM
to host. The mapping of $pw to actual PW is dynamically
configured by LOST (see Section IV).

The host forwards incoming packets to the corresponding
SVM according to the VLAN tag. In the other direction,
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Fig. 5: Interconnection of SVMs on the lab server with patch
panels on PWs.

packets from the SVM are forwarded to the core switch as
two big VLAN trunks via the two-port NIC.

On the core switch, the VLAN trunks are demultiplexed
into sub-trunks that are forwarded to the PWs specified in the
VLAN tag. Within a PW the VLAN trunk is processed by a
managed switch. The switch is used to re-order the VLANSs
to the corresponding port in the patch panel and to strip the
VLAN tags. This mechanism ensures that the students do not
see any VLAN tags.

C. Infrastructure Support

We run three supplementary IVMs on the lab server that
host the lab platform and provide services. The first IVM
facilitates basic network services for both the SVMs and the
thin clients in the PWs. Each VW gets its own dedicated subnet
whereas all thin clients are placed in the same subnet. To
that end, a DHCP server and a router advertisement daemon
distribute IPv4 and IPv6 addresses, routes, and information
about additional services like DNS and NTP. The DNS server
uses the following canonical naming scheme for names in the
lab: ${host_name}.tb${vw_num}.inetlab. Queries
to resources in the Internet are forwarded to an external DNS
server. The local NTP server syncs its time information with
an external time server and ensures that the time in all VWs is
in sync. This IVM also acts as NAT gateway so that the thin
clients of the physical workspaces can connect to the Internet.
The first IVM also includes a central LDAP [20] directory and
an NFS [21] server. The LDAP directory stores the accounts
for the students as well as their user rights within the SVMs.
An NFS server holds the home directories of the students as
well as some initial configuration data and scripts that the
students use during the exercises. The other two IVMs host

the e-learning platform for the course and provide LXC [22]
containers for special home exercises, respectively.

D. Simplified VM Maintenance

We first explain the need for simplified VM maintenance in
the context of testbeds, then we review concepts related to our
solution, and finally we introduce the new VM maintenance
method.

1) Motivation: In our testbed, many VMs need to be
maintained, i.e., configuration changes and software updates
need to be applied. Manual maintenance is a lot of effort and
error-prone. Therefore, maintenance work is often automated
with scripts or configuration management tools like puppet
[18]. Different maintenance times or additional changes of
individual VMs by the administrator lead to diverging VM
images. However, different VM images are undesirable in
testbeds where at least all VMs of the same type should be
identical at the beginning of an exercise.

2) Related Concepts: QCOW?2 is an updated copy-on-write
hard disk container to provide hard disk storage for Qemu-
based VMs. It allows to save a VM image as a stable base
image file and to store later changes to the VM image in a
snapshot file. This facilitates the reset of the VM by deleting
the snapshot file.

In [23], this technique has been used to share a major
portion of a VM image on hard disk among multiple VMs.
They are booted from the same QCOW2 base image and
record their image changes in individual snapshot files. Various
base images supported different VM types. This technique was
used in [23] to save disk space and in particular to reduce copy
operations for VM setup.

OverlayFS for Unix/Linux implements a stacked file system.
It combines a lower and upper file system, i.e., the lower
file system serves as a stable base and the upper file system
accounts for differences. Thus, the upper file system tracks
changes, i.e., file generation, deletion, and modification. File
requests are served from both combined file systems like from
a single file system. OverlayFS can be applied recursively, i.e.,
the lower file system may be another OverlayFS file system.

3) Multi-Layer VM Images: We present a novel mainte-
nance method for VMs with similar configuration. It is based
on the observation that the VMs share a major portion of their
images and the differences result from a moderate number of
additional configuration actions. It is helpful for maintaining
VMs with different host names, network configuration, and
services. In [23], several base images are needed to support
different VM types. Now, the objective is to utilize only a
single base image for different VM types.

We diversify VMs by leveraging OverlayFS and providing
configuration changes in the upper file system of OverlayFS.
To simplify the provisioning of the upper layer file system, we
define templates for SVMs with root file systems for clients,
servers, and routers that are further adapted to the specifics of
individual VMs.

However, OverlayFS becomes active only after loading of
the operating system kernel has completed. Until then, VMs



write all data to the lower file system. If multiple VMs leverage
the same lower file system, inconsistencies will occur. To
avoid inconsistencies due to writes from different VMs to the
same base image, QCOW?2 is utilized as protection layer. As a
result, VMs are booted from a joint base image containing the
lower file system and modifications are tracked in individual
QCOW?2 snapshots. When OverlayFS is started, VMs are
diversified through the configuration contained in the upper
file system, the adaption layer.

When student work on VMs, they apply configuration
changes. It is desirable to easily undo them and restore
the VM to a defined starting point. To that end, we start
another OverlayFS after VM diversification to track all further
modifications to the VM in a second upper file system, the user
layer.

Technically, the base image combined with the secure base
appear one disk, the adaption layer appears as another disk,
and the user layer appears as a third disk. These three disks
are input to OverlayFS whereby their order matters. However,
the disks do not necessarily always appear in the same order,
which affects their numbering. Thus, the disk numbers cannot
be used as input for OverlayFS. We fix that problem with the
following workaround. The disk contains metadata including
a disk label as another identifier. This disk label is set after
creation of the disk and remains stable. Therefore, we specify
the inputs for OverlayFS using the disk labels rather than the
disk numbers. In our prototype, we use ext4 as file system
type and e2label [24] as disk label implementation.

Figure 6 illustrates the proposed concept. A single LVM
(Logical Volume Manager [25]) volume constitutes the base
image jointly used by all VMs. The protection layer is individ-
ual for all VMs and achieved through QCOW?2. Its snapshot
(secure base) intercepts initial runtime modification of the VM
to protect the joint base image. The adaption layer is also
individual for all VMs and implemented through OverlayFS.
It combines a VM’s base protection layer with the initial
upper file system holding the VM’s configuration data and
minor runtime modifications. Finally, the user layer is also
implemented through OverlayFS and holds all student changes
in its upper file system.

After completion of an exercise, the user layers can be
deleted to reset VMs to the states defined by their adaption
layers. To maintain all VMs in the testbed, only the base image
needs to be updated provided that maintenance operations
do not affect the folders with the configuration data of the
adaption layer. Therefore, this concept provides high flexi-
bility, minimizes maintenance overhead, and reduces storage
requirements.

E. Comparison: Acquisition Cost, Maintenance Effort, and
Energy Consumption

In this section we provide a comparison regarding acquisi-
tion cost, maintenance effort, and energy consumption of the
following three lab system approaches: 1) a physical testbed,
2) a semi-virtualized testbed with a single server per testbed,
3) a semi-virtualized testbed cluster as proposed in this work.
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Fig. 6: File system access based on layered storage.

1) Acquisition Costs: We estimate acquisition costs for the
components of the three different lab system approaches. We
assume reasonable, cost-efficient prices as performance is not
crucial.

For the physical testbed we assume that cheap all-in-one
PCs are used and upgraded with a 4-port network card. This
will result in around 200 € per PC and 20 € for the
network card. In addition, two routers are needed. Recent
or high-performance router models are not needed since all
basic functions used by students are implemented in router
firmware for more than 20 years. Therefore, cheap, old
models may be utilized which are available for 50 € each. In
total a single testbed costs 1440 €. An infrastructure server
providing services can be acquired for around 1200 € in
total. A typical lab system consisting of 6 testbeds cost
roughly 9500 €.

The semi-virtualized testbed with a dedicated server needs
a physical workspace which costs around 800 € each,
including the PW switch. In addition, a dedicated server per
PW is needed as host machine to run the hypervisor for the
VMs. We use the same machine type as for the infrastructure
server for this purpose. A lab system with 6 work-spaces
amounts 7 - 1200 € + 6 - 800 € = 13200 €.

The proposed architecture only needs one big server for the
entire testbed cluster which costs around 7000 €. The physical
workspaces are the same as for the semi-virtualized testbed
with dedicated server and also cost 800 €. In addition, a core
switch is needed which costs around 400 €. This results in
total costs of 7000 € + 6 - 800 € + 400 € = 12300 €.

2) Maintenance Effort: In the past, we encountered a
maintenance effort of about 1 hour per physical machine
and semester in all three lab system approaches. That means,
for the physical testbed, each server, PC, and router requires
that maintenance effort. For the semi-virtualized testbeds, the
servers require that maintenance effort, but in addition, the
VM images need to be kept up to date. In case of one server
per PW, care needs to be taken for the VMs on all servers.
Experience has shown that the required effort scales with the
number of PWs although there are options for automation. In
practice, we needed about 3 hours per PW and semester for



maintenance. In case of a single server for all PWs, only a
single VM needs to be maintained. That requires only 3 hours
maintenance effort per testbed cluster and semester.

3) Energy Consumption: The power consumption of small
all-in-one PCs is estimated with around 20 W. We observe
power consumption of 200 W for small servers and 300 W
for a big server. The PWs are powered with 25 W each for
all active components (PW Switch, small switches, USB).

Table I compares the three approaches in terms of cost,
maintenance and power consumption.

TABLE I: Comparison of acquisition cost, power consump-
tion, and maintenance effort for physical testbeds, virtualized
testbeds with a dedicated server, and virtualized testbeds with
a single server.

Testbed Acquisition | Maintenance | Power

type cost (€) effort (h) consumption (W)
physical testbed 9500 49 1160
semi-virtualized testbed 13200 18 1550
semi-virtualized testbed cluster | 12300 3 450

IV. A LAB ORCHESTRATOR FOR SEMI-VIRTUALIZED
TESTBED CLUSTERS (LOST)

As no existing orchestration platform like OpenStack pro-
vides the features that are required for our use case, we
developed Lab Orchestrator for Semi-virtualized lab Testbed
clusters (LOST) as a new one. It is especially designed to
support the VM storage concept, the simplified VM mainte-
nance, and the template system for SVMs and VWs with their
mapping to PWs presented in Section III. It mainly consists
of a set of Python scripts with some additional bash scripts.

LOST is configured via config files including the following
parameters:

— The templates for the different SVMs include the adop-
tion layers and specify the the hardware resources like the
amount of network interfaces (NICs), CPU, and RAM.
We have templates for clients, servers, and routers. E.g.,
the routers provide a Cisco-like CLI, the clients have
a graphical desktop environment, and the servers are
terminal machines that run several services.

— The composition of a VW consisting of different SVMs
is defined. In our use case, we have three clients, three
servers, and two routers (like depicted in Figure 2) as
that fits best to the different exercises in the courses.
It is easily possible to define other composition, the
available hardware resources on the lab server are the
only limitation.

— The amount of available PWs is configured, so that a
VW for every PW can later be instantiated. We have 6
workspaces.

— A default mapping of VW to PW is provided. Figure 8a
depicts such a default mapping.

With the configuration files as input, LOST instantiates

the different VMs and configure the core switch as well
as the PW switches according to the confi files. E.g. the

different VLANs are configured. The configuration of the
switches leverages software-defined networking (SDN) tech-
nology. Generally, LOST supports different southbound inter-
faces like SNMP [26], OpenFlow [27] or NETCONF [28]. For
compatibility reasons, we currently selected SNMP.
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Fig. 7: Wiping the user layer restores the original SVM states.

The instantiation process includes the initialization of the
protection layer and the adoption layer (see Section III-D) for
the individual VMs and assigning hardware resources such
as NICs, CPU, and RAM to them. LOST also manages, i.e.,
this includes starting and stopping of VWs, and monitors the
different VMs. VMs can either be managed individually or as
bulks. After a lab day or in case of a heavily misconfigured
SVM, LOST can wipe the student layer so that the students can
start over again with a well-defined VM states (see Figure 7).

In case of a hardware failure on a PW, it is possible to
move a VW to another PW as depicted in Figure 8b. To that
end, LOST reconfigures the affected PW switches and the core
switch. The advantage of this mechanism is that students only
have to re-apply the cabling on the new PW, but all their
configuration and data of the VMs are available at the new
location.

V. IMPLEMENTATION

In the following, we describe the hardware, software, and
virtualization platform that we used to implement the semi-
virtualized testbed.

A. Hardware Platform

First, we outline the components included in the single
lab server and the additional equipment used to provide the
physical interaction with the VMs.

1) Server: We use a DELL PowerEdge T430 based on
the current Intel server platform as base system for the lab
server. The server is equipped with two Intel Xeon CPU ES5-
2660 v4, 128 GB RAM, and a hardware RAID with level
6. Figure 5 shows that two additional Intel network cards
provide the network interfaces for the SVMs and IVMs. An
Intel XL710 40GbE SFP+ two-port NIC which supports 64
virtual interfaces per physical interface, relays the network
interfaces for the student VMs. An additional Intel i350-T4
NIC provides the uplink to the Internet for the three [IVMs and
connects one of them to the lab network. The onboard NIC of
the server is used as management access for the server.
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As we want to be able to equip the student VMs with USB
devices like Wi-Fi dongles or headsets, a USB3 hub is attached
to the server. It connects the USB hub in each PW via a fast
port USB to the lab server. The hub allows to attach USB
devices like Wi-Fi dongles or headsets to the SVMs.

2) Additional equipment: The core switch connecting the
different PWs to the server is a Netgear S3300-28X ProSAFE
24-Port Gigabit. It includes two SFP+ 10G uplink ports
which are connected to the Intel XL710 at the lab server.
Each physical workspace has two connections to the switch:
one is used for the thin clients and the other is used to
connect the cabinets with the server. Each cabinet contains
a managed HP/Aruba switch as PW switch to de-/multiplex
the testbed uplink to different physical ports on the switch.
They are connected to a patch panel containing keystones for
the network outlets of the VMs. The USB hub in each cabinet
is connected to the USB3 hub at the lab server via an active
USB cable. A Hardkernel odroid c2 is used as thin client. This
platform provides enough computational power and RAM to
act as graphical client or terminal client for 8 VMs and to

run the Chrome web browser. The odroids are connected to
a 24 inch full-hd (1080p) monitor, keyboard, and mouse for
interaction.

B. Software Platform

We briefly outline the software used on the host and the
different VMs.

1) Host: The server itself only acts as host for VMs. For
stability purposes, more efficient use of resources, and reduced
security risks, the server contains a minimal environment. We
chose Gentoo Linux [29] as operating system (OS) on the
server as it gives full control to the administrator. With the
help of USE-flags it is possible to define which parts of a
certain package should be installed. This way, only the parts
and features of a package that are really needed and wanted
are installed. Additionally, Gentoo does not force the user to
use a certain component, e.g., the user can freely select the init
system. Furthermore, in our experience Gentoo is more stable
compared to other Linux distributions like, e.g., Ubuntu.

We chose kvm [8] as hypervisor because it is already
part of the Linux kernel. As kvm cannot be used directly,
a supplementary virtualization tool like gemu [30] is required.
Qemu makes use of kvm and provides additional virtual
devices by itself. Also parts of LOST (see Section IV) run
on the host. To ease the handling of the VMs in LOST, we
designed LOST to utilize the libvirt [9] framework which
already implements functions to create, start, stop, and delete
VMs. These operations are extended with custom operations,
like applying a template to a VM during creation as needed.

2) Infrastructure VMs (IVMs): As already explained in
Section III-C, we run three additional server VMs providing
services for the lab and hosting the lab platform. The first IVM
runs a DHCP server and a radvd [31] daemon to configure
the network addresses. A BIND [32] DNS server is used to
resolve the IP addresses for internal and external resources.
The LDAP directory runs on an OpenLDAP [33] server and
the NFS kernel server provides NFS directories. The reference
implementation [34] from the NTP project is used as NTP
server.

We use the nginx [35] webserver to host an instance
of the iLab e-learning platform [36]. In conjunction with
shellinabox [37], nginx also enables access to LXC [22] con-
tainers. The containers are used in an introductory assignment
which takes place before the practical course. This assignment
compiles an introduction for the students how to work on
a Linux shell, do basic network configuration and simple
experiments.

3) Student VMs: (SVMs) All SVMs are based on a single
base image. The template system of LOST derives different
kinds of SVMs like client or server from the base image. This
base image already contains most of the tools and software
for all different types of SVMs. Among this software is the
LXQt [38] desktop environment used for clients, services, and
daemons used for the servers and the quagga [39] routing suite
from which we use vtysh (a Cisco like CLI) for virtual routers.
However, the functionality of this software is disabled in the



base image. The templates activate the functionality required
for their use case. The thin clients can connect to the SVMs
via spice [40] which transports the display and input devices
of the VMs.

As an alternative to VMs, containers could be used. How-
ever, we decided to use VMs because VMs have their own
networking stacks so that VM nodes are isolated against each
other and students observe a similar networking performance
as with real hardware. The performance obtained in this setting
is sufficient for most applications in general and suffices for
all exercises carried out by the students. Using VMs instead of
containers provides sufficient flexibility for future extensions.
We plan to define an data center networking lab where VMs
act as servers hosting containers. Implementing data center
servers as containers would lead to a rather unrealistic solution.
Thus, the decision to utilize VMs instead of containers on the
host makes LOST future-proof.

C. Virtualization Platform

In the following, we describe virtualization features and
techniques that we use on our infrastructure. First, we briefly
outline the basic requirements for virtualization on the x86
architecture. After that, we explain the mechanisms used to
pass-through PCI and USB devices from the host to the VMs.

1) Hardware-Assisted Virtualization for x86: The x86 plat-
form itself is not virtualizable in hardware, which means that
VMs must be emulated in software. Software-based VMs lack
performance. Hardware-assisted VMs require some extensions
to the x86 architecture: VT-x [4] enables basic hardware ac-
celeration for virtualization. It includes additional instructions
and registers to implement an additional privileged system
and hardware-based shadowing for the memory management
unit (MMU). This way, VI-x permits entering and exiting a
virtual execution mode. In this mode the host OS remains
protected while the VM OS perceives itself as running with
full privilege. Second level address translation (SLAT) is an
additional extension to the MMU which further increases the
performance. It basically treats each physical address of a
VM as a virtual address on the host. This prevents software
lookups to determine the actual physical memory address of
VM memory. SLAT is implemented on the Intel platform
as extended page tables (EPT) [41]. Additionally, EPT is
a requirement to start a VM directly in real mode with
unrestricted access. Typically, hypervisors emulate most guest
access to interrupts and the advanced programmable interrupt
controller which requires the exit and entry of a VM. This is
time-consuming and a major source of overhead. Advanced
programmable interrupt controller virtualization (APICv) [42]
eliminates lots of VM exits and can increase performance
significantly.

2) Pass-through of PCI Devices: VT-d [5] provides an
IOMMU [7] which allows to pass-through devices, e.g., NICs
from the host to the VMs. With the help of IOMMU groups,
different devices are isolated against each other and secure
memory access is ensured. Linux kernels later than 4.1 require
the PCle Access Control Services (ACS) [43] feature for

separated IOMMU groups. VT-c [6] comprises Single Root
I/O Virtualization (SR-IOV) [7], an extension to the PCI
standard, and Virtual Machine Device Queues (VMD-q) [44].
SR-IOV classifies devices in physical functions (PFs) and
virtual functions (VFs). A PF is a full-featured PCI device,
e.g. a NIC or a graphics card, which can run on its own. A VF
is a lightweight PCI device which cannot run independently of
a PE. The VF shares some resources with the PF that manages
this VE. VMD-q enables multiple hardware-based queues per
NIC which are internally connected to a bridge. Together,
VT-d and VT-c instantiate a dedicated hardware queue per
VF which appears on the host as a virtual NIC. This NIC
can be exclusively passed-through to a VM so that the host
does not see the device any longer. With this mechanism the
virtual NICs achieve a performance close to dedicated physical
NICs. As all VFs communicate over the common physical
port of their PF, VLAN tags are used to differentiate traffic
from and to different VFs. To be able to distinguish traffic
for the different VFs, they are typically mapped to different
VLANSs [19].

3) Pass-through of USB Devices: To pass-though USB
devices, the entire address of a device on the USB bus is
mapped to the address space of a VM. This process can be
automated with the help of special udev rules [45] that trigger
gemu to map a newly plugged in USB device to a specified
VM. This requires a lookup in the LOST configuration so
that USB devices must be identifiable. Typically, a USB
device can be identified by a unique identifier (UUID) in the
device description field of its ROM. However, some hardware
manufactors and vendors disregard the uniqueness of UUIDs
and assign the same UUID for multiple devices or entire
batches thereof. That problem pertains to the USB Wi-Fi
dongles and USB headsets in our system. We developed the
following workaround to connect USB devices with equal
UUIDs in VMs.

When a USB device is plugged into the USB bus, the host
loads the driver for that device. If the USB device is a network
device, the host looks up its unique MAC address. If that MAC
address is assigned to some VM in the LOST configuration,
the host unloads the USB driver for that device and passes
its USB bus address through to the configured VM. This
workaround allows to assign a specific Wi-Fi dongle to a VM,
which is needed because some scripts and udev rules in the
VM contain their MAC address. The described workaround
works for Wi-Fi dongles, but not for USB headsets as they
do not have MAC addresses. Fortunately, a VM does not
require a specific headset, but can work with any headset
connected to the VM. Therefore, the n—th plugged-in headset
is passed-through to a specific VM that is configured with
LOST depending on n.

VI. CONCLUSION

We presented a semi-virtualized testbed cluster for net-
working labs on a single server. It consists of student VMs
organized in virtual workspaces that can be accessed through
physical workspaces. The physical workspaces provide outlets



for the network interfaces of the student VMs and allow to
plug in USB devices that are mapped into the student VMs. We
developed a “Lab Orchestration for Semi-virtualized Testbeds”
(LOST) to manage the student VMs and dynamically define
the mapping of virtual workspaces to physical workspaces.
LOST implements a template system to realize different types
of student VMs such as clients, servers, and routers. To
efficiently manage the student VMs, all of them are based
on a single base image and served from the same memory.
The template system and the writable root file system are
realized as multiple overlay layers to the base image which
are private to each student VM. The top-most layer holds
the data and configuration files made by the students in an
assignment. This layer can be wiped to go back to a safe,
stable, and deterministic state after an assignment. Additional
infrastructure VMs provide the student accounts via LDAP
and NFS, as well as basic network infrastructure such as NAT,
DNS, DHCEP, etc.

Our platform combines the advantages of a fully virtualized
testbed and an entirely physical testbed. It allows students to
gain hands-on networking experience by configuring network
nodes and interconnecting them with cables and switches. In
addition, our approach consists of only one server that runs
VMs, which enables the typical benefits of virtualization. It
is cost-effective and saves both energy and space compared
to a physical testbed. Most important, thanks to LOST, it
is relatively easy to manage and flexible. The suggested
architecture is extensible as we can easily add more virtual and
physical workspaces or components. We successfully leverage
the presented platform for our hands-on networking courses
since winter semester 2016/17.
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