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Abstract—The variability of electrical energy prices at the spot
market incentivizes cost-optimized load scheduling. Based on day-
ahead price forecasts, energy costs can be considerably reduced
by shifting energy-intensive processes to times with lower energy
prices. While the mechanism of the market match demand and
supply, they currently do not consider technical limitations of the
electrical power grid. A large number of consumers scheduling
electrical loads according to the same price forecast could result
in congestion in the transmission or distribution systems.

We propose a mechanism for day-ahead scheduling that
enables negotiation of load profiles between multiple consumers
and an aggregator in compliance with overall power limits. We
present two mechanisms for an aggregator without knowledge
about internal details of the participants to achieve this goal and
compare the performance to the results of a centralized scheduler
with global knowledge.
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management,

I. INTRODUCTION

The increasing share of weather-dependent renewable power
generation leads to a large intraday variability of wholesale
energy prices. Shifting loads to times with lower energy prices
can considerably reduce energy costs and helps to increase the
use of renewable energy by improving the match of demand
and supply. Schedules of multiple consumers optimized for
the same price forecast can lead to extreme load peaks. The
mechanisms of the energy markets match the demand peaks
and the production peaks, so the optimization of schedules
based on price forecasts could be beneficial for both the
generation and consumption domains. However, it can lead
to problems in the transmission and distribution domains as
there is no guarantee that the physical grid is capable of
transporting the purchased energy volumes from generators
to the consumers.

We proposed a distributed control architecture for virtual
power plants [1] where participating enterprises locally opti-
mize their load schedules according to price forecasts provided
by an aggregator. The aggregator trades energy at the spot
market on behalf of the participating enterprises. However, if
the combined load profiles of a set of enterprises violate any
constraints, the aggregator needs to negotiate re-scheduling
with the affected enterprises.

In this work we propose mechanisms for a set of business
units to negotiate load profiles that reduce energy costs while

avoiding the violation of restrictions imposed by bottlenecks
in the power grid.

This paper is structured as follows. Section II discusses
related work. In Section III we present the context for the
optimization and an abstract model for enterprises with load
shifting capabilities. Section IV proposes two mechanisms for
load profile negotiation. In Section V we shows the scenario
and parameters for the evaluation and in Section VI we
evaluate the performance of the negotiation mechanism and
compare its results to an centralized scheduling approach with
global knowledge. Section VII concludes the paper.

II. RELATED WORK

Ibars et. al. present a distributed load management using
dynamic pricing [2]. The approach is based on a network con-
gestion game. The authors show that the system converges to
a stable equilibrium. Biegel et. al. [3] describe a receding hori-
zon control approach for moving shifting loads to minimize
costs for balancing energy while avoiding grid congestion.
Huang et. al. [4] propose a congestion management method for
distribution grids with a high penetration of electrical vehicles
and heat pumps. They use a decomposition-based optimiza-
tion. In [5] they present a real-time approach for congestion
management using flexible demand swap. Boroojeni et. al. [6]
propose an oblivious routing economic dispatch approach for
distribution grids. Bagemihl et. al. [7] describe a market-based
approach to increase the capacity of a distribution grid without
physical grid expansion. Hazra et. al. [8] propose a demand-
response mechanism for grid congestion management using
ant colony optimization. Sundstrom and Binding [9] propose a
method for the optimization of charging schedules for electric
vehicles while avoiding grid congestion.

Most work in the area of grid congestion management
is based on actual grid topologies and focuses on global
optimizations to avoid grid congestion. This paper uses a sim-
plified approach, limiting congestion to a single bottleneck and
focuses on interactive negotiation without global knowledge.

III. MODEL

In this section, we present the use case. We explain the
concept of load profiles and define the parameters for the
consumer model.
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A. Use Case

The grid connection of a consumer is limited in electrical
power by technical or contractual means. We denote this limit
as [, where c is a consumer. Due to limitations in the distri-
bution grid, similar restrictions apply to groups of consumers,
e.g., urban districts. As the sum of all individual power limits
can be larger than the limit for the group, a group of consumers
could exceed the group power limit L while still complying
with their individual limits, i.e., Zcec l. > L where C is
a set of consumers. This problem becomes more severe in
presence of price-optimized day-ahead planning when loads
of all flexible consumers are scheduled for the times with the
lowest energy price forecasts. However, day-ahead planning
usually involves an aggregator providing the forecasts and
trading at the energy markets. As an aggregator requires
load forecasts of all aggregated consumers, we propose a
mechanism for day-ahead demand-side management (DSM)
within the group the aggregated consumers.
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Fig. 1: Negotiation process between enterprise and aggregator during day-
ahead planning.

Figure 1 shows the negotiation process to ensure that
limitations for a group of consumers are complied with. The
aggregator distributes price forecasts for the day-ahead energy
market to the aggregated consumers (1). Each consumer
computes price-optimized schedules based on their model pa-
rameters using the price forecast received from the aggregator
(2). After the best schedule is selected, the consumers send the
load profiles to the aggregator (3). After receiving load profiles
from the consumers, the aggregator checks global constraints
(4). An example for a global constraint is a cumulative
power limit for a group of participants imposed by the grid
operator. If such a constraint is violated, the aggregator sends
a rescheduling request to the affected groups or individual
participants (5). The affected consumers perform planning and
optimization based on additional information provided by the

aggregator and submit new load profiles (6). Steps (4)—(6) are
repeated until the global constraints are no longer violated.
Finally, energy is traded at the day-ahead market (7).

B. Consumer Model and Load Profiles

A load profile is a time series of electrical load over a given
period. As we focus on day-ahead optimization, we chose a
period of 24 hours and a granularity of one hour. A time slot is
denoted as ¢ and the set of the time slots of a day is defined as
T :={0,...,23}. We denote the load profile of a consumer
c as ez, t € T, with an energy demand for each hour of a
day. The total energy demand of all consumers in time slot ¢
is limited by the group power limit L.

For our study we use an abstract model of a business
consumer with flexibility for load shifting. We do not con-
sider internal organization and dependencies among processes
within a consumer, but limit the model to energy and cost
parameters. The consumer is defined by a daily demand of
electrical energy FE., a power limit /%, and operational costs
A, The objective is to find a set of load profiles ¢!, t € T,
that satisfy the following conditions.
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Each load profile is associated with costs. F'¢ is the energy
price forecast for time slot ¢. A! gives the additional (non-
energy) operation costs of a consumer c in time slot ¢. The
total costs C. for a consumer c are given by

Co=) el -F' AL (4)
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IV. MECHANISMS

In this section, we present a linear program that computes
load profiles for each participant resulting in the lowest total
costs while complying with the group power limit. The linear
program needs global knowledge, i.e., it requires information
about internal details such as cost structures of all partici-
pants to compute the solution. However, aggregator operation
without such global knowledge of internal details about the
participating enterprises is an explicit goal of [1]. Therefore,
we propose two methods for load profile negotiation that work
without global knowledge. The sequential approval method
is based on a first-come-first-serve approach combined with
a compensation for swapping time slots. The simultaneous
approval method requests multiple load profiles per participant
to find an acceptable combination of load profiles.

A. Load Optimization Using Global Knowledge

The load profiles ef,t € T,c € C consist of continuous
variables that can be determined by the following linear
program.
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B. Sequential Approval of Load Profiles

For the sequential approval method, each submitted load
profile is individually approved after submission unless its
load combined with the previously approved load profiles
would exceed the group power limit. To resolve the violation,
all participants with acknowledged energy demand in the
respective time intervals compute alternative load profiles
avoiding the overloaded time slots ¢ € 7'. They submit load
profiles annotated with the additional costs resulting from
higher energy prices or increased operation costs in alternative
time intervals. The aggregator selects the combination of load
profiles with the lowest total additional costs. The process is
repeated until a load profile for each participant is approved.

A linear program is used to find an appropriate combination
of load profiles. The load profiles are selected such that
the sum of the additional costs, i.e., the differences between
the respective cheapest load profiles, of all enterprises is
minimized. If every consumer ¢ hands in n. load profiles,
let % be a binary variable which is true iff the i-th schedule
of enterprise ¢ € C is selected. Furthermore, let e?i be the
energy demand of load profile i of consumer c in slot ¢, C?
the total cost of consumer c for load profile 7 and Lt the group
power limit of slot .
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The inequations ensure that every consumer has exactly one
schedule approved and that the group power limit is not
exceeded in any time slot.

The participant triggering the violation compensates addi-
tional costs for participants with approved load profiles or
selects a different load profile if costs are lower compared
to the required compensation. While a participant can exag-
gerate the additional costs to generate additional revenue from
rescheduling, higher costs lead to a lower chance for a load
profile to be selected by the aggregator or accepted by the
participant that triggers the violation.

C. Simultaneous Approval of Load Profiles

For the sequential approach the order of load profile submis-
sions is important. Therefore late submissions of load profiles
are penalized and the cost increase is distributed unevenly
among the participants. This might lead to acceptance prob-
lems and prevent some enterprises from participating.

A straightforward implementation of an order-agnostic ne-
gotiation method consists of iterative energy price increases
for the overloaded time slots and requests for new load
profiles from all participants. However, this approach leads
to artificially high energy prices and experiments showed that
it fails to resolve violations for low group power limits while
the sequential approval method still succeeds. Therefore, we
propose a simultaneous approval method that works without
modified price forecasts.

The aggregator checks for limit violations after all par-
ticipants have submitted load profiles. In case of a limit
violation the aggregator requests an alternative schedule from
all participants, indicating the affected time slots ¢ € 7'. With
the original load profiles and the alternative load profiles, the
aggregator computes a combination not exceeding the limits.
If such a combination does not exist, the aggregator repeatedly
increases the number of requested load profiles per participant
until there is a combination of load profiles that complies with
the limits. The participants annotate the list of submitted load
profiles with a preference.

The optimal selection of load profiles is computed using a
linear program. If every consumer hands in n load profiles,
let 2% be a binary variable which is true iff the i-th schedule
of enterprise ¢ € C is selected. Furthermore, let ei’i be the
energy demand of load profile ¢ of consumer c in time slot ¢,
C! the total cost of consumer c for load profile i and L! the
group power limit of slot £.
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The weighting of load profiles by the number ¢ gives the load
profiles a preference by the order of submission. The consumer
c € C indicates that a load profile e is preferred over a load
profile e+,

V. EVALUATION MODEL

In this section we describe company-specific operational
costs and day-ahead forecasts used in our experiments. Finally,
we point out how load profiles are calculated for companies
that participate in the negotiation processes described in Sec-
tion IV-B and Section IV-C.



A. Operational Cost Factor

In the model described in Section III-B operating costs
At can be given per time slot for each consumer. For our
evaluation, we model the A’ as a dependency of the energy
demand ¢! and an operating cost factor f(f,c. We model the
operational cost factor f!o, c of a consumer c using an interval
of primary business hours and two intervals of secondary
business hours. The primary business hours start at time slot t2
and its duration is d? time slots. The secondary business hours
are dJ time slots before and after the the primary business
hours. During the primary business hours the operational cost
factor is f, . and 2- f, . during the secondary business hours.
Outside of primary and secondary business hours operational
costs are infinite, so business operation is not possible. The
additional operational costs are given by the operational cost
factor and the energy demand in the respective time slot:
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Fig. 2: Operation cost factor f . defined by parameters ¢, di, dg, and n.

An example of operating costs over time defined by those
parameters is given in Figure 2. The operating costs are twice
as large during secondary business hours compared to primary
business hours. During nonproductive hours, operating costs
are infinite.

For our evaluation we chose t# € {7,...,11}, d¢ =
8, and d¢ = 2. We define four classes of consumers
by (E¢, foc), E. € {1200kWh,3000kWh} and f,. €
{500€/MWh, 1000 €/MWh}. The individual power limit [,
is set to % in all time slots. Each starting time slot ¢£ is used
once per class resulting in a group size of 20.

B. Day-Ahead Price Forecast

The prices shown in Figure 3 are used as day-ahead price
forecast. While the actual prices are fictitious, the price level
and the development over the 24 hour period are typical for
the German day-ahead energy market.

C. Local Load Scheduling

The total costs of a schedule arise from the energy costs
associated with the load profile and the operation costs. The
price forecast is given as F'*, t € T, where F" is the predicted
price per MWh during time slot ¢.

45
40
35
30
25
20
15
10

5

0
1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 16 17 18 18 20 21 22 23 24

price (E/MWh)

time of day
Fig. 3: Day-ahead energy price forecast.

Data: T for 0 <t < 24, [%, E,

s Yeo

Result: ¢ for 0 <t < 24

t[] := list of times sorted ascending by value of T}
1=0
FE =FE,

while £ > 0 do

if £ > [! then
et =t
E=E-1
else
ezm =F
E:=0
1:=1+1

end

Algorithm 1: Cost-optimized local load scheduling.

As the hourly operation costs A% in our scenario depend
on the energy consumption the algorithm for producing cost-
optimized schedules is straightforward. The scheduling is
implemented using a greedy approach as shown in Algo-
rithm 1. A scheduler first computes the total operation costs
per kWh T} = F*' + f! c. At the time ¢ with the lowest
T¢, energy consumption ¢!, is set to the maximum allowed
by I%, proceeding with the second-lowest 7 and so on until
Zfio ! = E.. The total cost C,. of a schedule i is computed
according to Equation (4).

For the computation of alternative load profiles, the con-
sumers repeat Algorithm 1 with selectively reduced [% for the
affected time slots ¢ € 7. For the sequential approval method,
the consumers use I) = 0,Vt € T'. For the simultaneous
approval method, the consumers reduce I, for the affected time
slots ¢ € T’ by 1% iteratively.

VI. RESULTS

In this section we present the results of the evaluation. We
show the load profiles resulting from sequential and simulta-
neous approval and compare them to the global optimum. In
the evaluation scenario described in Section V, the sum of all
individual power limits is given by > .. 1% = 7000kW V¢ €
T. We use relative group power limits of 85%, 65%, and
55%, corresponding to L' € {5950 kW, 4550 kW, 3850 kW }

for all time slots. We show the cost increase compared to each



TABLE I: Relative total cost increase.

Group power limit
5950kW (85%) 4550kW (65%) 3850kW (55%)

Global optimum  0.03% 0.15% 4.40%
Sequential approval  0.07% 0.23% 6.01%
Simultaneous approval  0.04% 1.02% 12.12%

consumer’s preferred load profile, which would be possible
with a group power limit of L? 7000kW. Finally we
give an overview on the scheduling overhead caused by both
mechanisms.
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Fig. 4: Load profiles resulting from simultaneous approval, sequential ap-
proval, and global optimization at different group power limits.

A. Negotiation Results at 85% Relative Group Power Limit

The results for the load profile negotiation at a group power
limit of 5950 kW are shown in Figure 4(a). Both the sequential
and simultaneous approval methods yield load profiles similar
to the global optimum. The only major difference can be seen
at the 9:00 time slot which is only selected in the simultane-
ous approval method. However, Table I shows only minimal
differences regarding the increased costs. While the difference
is negligible, the simultaneous approval method actually leads
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(a) Results for 85% relative group power limit.
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Fig. 5: Percentage of consumers with higher relative cost increase at different
group power limits.

to lower increased costs compared to the sequential approval
method. Figure 5(a) shows that no cost increase occurs for
more than 50% of the consumers with the global optimum and
the parallel approval method. With the simultaneous approval
method, cost increase occurs for all consumers, while no
consumer suffers from cost increase of more than 0.1%.

B. Negotiation Results at 65% Relative Group Power Limit

Figure 4(b) shows the results for the load profile negotiation
at a group power limit of 4550kW. While in most time slots
the load is similar to the global optimum, larger differences
can be seen at 6:00, 8:00, and 15:00. The sequential approval
yields increased costs close to the global optimum as shown in
Table I. While the increased costs caused by the simultaneous



approval method exceed the optimum by a factor of 7, with
approximately 1% they are still very low. However, according
to Figure 5(b) the simultaneous approval method does not only
lead to the highest cost increase but also to the most uneven
distribution of the cost increase among the consumers.

C. Negotiation Results at 55% Relative Group Power Limit

The results for the load profile negotiation at a group power
limit of 3850kW are shown in Figure 4(c). The low group
power limit compared to the total energy demand forces the
consumers to shift more energy demand to the secondary
business hours. Due to the additional costs, this leads to
higher total costs. In Table I we can see that even the global
optimum leads to an increase of approximately 4% compared
to the preferred load profile of each consumer. The sequential
approval method leads to an increase of 6%, and the simul-
taneous approval leads to an increase of approximately 12%.
Figure 5(c) does not show a significant difference regarding
the evenness of the distribution of the cost increase.

D. Scheduling Overhead

Table II shows the average number of load profiles that a
consumer computes before the violation of the group power
limit is resolved. The sequential approval method requires the
computation of slightly less load profiles compared to the
simultaneous approval method.

TABLE II: Average number of load scheduling cycles per consumer.

Group power limit
5950kW (85%) 4550kW (65%) 3850kW (55%)
Sequential approval 17 53 90
Simultaneous approval 18 63 122

VII. CONCLUSION

Optimized load scheduling based on day-ahead energy price
forecasts may lead to demand peaks that cannot be satisfied
due to grid limitations. In this paper, we proposed approaches
for load profile negotiation that do not require knowledge of
internal enterprise details at the aggregator. The results for
the given scenario are close to the optimum computed using
global knowledge. For lower group power limits compared to
the sum of all individual power limits, the sequential approval
method yields a lower increase of total costs compared to the
simultaneous approval method.

Due to the simplified model, the results cannot be gener-
alized. However, the results show that it is possible to use

The first-come-first-serve property of the sequential ap-
proval method leads to penalties for late submissions and
can be considered unfair. However, the expectation that the
simultaneous approval method leads to a more even distri-
bution of cost increase does not hold for low group power

load profile negotiation to comply with power limits in a day-
ahead price optimization scenario. The cost increase is higher
compared to a central optimization using global knowledge,
but except for very low group power limits (see Section VI-C)
the total cost increase is quite small.

limits. Additionally, for the simultaneous approval method an
incentive for submitting the requested number of different
load profiles and a distance metric to quantify the degree of
difference between submitted load profiles are required.

Opportunities for future research include investigations with
more complex mechanisms and more elaborated consumer
models.
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