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ABSTRACT
The integration of weather-dependent renewable energy sources

leads to an increased volatility of electrical energy supply. As a

result, considerable intra-day price spreads can be observed at the

spot markets for electrical energy. To benefit from variable energy

prices, enterprises can use price forecasts for cost-optimized load

scheduling. Thereby energy costs can be reduced by shifting energy-

intensive processes to times with lower energy prices.

In this work, we propose a method to model an industrial unit

including devices, storage units, dependencies, restrictions, and

production targets as a mixed integer linear program (MILP). Along

with a time series of energy prices, the MILP is used to compute

optimal run times for the deviceswhile complyingwith the specified

restrictions.

We use the model of a cement plant as an example. We show

potential savings compared to default schedules over individual day,

weeks, or over the year 2018. We propose optimization with look-

ahead, point out its benefits compared to optimization without

look-ahead, and show the influence of storages sizes and price

variance on the savings potential.

CCS CONCEPTS
• Theory of computation → Linear programming; • Hard-
ware→ Smart grid; •Applied computing→ Industry and man-

ufacturing.
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1 INTRODUCTION
The large-scale integration of renewable energy sources leads to

new challenges for electrical power grids and the energy market.

Especially the roll-out of weather-dependent energy sources like
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wind turbines or photovoltaic systems leads to an increased volatil-

ity of electrical energy supply. As a result, considerable differences

in energy prices can be observed at the spot markets for electrical

energy within a day.

In industrial production processes, some devices can be oper-

ated at different production rates. Additionally, storage units can

decouple the run times of subsequent devices within a production

chain. Storage and variable production rates constitute a certain

flexibility, i.e., an enterprise can reach the same production targets

with the same set of devices while using different schedules. With

high-quality price forecasts for the day-ahead markets, industrial

enterprises can leverage flexibilities in their production processes

to benefit from the variability of energy prices using cost-optimized

load scheduling. Based on the forecasts, energy costs can be reduced

by shifting energy-intensive processes to times with lower energy

prices [4].

In this work, we propose amethod for the computation of produc-

tion schedules that minimize energy costs. The main contribution of

our work is a comprehensive framework for modeling an industrial

plant including devices, storage units, dependencies, restrictions,

and production targets as a mixed integer linear program (MILP).

With a time series of energy prices, the MILP computes optimized

run times for the devices with the given production rates, storage

parameters and restrictions.

Cement production is a prominent example for energy inten-

sive industry, accounting for approximately 12–15% of the total

industrial energy consumption [8]. As shown in Section 2.2 cement

production is also widely used as a reference use case for schedul-

ing of energy intensive processes. For our study we use the model

of a cement plant described by Bazan et. al. [1] as an example to

show potential savings compared to default schedules. We quantify

the savings for individual days, weeks, and for the year 2018. As

another contribution, we propose optimization with look-ahead for

this problem and demonstrate its benefits compared to optimization

without look-ahead. In addition, we show the influence of storage

sizes and price variance on the savings potential. Finally, we report

the computation time of our optimization approach.

This paper is structured as follows. Section 2 discusses related

work. In Section 3 we describe the proposed approach for modeling

of industrial production processes as MILP. Section 4 introduces the

evaluation scenario and discusses optimization results. Section 5

draws conclusions and gives an outlook on further work.

https://doi.org/10.1145/3307772.3328302
https://doi.org/10.1145/3307772.3328302
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2 RELATEDWORK
In this section we give an overview about related work. We first

discuss general approaches for scheduling in the area of continuous

production. Then, we discuss work in the area of energy-aware

scheduling, with a focus on scheduling approaches specifically

addressing the use case of cement production.

2.1 Continuous Scheduling
Different scheduling strategies for continous production processes

are considered in literature. They can be classified by algorithmic

techniques, time model and objective. Some of the approaches also

support semi-continous or batch processes.

One of the first such models for short-term scheduling of the

production of fast moving consumer goods was presented by Ier-

apetritou and Floudas [5]. The optimization is based on MILP. This

model was extended for storages and used to examine properties

of the optimization with different storage limitations by Mendez

and Cerda [9] and later by Shaik and Floudas [13]. Neumann and

Schwindt [11] propose a branch-and-bound algorithm for models

with continous and semi-continous processes.

However, these models were designed for optimizing makespans

and cost of production processes and do not consider energy cost

or usage.

2.2 Energy-Aware Scheduling
Castro et. al. [2] explore different scheduling approaches for contin-

uous production. They use both discrete-time and continuous-time

models. Energy consumption is considered in the optimization, but

variable energy prices are not used. Shrouf et. al. [14] present an

energy-aware scheduling mechanism using linear programming

(LP) and a discrete-time model. The optimization objective is re-

duced energy costs with day-ahead energy prices. However, the

scheduling only considers a single device.

Kondili et. al. [7] present an optimization of schedules for whole

continous production plants with varying energy prices usingMILP.

A cement plant is used as an example for real world applications

of such models. Based on [2], Mitra et. al. [10] present a model

for a cement plant which also addresses variable energy prices.

More recent developments in energy market models like day-ahead

markets give new objecives in scheduling such processes. Bazan

et. al. [1] present a hybrid simulation approach for scheduling of

energy demand in a cement plant with a wind turbine and a battery

storage. They optimize energy costs using LP and a discrete time

model.

Gahm et. al. [3] provide a wide overview of the field of energy-

aware scheduling in manufacturing companies.

In contrast to the works mentioned above, this work focuses on

the optimization potential which arises from variable energy prices

in day-ahead markets. We give a modelling approach for optimizing

production schedules of complex production processes instead of

single machines. The approach is used to gain first insights for the

potential of saving energy costs by taking advantage of flexibilities

in production combined with variability of energy prices.

3 MODELING FRAMEWORK
Industrial production processes are defined by devices, storage

units, energy and material flows, and technical or organizational

constraints. In this paper, we propose a comprehensive framework

to model production processes as a MILP that can be used for

process scheduling with minimized energy costs. In this section,

we first describe the main components of our abstract model for an

industrial plant. Then, we explain how they are represented in the

mathematical model.

3.1 Model Components
We consider production processes in industrial facilities with con-

tinuous production and develop a simple abstract model which is

powerful enough to describe many relevant degrees of freedom

and restrictions for scheduling. The model consists of a set of de-

vices D, a set of storages S, and a set of fixed consumers F that

are connected by material and energy flows like a directed graph.

Additional constraints for scheduling are specified by a set of global

restrictions G. In the following, we describe the model components

in detail.

3.1.1 Devices D. Devices consume and produce goods and power.

The input and output volumes of goods and power depend on the

operation mode of the device. The run times and the operation

modes constitute the degrees of freedom of our scheduling problem.

Various limitations can restrict the set of possible schedules of a

device, e.g., prohibited or mandatory run times, preparation and

waiting times before and after runs, maximum number of runs, or

minimum and maximum production within a run or during the

optimization interval.

3.1.2 Storages S. Storages store goods or energy before and after

devices in the production process. They cause time dependencies

in the model, increasing the complexity of the scheduling problem.

However, sufficiently large storages between devices decouple their

operation in time and generate scheduling flexibility. Like devices,

storages are subject to a set of restrictions, e.g., minimum and

maximum level, optional production targets at different points in

time, and starting levels.

3.1.3 Fixed Consumers F . Fixed consumers are unscheduled parts

of the production process. They can describe constant energy de-

mands and supply of goods needed for production. They can be

active only at a specific point in time or during longer time inter-

vals. Fixed energy demands increase the energy costs only by a

constant addend, but can be important for compliance with global

restrictions.

3.1.4 Global Restrictions G. Global restrictions are constraints that
cannot be specified as a property of a single device, e.g., restrictions

that apply to multiple devices at the same time. The model currently

supports mutual exclusion of arbitrary subsets of devices and global

energy and power limits.

3.2 The Mathematical Model
The general problem of computing a schedule for a given production

process and a time series of energy prices with minimum energy

cost is NP-hard. We provide a proof for that in Appendix A. This
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Table 1: Global parameters.

Parameter Definition

T , l Index set of all time slots (numbers 1 to

|T |) and length of a time slot

D,S, F ,G Sets of devices, storages, fixed con-

sumers, global restrictions

ct Energy price in time slot t

Table 2: Variables.

Variable Type Definition

xdt ,m binary Does device d run in time slot t with
modem?

sdt binary Does a run of device d start at the be-

ginning of time slot t?

edt binary Does a run of device d end at the end of

time slot t?

kdt ,s real Cumulative production of the current

run of device d after time slot t for out-
put storage s .

f st real Fill level of storage s at the end of time

slot t .

rdt ,m real Production rate of device d in continu-

ous modem during time slot t .

property makes the problem very unlikely to be solved by algo-

rithms with polynomial runtime. Therefore, we use MILP to solve

the problem although MILP solving algorithms have exponential

runtime in general.

In the following, we present global parameters, variables, re-

strictions, and the objective function of our MILP and discuss its

design.

3.2.1 Global Parameters. The MILP computes an optimized sched-

ule for an optimization interval. Like in other MILP models for

similar problems [1, 2, 14], the optimization interval is divided into

a set of time slots T and all time slots t ∈ T have the same duration

l . However, the latter can be easily relaxed. Energy price forecasts

take a fixed value during time slots and are given by ct . Table 1
summarizes all global parameters of the MILP.

3.2.2 Variables. Every device d is modeled with three binary vari-

ables and one continuous variable per time slot t . The binary vari-

able xdt ,m indicates whether a device d runs during time slot t .

Moreover, the continuous variable rdt ,m indicates the rate of device

d when it works in operation modem in time slot t .

The binary variable sdt indicates whether a run of a device d be-

gins at the start of the time slot t . The binary variable edt indicates

whether a run of a device d ends at the end of time slot t . The vari-
able rdt ,m indicates the operation modem of a device d in time slot

t . The continuous variable kdt ,s captures the cumulative production

of device d for its connected storage s from the beginning of its run

until the end of the current time slot t . The continuous variable f st

captures the fill state of storage s at the end of time slot t . Table 2
gives a summary of the used variables.

3.2.3 Restrictions. Wefirst discuss implicit restrictions of ourmodel

and then explicit restrictions for devices, storages, fixed consumers,

and global restrictions, which were all mentioned in Section 3.1

that are enforced by additional inequalities.

Implicit Restrictions. An essential restriction of our model is that

devices run in the same operation mode during a time slot. This

limitation facilitates modeling of storages. Their fill states at the end

of a time slot can be computed from the level at the beginning of the

same time slot and the sum of all devices which charge or discharge

the storage during that slot. Furthermore, it facilitates a simple

restriction for minimum and maximum fill states. As devices run for

entire time slots with constant rates, storage levels are increased or

decreased linearly during a time slot. Therefore, ensuring minimum

and maximum fill levels at the ends of all time slots is sufficient to

comply with restrictions also within time slots.

Technical Restrictions. Some inequalities are needed to enforce

the semantics of the variables mentioned in Section 3.2.2. They are

presented in Appendix B as they are of technical nature and are

not used to model features.

Device Restrictions. Devices may be connected to several storages

from which they receive input or to which they deliver output. We

denote the set of all storages of a device d , to which it delivers

output, by Od
. The restrictions for a device d require parameters

given in Table 3 and are expressed as follows:∑
t ∈T

sdt ≤ ndstar t (1)

∀o ∈ Od
: wd

o,min

≤
∑
t ∈T

l ·
©­«

∑
m∈Ms

xdt ,m ·m(o) +
∑

m∈Mc

rdt ,m · effdo,m
ª®¬

≤ wd
o,max

(2)

∀s ∈ Od∀t ∈ T : kdt ,s ≤ vds ,max (3)

∀s ∈ Od∀t ∈ T : |T | · l ·Maxd · (edt − 1) ≤ kdt ,s −vds ,min (4)

∀t ∈ Tmust :
∑

m∈Ms∪Mc

xdt ,m = 1 (5)

∀t ∈ Tf orb :

∑
m∈Ms∪Mc

xdt ,m = 0 (6)

Inequation (1) guarantees that the number of starts, which is also

the number of runs, cannot exceed ndstar t . While Inequation (2)

holds, the global production for every output fullfills the demanded

minimum andmaximum production. Inequation (3) ensures that the

cumulative production of a run stays below the maximum allowed

production. Inequation (4) implies that the cumulative production

of the run is larger than the minimum production per run if a

run finishes in the respective time slot. Mandatory and prohibited

times can be encoded with (5) and (6) by forcing the respective run

variables to be 0 or 1.
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Table 3: Device parameters.

Parameter Definition

ndstar t , c
d
star t Maximum number of runs and startup

cost of device d

wd
s ,max ,w

d
s ,min Maximum/minimum global production

for output storage s of device d

vds ,max , v
d
s ,min Maximum/minimum production per

run for output storage s of device d

Td
must , T

d
f orb Set of time slots in which device d

must/must not run

tdlead , t
d
over Number of time slots device d has to

wait before/after a run

Md
s Set of semi-continuous modes of device

d . A semi-continuous mode is a map-

ping of inputs/outputs of the device to

production rates.

Md
c Set of continuous modes of device

d . A continuous mode m is a 2-

tuple withmmin,mmax being the min-

imal/maximal production rate in this

mode.

eff
d
s ,m The factor of production rate of contin-

uous modem to procution input/output

of storage s

Od
Set of output storages of device d

Maxd A number which is bigger than the pro-

duction to all outputs if the machines

runs the whole planning horizon

Pdm Power input of device d in semi-

continuous modem or energy efficiency

for continuous modem

Table 4: Storage parameters.

Parameter Definition

f smin , f
s
max Minimum/maximum fill level of storage

s

f s
0

Initial fill level of storage s

f sprod Target fill level of storage s at the end
of the planning horizon

Is
, Os

Set of charging/discharging devices of

storage s

Lead time before the run of a device can be modeled by the

inequality:

sdt ≤ 1 −
∑

m∈Ms∪Mc

xdt ′,m (7)

which must hold for all t ∈ T and all t ′ with t − tdlead ≤ t ′ ≤ t − 1.

Overrun after a run can be modeled analogously.

Restrictions for Storages. Storages are charged and discharged by

devices or fixed consumers. The set of all devices charging a storage

Table 5: Parameters for fixed consumers.

Parameter Definition

T F
con Set of time slots, in which fixed con-

sumer F is active

RFS Consumption rate of fixed consumer F
from storage S

PF Power input of fixed consumer F

Table 6: Parameters for global restrictions.

Parameter Definition

T R
lim Set of time slots, in which global restric-

tion R must hold

ERmax , Pmax (R) Maximum amount of energy or peak

power for global restriction R

DR
Set of devices, of which at most can run

at the same time by global restriction R

is its set of input devices Is
and the set of all devices discharging

it is its set of output devices Os
. Fixed consumers may be used to

model constant charging or discharging of a storage.

The new fill level of a storage s at the end of a time slot t is given
by

∀t ∈ T : f st = f st−1

+
∑
i ∈Is

©­«
∑

m∈Mi
s

l ·m(s) · x it ,m+
∑

m∈Mi
c

l · r it ,m · effis ,m
ª®¬

−
∑
o∈Os

©­«
∑

m∈Mo
s

l ·m(s) · xot ,m+
∑

m∈Mo
c

l · rot ,m · effos ,m
ª®¬

−
∑

F ∈F:t ∈TF
con

RFs .

(8)

The equation considers the charging of a storage by all its input

devices, the discharging by all its output devices, and the charging

or discharging by all fixed consumers that are active in time slot t .
If an active fixed consumer F does not charge or discharge a storage

s , this is expressed by RFs = 0.

Storage level and production targets can be expressed by the

following inequality:

f s
|T |

≥ f sprod (9)

∀t ∈ T : f smin ≤ ft ≤ f smax (10)

Global Restrictions. A global restriction R enforcing a maximum

of used energy (11), maximum peak power (12), or mutual exclu-

sion of at most k devices of a set of devices (13) is implemented,
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depending on the respective type, with the following inequations:∑
t ∈TR

lim

∑
d ∈D

©­«
∑

m∈Md
s

xdt ,m · Pdm · l +
∑

m∈Md
r

rdt ,m · Pdm · l
ª®¬ ≤ ERmax

(11)

t ∈ T R
lim :

∑
d ∈D

©­«
∑

m∈Md
s

xdt ,m · Pdm +
∑

m∈Md
r

rdt ,m · Pdm
ª®¬ ≤ PRmax

(12)

t ∈ T R
lim :

∑
d ∈DR

∑
m∈Md

s ∪M
d
r

xdt ,m ≤ k

(13)

3.2.4 Objective Function. The objective is to minimize the cost

function, while complying with all the restrictions of the model,

which is given by∑
F ∈F

∑
t ∈TF

con

PF · ct · l +
∑
t ∈T

∑
d ∈D

sdt · cdstar t

+
∑

m∈Md
s

xdt ,m · ct ·P
d
m ·l

+
∑

m∈Md
c

rdt ,m · ct ·P
d
m ·l

(14)

3.2.5 Discussion. In contrast to most other works on this field, we

specified the model using only binary and real valued variables.

Current MILP solvers benefit from this simplification due to the

effectiveness of cut generation and the benefits of binary variables

in branch-and-bound algorithms. Therefore, our MILP formulation

can be solved rather efficiently by appropriate solvers.

The rates of a device d are preferentially modeled with a single

mode and a continuous rate rdt ,m for each time slot t orwithmultiple

modes and a fixed rate for each mode.

4 EVALUATION
In this section, we evaluate the effect of our proposed optimization

method. To that end, we first consider a model of a cement plant

from literature and real day-ahead energy prices. For comparison

purposes, we compute a default schedule which is optimized for

constant energy prices. We illustrate the nature of a schedule and

its impact on storages. We study schedules optimized for variable

energy prices, show that they reduce energy costs compared to

default schedules, in particular if sufficient scheduling flexibility is

available, and that they exhibit more variable storage levels. Then,

we introduce optimization with look-ahead and demonstrate that

it can further reduce energy costs. We also show that the savings

potential depends on storage sizes and energy price variability.

Finally, we report on the runtime performance of the optimization

programs.

4.1 Model Description
We describe the model of the production process and the energy

prices used for the optimization case study.

4.1.1 Cement Plant Model. Our evaluation is based on the cement

plant model described in [1]. Its complexity is rather low. Therefore,

Figure 1: Process of a cement plant [1].
Table 7: Device parameters [1].

Device Electrical Material Maximum

demand efficiency Rate

Crusher 0.0016MWh/t 1 200 t/h

Raw mill 0.01MWh/t 0.8 200 t/h

Clinker production 0.017MWh/t 1.52 95 t/h

Grinder 0.033MWh/t 0.95 200 t/h

Table 8: Storage parameters [1].

Storage Min. level Max. level

Blending bed 200 t 1 800 t

Raw meal silo 200 t 1 800 t

Clinker storage 2 000 t 18 000 t

Cement silo 2 000 t 18 000 t

only a subset of the features of our modeling framework needs to

be leveraged. However, cement production is an energy-intensive

process, for which scheduling optimization may be very helpful

and effective to save energy costs.

An overview of the cement plant model is depicted in Figure 1.

The raw material is crushed and stored in a blending bed. From

there it is ground by a raw mill and filled into the raw meal silo

from where it is taken for clinker production. In the last step, the

cement is ground from the material in the clinker silo and stored in

a cement silo where it can be picked up on demand.

The parameters of these devices and storages are compiled in

Tables 7 and 8. Table 7 shows the energy needed by a device to pro-

duce one ton of its output material. Crusher, raw mill, and grinder

have variable, continuous production rates with a maximum of

200 t/h. The grinder is the most energy-intensive process followed

by the clinker production. However, the latter must continuously

run at its maximum rate so that it does not provide any scheduling

flexibility. The raw mill and especially the crusher require substan-

tially less energy. The table also shows the material efficiencies of

the devices, i.e., the factor of how much input material is needed

to produce a specific amount of output material. Instead of a pro-

duction target for the entire factory, a constant cement demand of
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100 t/h is specified. Detailed technical information about the coal

mill and the coal powder silo are not provided in [1]. Therefore, we

omit that part of the process in the evaluation.

We model the cement plant using time slots with a duration of 1

hour because price forecasts are available on a hourly base. This

granularity is sufficient to compute the minimum energy costs as

rates are assumed to be continuous in ourmodel. Shorter or variable-

length time slots would not increase the optimization potential.

4.2 Energy Prices
Instead of price forecasts, our evaluation is based on historical day-

ahead prices. We use spot market prices of the year 2018 provided

by Nord Pool [12] for the day-ahead market in western Denmark

(DK1).
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Figure 2: Default schedule obtained from optimization for
constant energy prices.

4.3 Default Schedule
We derive a default schedule which is optimized for constant en-

ergy prices. To that end, we choose a constant energy price of

30e/MWh. For times between 7 pm and 7 am we add a penalty

of 10e/h and running device to respect increased operation costs

due to shift work at night. This is only needed to obtain a schedule

which preferentially runs between 7 am and 7 pm and has no im-

pact on real energy costs. Based on this input, an optimized default

schedule is computed. The real energy cost of the default schedule

are computed by taking its run times with desired energy prices

into account instead of constant energy prices.

The resulting run times of the devices are illustrated in Fig-

ure 2(a). The time slots are indicated on the x-axis and the height of

the bars represents the production rate in the respective time slot.

The crusher and the raw mill run preferentially between 7 am and

9 pm plus in the early morning hours to get the plant working. The

clinker production runs permanently as this is a model-inherent

requirement. The cement grinder basically works in lock step with

the clinker production because the produced clinker is just enough

for the demanded cement output of the factory and there is not

enough material in the clinker storage so that the grinder cannot

do any advance work.

Figure 2(b) shows the corresponding fill states of the storage

units in the cement plant model. All minimum storage levels are

met, i.e., 200 t for blending bed and raw meal silo, and 2 000 t for

clinker storage and cement silo. The blending bed is mostly filled

to its minimum as crusher and raw mill almost work in lock step.

The raw meal silo is filled between 7 am and 7 pm and drained

afterwards. As mentioned above, clinker production and cement

silo are filled only to their minimum.

As the schedule in Figure 2(a) and the storage fill levels in Fig-

ure 2(b) are rather complex and difficult to interpret, we focus in

the remainder of the paper on the fill state of the cement silo to

discuss effects of different schedules. The reason for that choice

is that the cement silo is filled by the grinder which is the most

energy-intensive device.

4.4 Single-Day Optimization
We first evaluate our optimization model for the day 2018-05-07

whose energy prices are compiled in Figure 3(a).

We presume that the plant starts with the minimum allowed

fill states for all storages as indicated in the model description. We

compute an optimized schedule and illustrate its effect by the fill

state of the cement silo in Figure 3(b). It is exactly the same curve

as the one for the default schedule. The reason for that is that the

cement plant started with the minimum fill state for both the clinker

storage and cement silo and that the clinker storage is constantly

filled with just as much clinker as needed for the constant cement

output. Therefore, both storages remain at their minimum level

and the grinder cannot do any advance work but needs to work in

lock step with the clinker production. As a result, there is hardly

any flexibility for the schedule of the grinder. Therefore, schedule

optimization is only little effective. Table 9 shows that only 3.11%

of the energy costs can be saved by the optimized schedule.

It is very unfortunate that the most cost-intensive device of

the production process cannot be moved in time. To avoid that
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Figure 3: Investigation of various default and optimized
schedules for 2018-05-07 with different start fill states for
the clinker storage.

Table 9: Energy costs and savings for two different fill states
of the clinker storage at start; optimization is without look-
ahead.

Fill state Schedule Total cost Abs. sav. Rel. sav.

2 000 t Default 5 365.22e — —

2 000 t Optimized 5 198.30e 166.92e 3.11%

10 000 t Default 5 232.29e — —

10 000 t Optimized 4 494.37e 737.92e 14.10%

phenomenon, we now consider the model with a start fill state

of 10 000 t for the clinker storage and compute a new default and

optimized schedule. Figure 3(b) shows that the default schedule

now fills the cement silo before 7 pm just as much that the grinder

does not need to run anymore until the end of the day. This also

reduces the energy cost for the default schedule by 2.48%. However,

this improvement is rather by chance as the grinder accidentally

runs at cheaper times, which may be different on another day.

Table 10: Energy costs and savings for the week from 2018-
03-03 until 2018-03-09.

Schedule Total cost Abs. sav. Rel. sav.

Default 46 833.14e — —

Opt. w/o look-ahead 42 717.43e 4 115.71e 8.79%

Opt. w/ 1 day look-ahead 41 452.72e 5 380.42e 11.49%

Opt. w/ 2 days look-ahead 41 077.39e 5 755.75e 12.29%

Opt. w/ 6 days look-ahead 41 000.44e 5 832.70e 12.45%

In contrast, the optimized schedule intentionally leverages cheap

times in the morning and in the afternoon to run the grinder filling

the cement silo. Again, the fill state of the cement silo returns to

its allowed minimum at the end of the day. Table 9 shows that the

optimized schedule now saves 14.10% compared to the new and

cheaper default schedule.

Figure 3(a) visualizes the power consumption for a start fill state

of the clinker storage of 10 000 t for the default schedule and the

optimized schedule. Based on this information, energy is bought

at the day-ahead market. The time-dependent power consumption

shows the effect of the schedule on required energy. The optimized

schedule reduces power consumption when energy prices are high-

est, which leads to lowest total energy cost according to Table 9.

However, optimization can reduce power consumption only to a

certain extent during times of high energy prices as conditions like

production goals and bounds for storage levels at the end of the

day must be met.

4.5 Optimization with Look-Ahead
We observe that the single-day optimization leads to minimum

storage fill states at the end of the day. When planning consecutive

days, this implies that work cannot be done a day in advance even

if price forecasts indicate more expensive prices the day after. To

get rid of this artificial restriction, we introduce optimization with

look-ahead. That means, when we plan the schedule for the next

day, we consider n additional days for the optimization, i. e., the op-

timization looks ahead into the future. However, only the schedule

for the next day is taken as a result and the fill states at the end of

that day are used as start states for optimizing the day after using

the same method. Thus, day-ahead optimization with look-ahead

requires energy price forecasts for n + 1 days as well as predicted
storage fill levels for the end of the current day.

In the following, we evaluate the benefit of optimization with

look-ahead based on an interval of one week and one year, respec-

tively. We apply the method as follows. If we apply optimization

with a look-ahead of n days and there are onlym < n + 1 days left
in the interval, then we reduce the look-ahead tom − 1 days. This

is needed to avoid unnecessarily large storage levels and energy

prices at the end of the considered interval.

4.5.1 Evaluation over One Week. We evaluate optimization with

look-ahead based on the energy prices of the week from 2018-03-

03 until 2018-03-09 which are depicted in Figure 4(a). Figure 4(b)

illustrates the fill states of the cement silo for the default schedule

and for schedules optimized with a look-ahead of 0, 1, 2, and 6 days.
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Figure 4: Investigation of the week from 2018-03-03 until
2018-03-09.

The default schedule results in periodic fill states. The schedule

optimized without look-ahead also exhibits a daily pattern but with

different peaks. In contrast, schedules optimized with 1 or more

days look-ahead can fill storages to a larger extent and keep them

filled for longer time than a single day. The maximum fill level

increases with the size of the look-ahead. In all cases, the cement

silo is drained to its minimum fill state at the end of the week. This

is a required feature as any larger fill states would imply more

energy consumed by the grinder.

Table 10 compiles the total energy costs for the week from 2018-

03-03 until 2018-03-09. It shows them for the default schedule and

for schedules optimized with a different numbers days look-ahead.

We observe that optimization without look-ahead reduces the en-

ergy costs compared to the default schedule significantly (8.8%).

Optimization with 1 or more days look-ahead reduces energy costs

even further (11.5%–12.5%). However, energy price forecasts for

more than 2 days are less precise, which would degrade the quality

of the planning result in practice. Thus, taking only the near future

into account makes the method less susceptible to forecast errors.

Therefore, we consider only 1 day look-ahead from Section 4.6 on.

4.5.2 Evaluation over One Year. We now apply optimization with

look-ahead to the energy prices of the entire year 2018 to assess the

benefit of the method in the long run. Table 11 compiles the total

energy costs for that year. We observe an energy cost reduction of

Table 11: Energy costs and savings through schedule opti-
mization for the year 2018.

Schedule Total cost Abs. sav. Rel. sav.

Default 2 524 375.50e — —

Opt. w/o look-ahead 2 323 047.60e 201 327.89e 7.98%

Opt. w/ 1 day look-ahead 2 258 921.07e 265 454.43e 10.52%

Opt. w/ 2 days look-ahead 2 242 216.13e 282 159.38e 11.18%

Opt. w/ 6 days look-ahead 2 224 976.50e 299 399.00e 11.86%
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Figure 5: Daily energy savings in 2018 for schedules opti-
mized with and without look-ahead relative to the energy
costs of default schedules.

about 8.0% for single-day optimization and about 10.5%–11.9% for

optimization with look-ahead.

To better understand the effect of schedules optimized with and

without look-ahead, we compare their energy costs to the one of

default schedules on individual days. To that end, we study relative

energy savings per day. Figure 5 quantifies how they are distributed

for the days of the year 2018. The figure indicates the percentage

of days with relative energy savings larger than a given value. For

optimization without look-ahead, energy is saved on any day of

the year. In 30% of the days, energy savings are larger than 10%.

In contrast, for optimization with 1 day look-ahead, 28% of the

days exhibit slightly larger energy costs than those of the default

schedule, but 49% of the days have energy costs that are 10% cheaper

than those of the default schedule. The reason for increased energy

costs on some days is that work is carried out in advance due to

cheap energy prices, i.e., electricity demand is shifted across day

boundaries. We omit the energy savings curves for 2 and 6 days

look-ahead as they are very similar to the one for 1 day look-ahead.

4.6 Impact of Storage Sizes
Optimization potential depends on how much energy consumption

can be shifted over time. It depends on scheduling flexibility which

is limited through storage sizes. To underline this proposition, we

reduce the maximum fill level for all storages to the maximum

values that were taken under the default schedule. Those are 320 t

for the blending bed, 922 t for the raw meal silo, 10 000 t for the

clinker storage, and 2 500 t for the cement silo.
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Table 12: Energy costs and savings through schedule opti-
mization for the year 2018 depending on the storage sizes;
optimization leverages a look-ahead of 1 day.

Storage Schedule Total cost Abs. sav. Rel. sav.

Standard Default 2 524 375.50e — —

Standard Optimized 2 258 921.07e 265 454.43e 10.52%

Reduced Optimized 2 333 514.02e 190 861.48e 7.56%

Table 12 compiles the total energy costs for 2018, for different

storage sizes, and for different schedules. By construction of the

experiment, reducing the storage sizes does not change the energy

costs of the default schedule. For schedules optimized with 1 day

look-ahead, the energy costs can be now reduced only by 7.56% for

the smaller storage limits instead of 10.52% for the normal storage

limits compared to the default schedule. Thus, storage sizes can

significantly limit the optimization potential for energy costs.
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Figure 6: Impact of energy price variability on optimal
schedules.

Table 13: Energy costs and relative savings through opti-
mized schedules for the weeks from 2018-07-11 until 2018-
07-17 (low variability, std. dev. 4.41) and from 2018-10-13 un-
til 2018-10-19 (high variability, std. dev. 24.98); optimization
leverages a look-ahead of 1 day.

Week Schedule Total cost Abs. sav. Rel. sav.

Default 57 698.34e — —

Low variability
Optimized 55 520.07e 2 178.27e 3.76%

Default 58 534.67e — —

High variability
Optimized 46 994.13e 11 540.54e 19.72%

Table 14: Computation times for different optimization in-
tervals.

Optimization interval Variables Avg. computation time

1 day 652 313 ms

2 days 1 300 606 ms

3 days 1 948 1 009 ms

7 days 4 540 5 729 ms

4.7 Impact of Energy Price Variability
It is obvious that constant energy prices do not offer any potential

for energy cost reduction when optimizing schedules based on

energy prices. The potential for energy cost reduction obviously

depends on energy price variability. To obtain an impression of the

savings potential in the presence of realistic energy prices with

low and high variability, we choose the weeks from 2018 with least

and most variable energy prices. Their energy costs are given in

Figure 6(a). The week from 2018-07-11 until 2018-07-17 has energy

prices with a standard deviation of 4.41ewhile the week from 2018-

10-13 until 2018-10-19 has energy prices with a standard deviation of

24.98 e. We optimize schedules using 1 day look-ahead. Figure 6(b)

visualizes them by the fill states of the cement silo. Both curves

fluctuate as storages are filled during times of low energy cost,

no matter how strong the price variability is. However, looking at

Table 13, we recognize that energy costs of the default schedule can

be reduced only by 3.76% for the week with little variability while

they can be reduced by 19.72% for the week with high variability.

Thus, if future energy prices will be more variable than today, we

can expect from schedule optimization larger benefits over the year

than evaluated for 2018.

4.8 Performance Considerations
The presented case study was executed on an Intel Core i5-8250U

CPU @ 1.60GHz, using 8 virtual cores and 16GB memory. The

software for constructing the models and invoking the mathemati-

cal programming solver was implemented in Java 8. We used IBM

CPLEX 12.8.0.0 to solve the MILPs. The solving process needed

approximately 1GB memory for all case studies. The computation

time for constructing a model and solving it using CPLEX increased

with the duration of the optimization interval as the number of
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variables increased. This is illustrated in Table 14. Longer look-

ahead requires longer optimization intervals and more variables.

However, we recommend to utilize only 1 day look-ahead as this is

good tradeoff between savings improvements and precise energy

price forecasts.

We point out that the presented computation times are specific

to the considered case study. They may be significantly larger when

the model is more complex to optimize.

5 CONCLUSION
In this work, we proposed a comprehensive framework to model

an industrial plant including devices, storage units, dependencies,

restrictions, and production targets for the purpose of energy cost

reduction.We formulated the optimization program as aMILP. For a

time series of day-ahead energy prices, the MILP computes optimal

run times for the devices to minimize energy costs. To demonstrate

the applicability of the proposed framework, we modeled a cement

plant from the literature [1] and computed optimal schedules based

on real day-ahead energy prices.

The results showed that this method works, that storages need

to have appropriate fill states, and that 8% of the energy costs could

be saved in 2018. We proposed optimization with look-ahead to

cope with the problem that empty storages at the end of the next

day may be counterproductive for the planning of the day after. It

essentially extends the optimization interval but leverages only the

planning for the next day which then may have non-empty storages

at its end. We showed that this approach can utilize large storages

to a larger extent and over a longer duration than optimization

without look-ahead. It allowed improved energy cost reduction of

10.5%–11.9% in 2018, depending on the duration of the look-ahead.

In addition, we showed that the optimization potential depends

on storage sizes and energy price variability. The run time for the

MILP was rather short, mostly below 1 second although a large

number of variables were required.

From these results, we conclude that energy-intensive enter-

prises can save considerable energy costs using the proposed sched-

ule optimization when purchasing energy from day-ahead markets

with highly variable energy prices.

Futurework encompasses themodeling and optimization ofmore

complex plants. In particular, we will extend our model to account

for time- or mode-dependent operating costs for devices which

may reflect, e.g., shift work at night, and other additional costs.

Additional costs can influence optimal schedules as they should

lead to least overall costs. In our case study, additional costs were

not taken into account to lack of information in the model from

literature. Criteria to predict scheduling flexibility and optimization

complexity may be helpful for efficient modeling and optimization.

Furthermore, storage dimensioning and appropriate start states

to leverage flexibilities for energy cost reduction may be an issue.

Additionally, the robustness of the proposed solution regarding

forecast errors will be investigated.
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APPENDIX
A PROOF OF NP-HARDNESS
To proof the NP-hardness of the considered scheduling problem, it

must first be formulated as a decision problem.

Definition 1 (Energy-Scheduling).

Given:A system of devices, storages, fixed consumers, and restrictions,

defined as in Section 3, given by the respective parameters, energy

prices for the entire planning horizon, and maximal cost C ∈ Z.
Question: Is there a schedule which fullfils all restrictions imposed

by the given model while inducing costs of at most C?

The following problem is also needed for our proof.

Definition 2 (Knapsack).

Given: Objects (w1,v1), ..., (wn,vn ), consisting of weight and value,
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a maximum weightW ∈ N and a minimum value N ∈ N
Question: Is it possible to choose a subset of objects such that the sum
of the weights of its elements does not exceedW while the sum of the

values of its elements is at least N ?

Knapsack is a well known NP-complete problem, a fact which

was first proven by Karp [6].

Theorem A.1. Energy-Scheduling is NP-hard.

Proof. By giving a polynomial-time reduction from Knapsack

to Energy-Scheduling, NP-completeness of Energy-Scheduling

can be proven. Let (w1,v1), ..., (wn,vn ) be an instance of Knap-

sack. Construct one device per object (wi ,vi ). This device has only
one continuous mode. The maximum rate of this mode is normal-

ized such that the device will produce vi units of end products if

the device runs for the entire optimization interval. The energy

consumption of the mode is also normalized such thatwi units of

energy are consumed if the device runs for the entire optimization

interval. The minimal production per run is set to vi . All these de-
vices are connected to one common storage. The production target

of this storage is set to N . Energy prices are set to one unit during

the entire optimization interval. The maximum cost C is set toW .

If there is a subset of objects which fulfills the requirements of

Knapsack, there is a schedule for the constructed model with costs

of at mostW . Such a schedule can be constructed by letting work

the respective devices of the objects contained in the subset for

the entire optimization interval. All other devices do not work at

all. Through the normalization of production rates corresponding

to the values of the respective objects, the production target of

the common storage is fulfilled. By the same argument, the cost

induced by this schedule is at mostW .

For the contrary, suppose there is no subset of objects with the

needed requirement, but there is a schedule for the constructed

model which fulfills the production target and maximum cost re-

striction. It is implied by the minimal production per run that a

device can only work for the whole planning horizon or not at all.

By taking the corresponding objects of the running devices in this

schedule, one gets due to the normalization of rates and energy

demands a subset of objects with a sum of weights of at mostW
and a sum of values of at least N . This contradicts the assumption

that there is no such subset, so there cannot be such a schedule

for the constructed model. To see the polynomial run time of this

construction, observe that only one device is constructed per object

with one additional common storage and C is just a copy ofW .

So the construction is indeed a polynomial-time reduction from

Knapsack to Energy-Scheduling, which completes the proof of

NP-hardness. □

If there is an algorithm which computes the optimal schedule in

polynomial time, it could be used to decide Energy-Scheduling,

which would imply the commonly as unlikely seen statement of

P = NP .

B MILP-REPRESENTATION OF ADDITIONAL
CONSTRAINTS

Auxiliary parts of the MILP are presented in this section. They

enforce the intended semantics of the variables presented in Table 2.

In every valid assignment of variables, for a device d must hold that

start- and end-of-run variables, which are set to 1, must alternate.

Additionally, the first of these variables, which is set to 1, must be

a start-of-run variable while the last one has to be an end-of-run

variable. The following inequalities implement these restrictions.

∀t ∈ T : 0 ≤
∑

t ′∈T, t ′≤t

sdt ′ −
∑

t ′∈T, t ′<t

edt ′ ≤ 1 (15)

∀t ∈ T :

∑
t ′∈T, t ′≤t

edt ′ ≤
∑

t ′∈T, t ′≤t

sdt ′ (16)

∀t ∈ T : 1 +
∑

t ′∈T, t ′≤t

edt ′ ≥
∑

t ′∈T, t ′≤t

sdt ′ (17)∑
t ′∈T

edt ′ =
∑
t ′∈T

sdt ′ (18)

That a device can only run in at most one mode in every slot is

modeled by

∀t ∈ T :

∑
m∈Ms∪Mc

xdt ,m ≤ 1. (19)

The semantics of the run variables for every slot demand that

they are only set to 1 if and only if there is a start-of-run variable set

to 1 in an earlier slot and no end-of-run variable in a slot between.

Because at most one of the run variables of a single device in a given

slot can be set to 1, the sum of these variables can be understood

as a single binary variable itself.

∀t ∈ T : sdt ≤
∑

m∈Ms∪Mc

xdt ,m

(20)

∀t ∈ T \ {1} : −et−1 +
∑

m∈Ms∪Mc

xdt−1,m ≤
∑

m∈Ms∪Mc

xdt ,m

(21)

∀t ∈ T \ {1} : −st −
∑

m∈Ms∪Mc

xdt−1,m ≤
∑

m∈Ms∪Mc

xdt ,m

(22)

∀t ∈ T \ {1} : et−1 − st ≤ 1 −
∑

m∈Ms∪Mc

xdt ,m

(23)∑
m∈Ms∪Mc

xd
1,m ≤ sd

1
(24)

At last, the semantics of the cumulative-production variables

need to grow over a run dependent on the production rate in every

time slot and should be set to 0 when a run ends. After the first

slot in the optimization interval, the cumulative variable of every

device should be initialized with the production of the respective

device in the first slot. Let s ∈ O(A) be an output of the device d .
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∀t ∈ T \ {1} : kdt ,s − l ·
©­«

∑
m∈Ms

m(s) · xdt ,m +
∑

m∈Ms

rdt ,m
ª®¬

≤ n · l ·Maxd · (1 − edt−1)
(25)

∀t ∈ T \ {1} : l ·
©­«

∑
m∈Ms

m(s) · xdt ,m +
∑

m∈Mc

rdt ,m
ª®¬ − kdt ,s

≤ n · l ·Maxd · (1 − edt−1)
(26)

∀t ∈ T \ {1} :
©­«kdt−1,s + l · ©­«

∑
m∈Ms

m(s) · xdt ,m +
∑

m∈Mc

rdt ,m
ª®¬ª®¬ − kdt ,s

≤ n · l ·Maxd · edt−1
(27)

∀t ∈ T \ {1} : kdt ,s −
©­«kdt−1,s + l · ©­«

∑
m∈Ms

m(s) · xdt ,m +
∑

m∈Mc

rdt ,m
ª®¬ª®¬

≤ n · l ·Maxd · edt−1
(28)∑

m∈Ms

l ·m(s) · xd
1,m +

∑
m∈Mc

l · rd
1,m = k

d
1,s

(29)

For continuous modes, it must be enforced that the continuous

rate variable is 0 if and only if the run variable is set to 0 for the

respective mode in all time slots. Additionally, the rate must be

within the respective bounds of the mode.

∀t ∈ T∀m ∈ Md
c : rdt ,m ≤ mmax (30)

∀t ∈ T∀m ∈ Md
c : −rdt ,m +mmin ≤ mmax − (mmax · xdt ,m ) (31)

∀t ∈ T∀m ∈ Md
c : 0 ≤ rdt ,m ≤ mmax (32)
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