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Abstract—Software-defined networking (SDN) moves the con-
trol plane of network devices like switches and routers to the
controller. The controller is in charge of managing the whole
network through application programming interfaces (APIs).
Fault tolerance in the SDN networks can be handled by le-
veraging multiple controllers. Placing controllers in an SDN
network can be seen as facility location problem which is an
NP-hard problem. In this paper, we propose a simple heuristic
algorithm for controller placement in SDN networks leveraging a
learning automaton (LLA) approach. The proposed algorithm can
place the controllers based on a predefined propagation latency
between the controllers and the switches while minimizing the
overall propagation latency. We perform several simulations,
from the available topologies of ToplogyZoo, and the results
show the superiority of the proposed algorithm when compared
to competing current state-of-the-art algorithms in terms of
propagation latency.

Index Terms—Software-Defined Networking (SDN), controller
placement, propagation latency, learning automaton (LA).

I. INTRODUCTION

The control plane of network devices is isolated from the
data plane in software-defined networking (SDN). The control
plane operations are performed via a controller that interacts
with the data plane of devices, i.e., switches, routers, etc. via
a well-known application programming interface (API) like
OpenFlow [1]. The devices in the data plane act based on the
roles that are determined by the control plane. Upon receiving
a packet from a flow, the network device applies the rules
in its flow tables to process the packet [2f]. If the packet is
matched by a specific rule it determines how to handle the
packet. Otherwise, the devices, which are called datapath, ask
the controller for the action to undertake.

In SDN networks, the task of generating and installing the
rules on the forwarding devices is offloaded to the control-
ler [3]. The missed packets based on the available rules on an
OpenFlow-enabled switch are buffered or dropped until the
suitable rules for them are installed by the controller.

The controller communicates with the forwarding plane de-
vices such as switches or routers in SDN through northbound
interfaces (NBIs) like OpenFlow [1]. Initially, it was supposed
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that there is a single controller to control the forwarding be-
havior of the whole network’s devices. An SDN network may
have more than a single controller for scalability, performance,
or robustness reasons [4], [3].

One of the critical issues in an SDN-network with multiple
controllers is the place of controllers. The place of each
controller plays a significant role in the network because it has
an impact on the propagation latency of the network. Several
attempts have been done to find a solution for this optimization
problem [6]. The following considerations can be taken into
account in designing a controller placement algorithms like:
(a) the signaling latency which determines the latency between
the switches and the controllers, (b) the controller capacity
specifies the amount resources, like CPU and memory, for
a controller. These resources are leveraged for handling the
switches. (c) the number of controllers that determine the
number of switches in a large network. (d) inter-controller
communication latency, which specifies the latency among
the controllers that manage different switches in the network.
If a controller wants to manage a switch that is controlled
by another controller, interaction between the controllers is
required [7]. The controller placement problem is similar to
the facility location problem [8] which is known to be NP-
hard. Several algorithms are proposed to improve the network
performance by decreasing the propagation latency, improving
the reliability, and increasing the energy-efficiency of the
network [9], [1O]], [L1l], [12]. Nevertheless, none of these
works consider a predefined propagation latency to place the
controllers while minimizing the overall propagation latency.

In this paper we focus on the controller placement problem.
It can be formulated as a cover-set problem [[13]] by considering
the latency bound for placing the controllers [[8]. It is known
to be NP-hard. For that problem, we propose a novel heuristic
algorithm leveraging a learning automaton (LA) [14]. It takes
a network graph and a distance metric between the nodes
that reflects communication latencies and selects controller
positions such that the communication latencies between any
node and at least one controller does not exceed a desired
threshold. It also aims at minimizing the propagation latency
among the controllers and the switches. It worth stating
that the output of the algorithm determines the number of
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controllers to place in the network.

The rest of this paper is organized as follows. Sec.
reviews the state-of-the-art of controller placement in SDN-
based networks. The controller placement problem is discussed
in Sec. The basic concept for learning automaton theory
is presented in Sec. Sec. proposes a new heuristic
algorithm for controller placement. The performance of the
proposed algorithm is studied in Sec. Finally, Sec.
concludes this paper.

II. RELATED WORK

This section aims at providing an overview of recent state-
of-the-art literature on controller placement of SDN networks.
The authors of [5] provide a survey on the controller placement
of SDN networks. The objective of this survey is to determine
the design requirements for such networks like minimizing the
latency between the controller and the switches, maximizing
the resiliency of the network, etc.

Heller et al. [8] introduced the controller placement problem
by defining a set of performance metrics. They analyzed
the effect of controller placement on several topologies like
Internet2 and others taken from TopologyZoo to give a rese-
arch direction for the SDN community. Several solutions like
Hyperflow [15], Devoflow [16]], and Onix [[17]] were proposed
to overcome the scalability and reliability issues in SDN.
Generally, the researchers have tried to solve the controller
placement in large SDN networks by leveraging multiple
controllers to improve the network’s scalability and reliability.
A K-means-based clustering approach to place controller is
proposed in [9]. The basic idea of the K-means clustering
algorithm is to maintain k centroids, which are used to define
clusters. Following the K-means, an item or a point will be
considered in a specific cluster if it is closer to that specific
cluster’s centroid than any others. The authors optimized the k-
means algorithm for clustering to minimize the overall latency
of the network. Our algorithm has a better performance than
this algorithm in term of propagation latency.

A density-based clustering algorithm to place the controllers
in an SDN network was proposed by the authors of [18].
After clustering a network into sub-clusters, the proposed
algorithm assigns a controller for each of them. Each switch
in each cluster is only connected to the controller of that
specific cluster. The size of each cluster is determined based
on the capacity of the dedicated controller to that cluster. The
authors stated that their proposed algorithm does not fall in
a local optimum, which is the drawback of many heuristic
algorithms. A Pareto-based controller placement algorithm is
developed in [6] to minimize the required time to place the
controller. The authors have found a tradeoff between the time
to place the controllers and accuracy of the algorithm. The
performance of this heuristic algorithm is studied for large-
scale SDN networks to examine its efficiency.

The reliability of network in placing the controllers is
studied in [10]. The authors considered several parameters
like the location of controllers, the number of controllers, and
the nodes of the network to achieve a high reliability. The

performance of the proposed solution is studied on several
topologies from ToplogyZoo. Resilient controller placement
is studied in [[L1]. The objective of this work is to determine
the required number of controllers as well as their locations
to reach a high reliability in the network.

The energy-aware controller placement in SDN was studied
by the authors of [[12]. The problem is modeled as binary
integer program (BIP), which has the latency of paths and the
load of controllers as constraints for minimizing the energy
consumption. Modeling the problem with BIP results in high
complexity. Then, a genetic algorithm is proposed to find a
sub-optimal solution for the problem. The obtained results
from simulations confirmed that the performance of the heu-
ristic algorithm is close to BIP. Controller placement with the
aim of minimizing the end-to-end latency and queuing latency
of the controller is studied in [19]. The authors leveraged the
clustering approach to split the network into subnetworks to
reach the design goals.

In this paper we propose a learning automaton (LA) based
heuristic algorithm to select controller locations within a
network such that the communication latency from any node
to the closest controller does not exceed a desired threshold. It
also aims at minimizing this latency. The algorithm leverages
for each node an LA which helps to decide whether a
controller should be collocated with that node.

III. PROBLEM FORMULATION

In this section, we state the network model. We model the
network as a graph G = (V,£) where V is the set of switches
and & is the set of links among the switches. Each link e € £
has a length. We assume that the links among the switches are
bi-directional. There is a link among switches v and w if they
are connected. This can be defined as follows.

L,
e(v,w) = {07

The idea behind our algorithm is to analyze the network
topology and divide it into sub-networks in such a way that
the switches inside each sub-network should have a close
connection to each other, while they also should have a
minimal distance to the controller in the network to minimize
the overall propagation latency of the network. The latency of
each link can be computed as follows.

d(v, w)

o = oo (M)

where 1., and d(v, w) indicate the propagation latency and the

distance from switch v to w, respectively. The denominator in

the above equation specifies the speed of light in an optical

fiber. For a sub-network like G, the average propagation
latency (L(G)) can be computed as follows.

if there is a link between v and w
otherwise

. 1
L(G) = W Z min d(c,v) (2)
veV
where |V’ and c are the number of nodes in the sub-network
and the selected controller for G, respectively. In Eq. [2| d(c, v)



specifies the distance between the controller (i.e., ¢) and the
switch.

Formal definition of the problem. Given a network with VV
switches, the considered controller placement problem is the
choice of a minimum number of controllers for the network
within a predefined propagation latency in such a way that the
overall propagation latency of the network is minimized. If the
algorithm divides the network into n sub-networks, the average
propagation latency for the whole network can be computed
as follows.

— 1 —
L(G)=— L
)=~ Z (@) 3)
Geg
Therefore, the optimization problem can be defined as follows.
min L(G) 4)

After splitting the network nodes into sub-networks, we should
place a controller for each of them in such a way that the
general goal of the network (i.e., minimizing the average
propagation latency) is satisfied. Therefore, we should consider
controller-to-switch latency.

Controller-to-switch latency. This metric for a sub-
network (3 by considering ¢ as the place of controller can
be defined as follows.

— 1
L(G)= — d(c,v 5
(@) ‘G‘Z< ) (5)

where, d(c,v) is the distance from the controller to switch in
G sub-network. |G| is the number of switches in the same
sub-network.

IV. LEARNING AUTOMATON

Learning automaton (LA) is an abstract model that has
a finite set of actions. It selects a random action among
its allowable actions at any time. The random environment
(RE) evaluates the chosen action by the LA and provides a
reinforcement signal to the chosen action. Each LA updates the
probability of its actions based on the received signal from RE
through a learning algorithm [14]. The LA follows an iterative
approach in selecting an optimal action among its action set.
Therefore, the objective of LA is to choose the optimal action.

An LA can be defined as a quintuple LA =
{Q, A, B, F,G} [20], [211, [22], [23].

e Q@ = {q1,92,...,qn} is the set of finite states. For
example, ¢(t) shows the state of LA at time instant .

e A={ay,as,...,a,} is the set of finite actions of output

where «(t) indicates the action of LA at time instant ¢.

B ={B1,P2,...,0x} is the set of inputs. 5(t) states the

input for the LA at time instant .

F:@Q x B — @ maps the current state and input to the

next state of LA at the instant ¢.

e G:(Q x B — A maps the current state and input to the
next action of LA at the instant ¢.

The environment can be defined as a triple £ = {A, B,C}
in which the descriptions for A and B are as stated above. C

is the penalty probabilities that are associated with each action
« and defined as follows.

cn = Prif = 1oy = ay) 6)

where c,, indicates the penalty value for action «,, at time t.
The learning algorithm for LA is defined as follows.

p(n+1) = Tp(n), a(n), 5(n)] ()

where p(n) is the probability of action «(n) and B(n) is the
given response from RE to the chosen action. In Eq. [/]if T is
linear, the learning algorithm is also called linear algorithm.
Otherwise, it is called nonlinear algorithm.

The learning algorithm of LA can be stated as follows. If
an LA chooses an action like «; and receives the desired
reinforcement signal from the RE, the probability of that
action, i.e., p;(n), will be increased. While the probability of
other actions will decrease. Therefore, for a desired response
from the RE the action probability vector of the LA will be
as follows.

(n a1y = JPin) +al=p;(n)) j=i
pj(n+1) {(1_a)pj(n) Vi 4 (8)

If the RE generates a negative response for the chosen action
of LA, i.e., action «;, the probability of this action, i.e.,
pi(n), will decrease, while the probability of other actions
increases. Eq. [9] will be applied for a negative answer from
the environment to update the action probability vector.

(1 =b)p;(n)

pj(n+1){ ) J =0 9)

—1 + (L =b)pj(n) Vijj#i

where a and b are reward and penalty parameters, respectively.
In these equations, r determines the number of action for each
LA. If a = b the learning algorithm is called Lr_p (Reward-
Penalty), if b < a, it is called Lg.p (Reward epsilon Penalty),
and if b = 0 the algorithm is called Lr_; (Reward-Inaction).
More explanation of LA can be found in [20]], [21], [22], [23].

V. LACP-LEARNING AUTOMATON-BASED CONTROLLER
PLACEMENT

This section describes how the proposed algorithm splits
the network into several sub-networks to assign a proper con-
troller to each of them. The proposed approach is an iterative
algorithm which results in making sub-network (i.e., clusters
) in several iterations. The LACP algorithm has two main
phases, namely, initialization and learning phases. During the
initialization phase, the network of LA from the network is
built and each node forms its action-set. Selecting the nodes
to place the controller is carried out in learning phase. We
explain each phase in more detail.

A. Initialization Phase.

The LACP algorithm equips each node in the network
topology with an LA. Therefore, the network graph constitutes
the network of LA. The LA of each node has two actions to
select at any time which are: being a controller (i.e. ) or not



(i.e. ag). At each iteration, the LA of each node can randomly
select one of these actions. At the beginning of the algorithm,
the probability of each action is initialized to 0.5.

B. Learning Phase

This phase runs in several iterations and over the course
of each iteration, the RE determines the suitability of each
chosen action by LA of each node. This can be performed by
evaluating the metric that is defined for the algorithm, namely,
the average propagation latency for each sub-network.

The learning phase of the LACP algorithm starts by se-
lecting a random node among the nodes of the network
graph (i.e., V). This node, which is equipped with an LA,
randomly chooses an action from its action-set based on the
action probability vector (i.e., lines [7{§). Then, it examines the
selected action and acts as follows. If the selected action is ..,
it adds itself to S vector, and subsequently, adds the neighbor
nodes that have a propagation latency within L,q,; to W
vector. Note that the propagation latency parameter, i.e., L., 4,
is taken as an input for our algorithm. For example, having a
value of 1 ms for this parameter states the nodes that it can
be reached by a propagation latency of 1 ms from this node.
This procedure finishes when the number of nodes in both
vectors reaches the total number of nodes in the graph (i.e.,
lines [T4}27). The selected controllers during each iteration is
in S vector.

The propagation latency of nodes in the S vector is measu-
red (i.e., lines 2839). Then, this value will be compared with
the threshold propagation latency value (L,,;,) for this metric.
The threshold value is initialized with the highest possible
value. If the latency is less than the value in the previous
iteration, the RE generates a positive reinforcement signal for
the chosen action of each LA in the network. The value for
the RE can be computed according to Eq. |3} Consequently,
this behavior of RE results in giving a reward for the selected
action of each LA, and the LA of each node updates its action
probability vector according to Eq. [§] (i.e., lines BOH43).

Also, the threshold value for the propagation latency will
be replaced by the new threshold value (i.e, L,,;,) and the
best controller set (i.e., C) until now will be replaced by S.
Otherwise, the RE generates a negative reinforcement signal,
which results in giving a penalty to the selected actions by
the LA of each node. In LACP algorithm, we use the Lr_1
schema to update the action probability vector of each LA.
This means that in the case of getting a penalty from the
environment for the chosen actions, the probability of actions
will be unchanged.

The learning procedure ends when the stop condition of
the proposed algorithm meets. We define a fixed number of
iterations as the stop condition. If the number of iterations
reaches the threshold value (i.e., I7), the algorithm ends. At
this time, the nodes in C will be selected as the controllers
for the network and other nodes will be placed as a switch.
We use the stopping model of [24] in the LACP algorithm.
Algorithm [I] shows the pseudo code of LACP to place the
SDN controllers in a network with V nodes.

Algorithm 1 LACP Algorithm

1: Input:

2: The network graph G = (V, &), the desired propagation
latency (Lqz), the learning parameter a, the iteration
threshold I

. Initialization
C+V

> The best controller set yet.
> the threshold value for latency.
> the iteration counter

3

4

5: Lpin < 00

6: k<+0

7: for node v € V do
8
9

ac(v) =0.5
: end for
10: // Learning phase
11: repeat
12: w=YV
13: S=0 > the selected controllers in each iteration.
14: while W # () do
15: select randomly w € W
16: if rnd() > a.(w) then
17: // make w a controller
18: w=Ww \ w
19: S+ SUw
20: X=WwW
21: end if
22: for all x € X do
23: if L(w,x) < Lyq, then
24: W=W\z
25: end if
26: end for
27: end while
28: // compute L
2: L=0
30: for all v eV do
31: tmp=00
32: for all c € S do
33: if L(v,c) < tmp then
34: tmp=L(v, ¢)
35: end if
36: end for
37: L = L+tmp
38: end for
39 L= il
40: if L < L, then
41: fmin = Z
42: C+S
@ Pa, (1 + 1) = pa, (n) + a(l = pa, (n))
44; Paz(m+1) = (1 —a)pa.(n)
45: end if

46: k+—k+1

47: until (k < Ir)

48: Output:

49:  Set of controller nodes




VI. RESULTS

In this section, we study the performance of LACP algo-
rithm and compare the results with K-means algorithm in [9]]
in terms of (a) the average switch-to-controller propagation
latency and (b) the maximum switch-to-controller propagation
latency. In order to have a fair comparison between the
performance of LACP and K-means algorithm in [9], we
use the same number of sub-networks for each topology. For
example, if the number of sub-networks after applying the
LACP algorithm is 5, we use this number as the input for
the K-means algorithm, i.e., we use k=5. We first explain the
simulation setup and then explain the obtained results.

A. Simulation Setup

We implement both algorithms in C# language by the
network topologies that are taken from topologyZoo. Table. [I|
shows the number of nodes and links in each considered
network topology. In all simulation runs, we use the stop
condition of [24] in our algorithm for [, and the initial
value for the number of sub-network is set to the number of
nodes in the network. We use Dijkstra algorithm to find the

TABLE I: The topology feature of the networks.

Topology | Nodes | Links |
Abilene 11 14
InternetMCI 19 45
Geant2010 37 58
Iris 51 61

minimum distance between the nodes to compute the average
and maximum propagation latency. To compute the maximum
latency between the controllers and the switches, we measure
the propagation latency of each sub-network and pick the
maximum latency as the final result.

(c) LACP with three controllers (d) K-means with three control-
lers

Fig. 1: The visualization of Abilene network for LACP and
K-means algorithm of [9].

B. Performance Evaluation

We first provide a visualization of Abilene network topology
for both algorithms in placing the controllers. Fig. and
Fig. [Tb] illustrate the selected controllers by two algorithms
for the case of partitioning the network into two sub-networks.
While Fig. [Ic] and Fig. [Id] show the same network for three
sub-networks. The main difference between the two approa-
ches is in choosing the number of nodes for each sub-network
and selecting the controller for each of them. LACP algorithm
measures the propagation latency to place the controller while
the K-means algorithm leverages the distance for this purpose.

Figs and depict the average propagation
latency between the switches and the controllers for the
Abilene, InternetMCI, Geant201, and Iris networks by varying
the number of controllers. The general trend in these figures
is that by increasing the number of deployed controllers the
average and the maximum propagation latency decreases. A
common reason for this fact is that by increasing the number
of controllers, each controller requires taking the control of
fewer switches in the network. Consequently, this task results
in less propagation latency. It is clear from the figure that
our algorithm reaches a better performance than that of [9]] in
both considered scenarios. The reasons for the results can be
summarized as follows. (a) LACP algorithm finds a solution
in several iterations. Doing so, the algorithm has the ability to
test a different set of candidate solutions. (b) LACP looks for
the nodes that are within the predefined propagation latency
aiming at dividing the nodes into sub-networks to minimize
the overall propagation latency.

Figs and [2h] illustrate the maximum propagation
latency between the schemes. We see the same phenomenon
for the maximum propagation latencies between the switches
and the controllers for all considered networks. It can be found
from the figures that LACP algorithm has a better performance
than K-means algorithm in terms of maximum propagation
latency.

VII. CONCLUSION

A learning automaton based algorithm for controller place-
ment in SDN networks is proposed in this work. The controller
placement problem is an NP-hard problem and we propose
a simple heuristic algorithm based on machine learning. The
main objective of our algorithm is to minimize the propagation
latency among the controllers and the switches in the network.
We equip each node in the network with a learning automaton.
The learning automaton of each node determines the role
of each node (i.e., to act either a controller or not). The
proposed algorithm selects the controllers based on the goal of
minimizing the propagation latency. The desired propagation
latency can be set as an input for LACP algorithm, which
tries to divide the nodes in the network into sub-network
based on the predefined threshold value. The performance
of the algorithm is studied on the topologies that are taken
from TopologyZoo and the obtained results show that the
LACP algorithm requires less propagation latency than K-
means algorithm to place the controllers in an SDN network.
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We

intend to extend the algorithm to place the controllers by

also considering the number of controllers as the input.
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