
Heterogeneity of Microscopic Congested Traffic
Data Based on Drone Measurements

Yildirim Dülgar
Connected Navigation

Daimler AG
Sindelfingen, Germany

yildirim.duelgar@daimler.com

Michael Menth
Computer Science

University of Tübingen
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Abstract—We study vehicle trajectories at the onset and
existence of traffic congestion and reveal its microscopic features
on separate highway lanes. Drone observations of microscopic
data of moving vehicles have been made available on three-lane
road segments of German highways. Based on these detailed
empirical traffic data we reveal heterogeneity and complexity of
congested traffic and discuss its consequences. E.g., to perform
a safe and comfortable driving behavior by driver assistance
systems or automated vehicles lane-level traffic states should be
adapted. A congested and dense traffic state only on the left lane
of a three-lane highway could be a serious danger. Moreover, we
propose an empirical method to calculate local traffic densities
that could be used to warn vehicles in advance about high
preceding densities. We leverage that concept to study a local
traffic jam and discuss its lane-level properties. We reveal the
heterogeneity of high local density structures on separate highway
lanes.

Index Terms—lane-level traffic, congested traffic, drone data,
traffic analysis

I. INTRODUCTION

The prevention of traffic accidents is a crucial topic for
the traffic as a whole as well as for each individual driver.
In this scope connected vehicles plays an important role.
For example, upcoming congested traffic could be detected
and shared by connected vehicles. The more vehicles are
connected, the more precisely the upcoming congested traffic
could be reconstructed. Lots of researches have been devoted
to traffic warning systems and traffic reconstruction (see, e.g.,
[2], [3]). Common used traffic data for traffic reconstruction
are floating car data (FCD). However, FCD only provide
vehicle location points of a small amount of probe vehicles,
e.g., 1% of the vehicles from the whole traffic. Therefore,
a detailed analysis of all vehicle trajectories at a stretch of
road over a certain time interval is not possible with FCD.
Another important limitation of FCD is that traffic events,
e.g., congested traffic, can not be reconstructed lane-specific.
Congested traffic could occur differently on different lanes.

A complete and very precise measurement of all vehicle tra-
jectories can be obtained through video recordings and aerial
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Fig. 1. A drone is recording a highway segment including all vehicle
trajectories passing that segment at an altitude of more than 100 meters. A
highway segment with a length of about 420 meters is covered.

observations of a road segment, see Fig. 1 and Fig. 2. Lane-
level vehicle positioning would be possible. With a global nav-
igation satellite system (GNSS), e.g., the Global Positioning
System (GPS), it is impossible to measure vehicle trajecto-
ries lane-specific due to the error of GNSS positions which
could be up to 15 meters [4], [5]. Furthermore, with aerial
observations we are able to calculate the distance headway
(DHW) which is the distance between consecutive vehicles at a
certain time instant. In Fig. 5 DHWs are symbolically marked
at a certain time instant. Particularly for automated vehicles
and advanced driving assistance systems (ADAS) both lane-
level traffic information and density information could be very
useful due to the complex traffic dynamics and the limitations
of the vehicle sensors and the dynamic traffic states. In [6]
empirical data are gathered by aerial observations with drones
(unmanned aerial vehicles (UAVs)). By using the data we will
investigate in this paper lane-level traffic structures and lane-
level densities from DHWs. The data were measured during
2017 and 2018 on several German highways.

The objective of this paper is the following. Using real
comprehensive drone data measured on three-lane highway
segments we reconstruct the traffic for each lane in space
and time and compare the lane-level spatiotemporal traffic
structures. We show the heterogeneity of the observed con-
gested traffic structures and discuss its consequences, e.g.,
for automated or connected vehicles. Furthermore, based on
distance headways between consecutive vehicles we reveal
an empirical method that uses a moving average technique
to calculate local traffic densities. We show and discuss the



Middle and left lane of a highway around Cologne/Germany; Monday, 8:55:00 – 9:14:30 h, October 2017

Fig. 2. Drone data from a German three-lane highway around Cologne at a Monday in October 2017 from 8:55:00 to 9:14:30 h. All vehicle trajectories from
the middle (a) and left lane (b) are plotted over space and time as black lines. The black lines yield from connecting the vehicle front positions from each
frame of the drone recording. The highway infrastructures are shown on the right of the distance-time plots. Congested traffic structures marked as M(1)

1 ,

M(1)
2 , L(1)

1 , L(1)
2 , L(1)

3 and L(1)
4 can be observed.

observed lane-level densities.
The paper is structured as follows. Section II gives a short

overview about common used traffic data and the use of aerial
observations to reconstruct traffic. In Section III the drone
data used in this paper are described. In Section IV lane-
level spatiotemportal congested traffic structures are discussed.
Section V provides an empirical method based on lane-level
local densities. Section VI concludes this paper.

II. RELATED WORK

Through the availability of more comprehensive traffic
data, more detailed vehicle attributes can be investigated,
e.g., DHWs between consecutive vehicles. In [6] and [7]
distributions of vehicle speeds and DHWs are studied based
on empirical data from city traffic and highways. DHWs are
not available if just FCD are used. Induction loop detectors
make it possible to measure time headways (THWs) between
consecutive vehicles, however, only at a certain location [8].
DHW and THW information are very useful for lane-changing.
Lane-changing durations and dynamics have been studied
in [7] and [9]. In [7] a detailed study about lane-changing
durations and THWs have been done based on the empirical
traffic data [10].

More than 40 years ago a comprehensive measurement
of all vehicle trajectories passing a road segment has been
done through aerial observations in [11] by Treiterer as well
as in the project Next Generation Simulation (NGSIM) [10].

The NGSIM dataset was measured on highways and city
traffic in the United States. In 2017 and 2018 city traffic was
investigated by using drones in [12]–[14]. Recently, during
2017 and 2018 drone datasets have been recorded on German
highways in [6] and will be used in this paper.

III. DRONE OBSERVATIONS

In this paper, we will use empirical traffic data from drone
observations measured during 2017 and 2018 on German
highways around Cologne. The drone data is called Highway
Drone Dataset (highD dataset) and inlcude 110 500 different
vehicle trajectories, 44 500 driven kilometers and 147 driven
hours [6]. The drone measurements have an average recording
time of 17 minutes and cover a highway segment with a
length of about 420 meters shown in Fig. 1. The drone data
have been measured in altitudes of more than 100 meters
and at six highway locations which are three- and two-
lane highways. Since drones at altitudes of more than 100
meters are almost invisible for the drivers on the highway,
it is assumed that the drones do not influence the driving
behavior of the vehicles on the highway in any way. The
positioning error of the measured vehicles on the highway
are relatively small, generally less than ten centimeters [6].
In the drone data different traffic phases can be observed
including congested traffic. This is very crucial for empirical
traffic analysis purposes. For example in Fig. 2 (a) an upstream
moving jams is observed between 8:56 and 8:58 h marked as



M(1)
1 . Since the highD dataset gives an unique opportunity to

study real and detailed vehicle trajectories on highways, we
will use the data for our empirical traffic investigations.

In Fig. 2 (a) and (b) a drone measurement from a German
three-lane highway around Cologne with all vehicle trajecto-
ries from the middle and left lane are shown, respectively. The
drone data was measured at a Monday in October 2017 from
8:55:00 to 9:14:30 h. The highway segment has a length of
400 meters and have been recorded over 19.5 minutes. The
highway infrastructure is shown in Fig. 2 (a) and (b) on the
right. The vehicle trajectories which are plotted as black lines
in Fig. 2 (a) and (b) yield from connecting the vehicle front
positions from each frame of the drone recording.

Fig. 3 (b) and (c) are subsets of Fig. 2 (a) and (b)
marked by dashed squares A and B, respectively, between
150 and 350 meters and between 8:56:00 and 8:58:30 h. Each
vehicle trajectory is plotted as a black line which yields from
connecting the vehicle front position from each frame of the
drone recording. The gray region along each vehicle trajectory
in Fig. 3 shows the vehicle length. By considering the vehicle
length large vehicles and trucks can be easily distinguished
from passenger vehicles. For example, a truck can be observed
in Fig. 3 (a) at 8:57:00 h and 150 m.

IV. LANE-LEVEL HETEROGENEITY OF CONGESTED
TRAFFIC

By considering the vehicle trajectories from the drone
observations for each lane in space and time various traffic
structures can be observed. E.g., an upstream moving jam
can be clearly observed in Fig. 3 (b) between 8:56:50 and
8:57:40 h marked as M(1)

1 . Particularly around this upstream
moving jam M(1)

1 the vehicle density is relatively high due
to small DHWs between the consecutive vehicles. In Fig. 2
and Fig. 3 congested traffic structures are appearing for all
three lanes at different time instants and highway locations.
Some structures are appearing with an offset and a different
spatiotemporal size on the other lanes, e.g., R(1)

1 , M(1)
1 and

L(1)
1 in Fig. 3. Other structures are missing on the other

lanes, e.g., L(1)
2 in Fig. 2 or R(1)

2 in Fig. 3 (a). Fig. 4 shows
an empirical example of a congested and dense traffic state
only on the left lane of a three-lane highway. In Fig. 4 the
trajectories are colored according their speed values. On the
left lane (Fig. 4 (c)) the traffic structures L(2)

2 and L(2)
3 can

be observed between 17:26:45 and 17:29:00 h whereas on
the middle and right lane (Fig. 4 (b) and (a), respectively)
such structures cannot be observed. Fig. 4 emphasizes that
empirical congested traffic structures appear lane-specific at
different time instants and highway locations.

Moreover, we can observe that a vehicle has changed from
the middle lane (Fig. 3 (b)) onto the left lane (Fig. 3 (c))
at 8:57:30 h and 160 m marked by black empty circles. The
driver has changed the lane probably to avoid the upcoming
jam on the middle lane marked as M(1)

1 in Fig. 3 (b). On
the left lane the upcoming jam marked as L(1)

1 in Fig. 3 (c)
appears later in space and time than on the middle lane. A

Right, middle and left lane; Monday, 8:56:00 – 8:58:30 h,
October 2017
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Fig. 3. Drone data from a German three-lane highway around Cologne at a
Monday in October 2017 from 8:56:00 to 8:58:30 h. All vehicle trajectories
from the right (a), middle (b) and left lane (c) are plotted over space and
time as black lines. The black lines yield from connecting the vehicle front
positions from each frame of the drone recording. The gray region along
each vehicle trajectory shows the vehicle length. (b) and (c) are subsets of
Fig. 2 (a) and (b) marked by gray dashed squares A and B, respectively. The
highway infrastructures are shown on the right of the distance-time plots. The
black empty circles show the position of the vehicles that have made a lane-
changing. Congested traffic structures marked as R(1)

1 , R(1)
2 , M(1)

1 and L(1)
1

can be observed.

similar lane-changing maneuver can be observed in Fig. 4 (c)
from the driver at 17:26:55 h and 70 m and from another
driver at 17:27:20 h and 80 m marked by black empty circles.
Both have changed the lane from the left lane onto the middle
lane and, therefore, they are not entering the more congested
traffic structure L(2)

2 . They probably changed the lane to avoid
slower traffic on the left lane.

Congested traffic structures which appear only on one lane
of a multiple-lane highway or appear at different time instants
and highway locations could be a serious danger for auto-
mated vehicles and driver assistance systems. Therefore, the
highway lane-level heterogeneity of congested traffic should
be considered for these systems.

In the following section we will apply a moving average
technique based on density information on the same data
from Fig. 2 and Fig. 3 for each lane separately. It can also



Right, middle and left lane; Thursday, 17:25:30 –
17:29:00 h, September 2017
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Fig. 4. Drone data from a German three-lane highway around Cologne at
a Thursday in September 2017 from 17:25:30 to 17:29:00 h. All vehicle
trajectories from the right (a), middle (b) and left lane (c) are plotted over
space and time and are colored according the vehicle speeds as follows: red
= 0–30 km/h, yellow = 30–60 km/h and green > 60 km/h. The black empty
circles show the position of a vehicle that has made a lane-changing maneuver.
The highway infrastructures are shown on the right of the distance-time plots.
Congested traffic structures marked as R(2)

1 , M(2)
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2 , L(2)
1 , L(2)

2 and L(2)
3

can be observed.

be observed in Fig. 7 that the calculated density structures
appear at different time instants and highway locations. This
observation is similar to the observations in Fig. 3 and Fig. 4.

V. LOCAL TRAFFIC DENSITY: MOVING AVERAGE
TECHNIQUE APPLIED TO DISTANCE HEADWAYS (DHWS)

In this section we propose a method that calculates local
densities based on DHWs between consecutive vehicles. The
method uses the moving average method UTEMA [15] and
processes the empirical drone measurements [6]. We aim to
apply the moving average method UTEMA to the DHWs for
each frame of the drone recording. Especially for advanced
driving assistance systems (ADAS) and automated vehicles
density information calculated from averaged DHWs are im-
portant. The calculated density information could be used to
warn vehicles in advance about high preceding local densities.
Hence, the warned vehicles could react automatically or by the

driver in adapting their driving behavior which would increase
driving safety and decrease or even avoid congested traffic.

There are several studies devoted to unweighted, weighted
and exponential moving averages, see, e.g., [16]. An unbi-
ased time-exponential moving average (UTEMA) is proposed
in [15]. Moving average methods are usually applied to
ascending ordered time series. We aim to apply UTEMA
to descending ordered location series instead of ascending
ordered time series. Hence, an adaptation of UTEMA from
[15] is needed. The procedure of the adapted UTEMA applied
to location series is shown in Fig. 5 at a certain time instant.
In Fig. 5 the vehicle at location di+4 on the rightmost lane is
symbolically getting the averaged density information Adi+4

from the preceding density information. The vehicle positions
from one highway lane are defined as the location series
d0, d1, d2, . . . and measured by drones. Xi+1 is the distance
headway between the vehicles at the locations di+1 and di.
The average values Ad0

, Ad1
, Ad2

, . . . are calculated by the
adapted moving average method UTEMA. We denote the
average values Adi , which are calculated by applying UTEMA
to DHWs, as UTEMA-DHWs. An important characterization
of moving average properties is the metric memory M. The
memory M is basically the space range over which the DHWs
X0, X1, X2, . . . are averaged. In Fig. 6 (c) and Fig. 7 we have
used M = 100 meters.

Fig. 6 and Fig. 7 (b) are the subsets of the drone data
in Fig. 2 (a) from 8:56:00 to 8:58:30 h and between 100
and 300 meters. Fig. 7 (c) is the subset of Fig. 2 (b) from
8:56:00 to 8:58:30 h and between 100 and 300 meters. In
Fig. 6 (a) the vehicle trajectories are colored according their
speeds, in Fig. 6 (b) according to the distance to preceding
vehicles (DHWs) and in Fig. 6 (c) and Fig. 7 according to the
averaged UTEMA-DHWs. An upstream moving jam within
vehicles have usually very low speeds is marked by two dotted
black lines in Fig. 6 (a). It can be observed that the vehicle
speeds are higher before entering the upstream moving jam
marked by orange colored trajectories with speeds between
20 and 35 km/h than after leaving the upstream moving jam
marked by red colored trajectories with speeds between 0 and

Driving direction

X
i+1

di+1
A

X
i+2

X
i+3

Density value at location di+4

calculated with moving average

di+2

Distance headway
between consecutive
vehicles

Vehicle at location di+4

X
i+4

di+1 didi+3di+4

di+2
Adi+3

Adi+4
A

Fig. 5. At a certain time instant a frame of a drone measurement is
symbolically shown. The distance headways (DHWs) Xi, Xi+1, Xi+2, . . .
between consecutive vehicles are marked by lines in different colors: red for
very small DHW, yellow for small DHW and green for little larger DHW.
The procedure of UTEMA applied to descending ordered location series
di, di+1, di+2, . . . at a certain time instant is shown. The density average
values Adi , Adi+1

, Adi+2
, . . . (UTEMA-DHWs) are calculated by applying

UTEMA to DHWs.



(a) Vehicle speeds – middle lane

(b) Distance to preceding vehicle (DHW) – middle lane

(c) Averaged UTEMA-DHWs – middle lane

Fig. 6. All vehicle trajectories from the middle lane from the subset of
Fig. 2 (a) from 8:56:00 to 8:58:30 h between 100 and 300 meters are shown.
The vehicle trajectories in (a) are colored according the vehicle speeds, in
(b) according the distance to preceding vehicles (DHWs) and in (c) according
averaged UTEMA-DHWs. The color scales are shown below the distance-time
plots.

10 km/h. Moreover, we see in Fig. 6 (b) very small DHWs
particularly inside the upstream moving jam. There are also
vehicles after the upstream moving jam which are driving very
closely to their preceding vehicles and have, therefore, very
small DHWs marked by red colored trajectories with DHWs
between 0 and 10 m in Fig. 6 (b).

We will have a closer look at Fig. 6 (c). A local density front
marked by a dotted black line can be observed at the beginning
of very low UTEMA-DHW values which are between 0 and
10 m. The density front is located in space and time before
both the upstream moving jam which is marked by the two
dotted black lines in Fig. 6 (a) and the very low DHW values
marked in red in Fig. 6 (b). This is due to the definition of our
local density method described above. Thus, the vehicles get
the high density information (very low UTEMA-DHW values)
before they reach the location at which vehicle speeds are
very low and which is very dense (very low DHW values).

(a) Averaged UTEMA-DHWs – right lane

(b) Averaged UTEMA-DHWs – middle lane

(c) Averaged UTEMA-DHWs – left lane

Fig. 7. All vehicle trajectories from the right (a), middle (b) and left lane (c)
of a German three-lane highway around Cologne are shown. (b) and (c) are
subsets of Fig. 2 (a) and (b), respectively, from 8:56:00 to 8:58:30 h between
100 and 300 meters. (b) is the same figure as Fig. 6 (c). The trajectories are
colored according averaged UTEMA-DHWs as follows: red = 0–10 m, orange
= 10–15 m, yellow = 15–20 m and green > 20 m.

Moreover, the density front has a similar upstream moving
structure as the upstream moving jam marked in Fig. 6 (a).
We note that the location of the density front in space and time
depend on the memory used for the moving average method
UTEMA.

Fig. 7 shows how the density information for each lane can
differ from each other. As discussed above on the middle lane
(Fig. 7 (b)) a local density front can be observed (marked in
Fig. 6 (c) by a dotted black line) whereas on the right and
left lane other density spots can be observed (in Fig. 7 (a)
at 8:57:30 h between 100 and 150 m and in Fig. 7 (c) at
8:57:30 h between 240 and 300 m). Furthermore, it can be
empirically observed that the calculated density structures in
Fig. 7 appear at different time instants and highway locations
and have a different spatiotemporal size. This is similar to the
observations which have been made in Fig. 3 and Fig. 4.



VI. CONCLUSIONS AND OUTLOOK

Based on drone data we have shown the heterogeneity and
complexity of lane-level congested traffic. We have analyzed
and discussed two empirical examples: (i) Congested traffic
structures are appearing for all three lanes at different time
instants and highway locations. (ii) A congested and dense
traffic structure is appearing only on the left lane of a three-
lane highway. In both examples the spatiotemporal size of
the congested traffic structures for each lane differ from each
other. We have observed a similar lane-level behavior for
high local densities. It is crucial that future technologies,
e.g., new driver assistance systems, automated and connected
vehicles, should consider and process lane-level traffic state
information. This would increase driving safety and can give
a more comfortable driving behavior.

Moreover, we have revealed an empirical method that uses
a moving average method and calculates local densities based
on distance headways (DHWs) between consecutive vehicles.
The averaged density information could be used to warn a
driver about upcoming high density or to give a driver a
recommendation for lane-changing to avoid high upcoming
traffic density on a specific lane.

A more detailed analysis of the microscopic structures of
congested traffic could be performed based on the three-phase
traffic theory [17] and more drone data sets at other complex
infrastructures. The spatiotemporal drone measurements we
have investigated show only some first interesting elements
of traffic phase transitions. The spatiotemporal point at which
a congested traffic structure starts, e.g., a moving jam, have
not occurred in the observed road segments, but further
downstream. The moving jam structure observed in the drone
data is only a small snapshot of the overall complexity of
traffic phases and its transitions.

Since the drone measurements give a detailed insight to
real vehicle driving behavior on highways, they could be used
to calibrate and improve traffic models. Such an investigation
would be an interesting task for further studies.
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