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Abstract—We propose xRAC to permit users to run spe-
cial applications on managed hosts and to grant them access
to protected network resources. We use restricted application
containers (RACs) for that purpose. A RAC is a virtualization
container with only a selected set of applications. Authentication
verifies the RAC user’s identity and the integrity of the RAC
image. If the user is permitted to use the RAC on a managed
host, launching the RAC is authorized and access to protected
network resources may be given, e.g., to internal networks,
servers, or the Internet. xRAC simplifies traffic control as the
traffic of a RAC has a unique IPv6 address so that it can
be easily identified in the network. The architecture of xRAC
reuses standard technologies, protocols, and infrastructure. Those
are the Docker virtualization platform and 802.1X including
EAP-over-UDP and RADIUS. Thus, xRAC improves network
security without modifying core parts of applications, hosts,
and infrastructure. In this paper, we review the technological
background of xRAC, explain its architecture, discuss selected
use cases, and investigate on the performance. To demonstrate
the feasibility of xRAC, we implement it based on standard
components with only a few modifications. Finally, we validate
xRAC through experiments. We publish the testbed setup guide
and prototypical implementation on GitHub [1].

I. INTRODUCTION

In this paper we consider the problem of permitting users to
run special applications on managed hosts and to grant them
access to protected network resources. This is an important
challenge in practice as applications communicate with multi-
ple peers and have multiple, possibly a priori unknown flows
characterized by 5-tuples. Moreover, common packet filters
such as firewalls or deep packet inspectors lack knowledge of
allowed flows, and identifying traffic from specific applications
becomes more difficult with traffic encryption using TLS.

We address this challenge by running applications in con-
tainers as so-called restricted application containers (RACs)
on managed hosts. RACs provide selected sets of applications
including their dependencies and configuration. The managed
host gives users only limited freedom, e.g., they can download
and launch RACs. We propose authentication and authoriza-
tion (AA) for RACs so that their execution is restricted to
authorized users. That means, the user identity, the integrity
of the RAC’s image, and the permission of the user to execute
the RAC are verified before a RAC is launched. We suggest to
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extend this authorization also to protected network resources
required by the RAC, e.g., to internal networks, servers,
or Internet access. That means, appropriate network control
elements, e.g., firewalls or SDN controllers, may be informed
about authorized RACs and their needs. The authorized traffic
can be identified by the RAC’s IPv6 address. We call this
concept xRAC as it controls execution and access for RACs.

We mention a few use cases that may benefit from xRAC.
RACs may allow users to execute only up-to-date RAC
images. Execution of a RAC may be allowed only to special
users or user groups, e.g., to enforce license restrictions.
Only selected users in a high-security area may get access to
the Internet through a RAC-based browser which is isolated
from the remaining infrastructure. Only selected users may be
able to execute administration software with access to servers
providing confidential material. RACs may be used for appli-
cations with increased quality of service (QoS) requirements,
e.g., voice-over-IP, video conferences, or games. Their traffic
may be preferentially treated by network elements.

To facilitate deployment of xRAC, we reuse and adapt
standard technologies, protocols, and infrastructure. We lever-
age the Docker platform to create and deploy containerized
applications. When the container management daemon (CMD)
is requested to launch a RAC, it first issues an AA request
and launches the RAC only after successful AA. We adopt
802.1X for AA purposes and adapt its components 802.1X
supplicant (802.1X S), 802.1X authenticator (802.1X A), and
802.1X authentication server (802.1X AS). The CMD inter-
faces with an 802.1X container supplicant (802.1X CS) on
the host, the 802.1X CS with a 802.1X container authenticator
(802.1X CA), and the 802.1X CA with an 802.1X authentica-
tion server (802.1X AS). The 802.1X AS holds RAC-specific
AA data, performs authentication, and returns authorization
data to the 802.1X CA. The 802.1X CA interfaces with
network control elements and configures access to network
resources depending on authorization data. It also forwards
the authorization data to the 802.1X CS. EAP-over-UDP and
RADIUS are utilized for communication. To demonstrate the
feasibility of xRAC, we provide a prototype based on existing
802.1X components, implement the 802.1X CS as plugin for
the Docker authorization framework and the 802.1X CA as
part of an SDN controller. We use a RADIUS server for
802.1X AS and extend its data structures to store AA data
for users and RAC. We use this prototype to experimentally
validate xRAC in a testbed.
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The rest of the paper is structured as follows. In Section II,
we review technical background and related work on container
virtualization. In Section III, we review technical background
and related work on 802.1X and AA for applications. In
Section IV, we present the architecture of xRAC in detail.
Section V discusses use cases along benefits and limitations of
xRAC. Section VI describes the prototypical implementation
of xRAC which is used for its experimental validation in Sec-
tion VII. In Section VIII, we briefly investigate on performance
considerations of xRAC. Section IX concludes this work.

II. CONTAINER VIRTUALIZATION: TECHNICAL
BACKGROUND AND RELATED WORK

We first introduce the concept of container virtualization,
describe advantages and give an overview of Docker as a
widespread implementation. Then, we review container secu-
rity platforms and containers for GUI applications.

A. Overview

Containers implement virtualization on the operating system
(OS) level. They provide virtualized OS environments that are
isolated with regard to hardware resources and security. They
share the OS kernel and may include binaries and libraries
that are required to run one or several enclosed applications.
In xRAC, we enclose only one special application with its
dependencies and configuration in a container. Containers run
on top of a container runtime and are managed by a container
management daemon (CMD) that creates, starts and suspends
containers. Examples for container platforms are Docker [2],
Kubernetes [3], BSD jails [4], and Solaris containers [5].

B. Advantages

Virtualization facilitates efficient and flexible usage of hard-
ware resources, improves security through isolation, and pro-
vides fault-safety and scalability through simple migration pro-
cesses. Containers in particular have the following additional
advantages. Due to the shared OS, containers require less CPU,
memory, and hard disk resources. Container images are much
smaller than virtual machines, which simplifies distribution
among many recipients. Containers simplify application de-
ployment. Instead of providing support for complex combina-
tions of applications, dependencies, and user configurations,
administrators just deploy containers that are tested prior to
release. Containers have no bootup times, which makes them
especially suitable for short-lived applications.

C. Docker Container Virtualization Platform

Docker [2] is one of the most popular container platforms
today. Figure 1 provides a simplified overview of the Docker
platform including its operations. A host with a common
OS runs the Docker CMD that generates and manages con-
tainers and container images. Container images are write-
protected templates that include applications with their depen-
dencies. Containers are runtime instances that extend the write-
protected container images by a writeable layer. Therefore,
multiple container instances may share a common image.

This introduces scalability with low hard disk requirements.
The Docker CMD is controlled by the Docker client via a
REST interface. The Docker client can be located on the host
running the Docker CMD or on a remote host. The Docker
command line interface (CLI) is an example for user control
through CLI calls. The Docker CMD may connect to Docker
registries that allow users to upload (push) or download (pull)
container images. Those registries are either private or publicly
available. Docker Hub [6] with more than 100.000 container
images is an example for the latter. Common operations are
build (1), pull (2), and run (3). With build, users may create
individual container images. With pull, users may download
container images from a repository to become part of the set
of local images. With run, container images from the set of
local images can be executed on the host system.

RegistryHostClient
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…

Container Container 
image

Docker CMD

Local imagesRunning containers

Container 
image
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Fig. 1: The Docker architecture consists of the Docker client, the Docker
CMD, and the Docker registry [7].

Docker uses several functions of the OS kernel [8]–[10] to
provide isolation and resource emulation. It supports storage
drivers, e.g., AuFS [11], OverlayFS [12], and ZFS [13], to
enable file system stacking. The container format and runtime
environment of Docker were adopted by the Open Container
Initiative [14] as open industry standard.

D. Container Security Platforms

Container security platforms extend the CMD by security
functions. Twistlock [15], [16] and the Aqua Container Secu-
rity Platform [17] provide a runtime engine based on machine
learning mechanisms to permanently monitor containers for
detecting fraudulent behavior and special network firewalls
to filter container traffic. The Sysdig Secure [18] platform
allows the formulation of service-aware policies, i.e., policies
that are based on applications, containers, hosts, or network
activities. The platform provides alerts and actions based on
policy violations, an event history, and incident captures. The
Atomicorp Secure Docker Kernel [19] is a hardened Linux
kernel that provides security-related features such as break-
out protection, memory corruption protection, or prevention
of direct userland access by the kernel. All platforms focus on
monitoring and controlling potentially untrustworthy contain-
ers that are executed on a shared container runtime. Features
for AA for users, containers, and their network flows are not
part of those platforms.

The Docker Authorization Framework [20] is part of Docker
since Version 1.10 [21]. It extends the Docker CMD by a
REST interface to external authorization plugins. Requests



from the Docker CMD, e.g., to start a container, are forwarded
to an authorization plugin that implements mechanisms to
decide whether to allow or deny the request. The Docker Au-
thorization Framework does not implement security functions
but provides a base for implementing such security concepts.
xRAC leverages this framework.

E. Containers for GUI Applications

Containers typically deploy applications or services without
graphical user interfaces (GUIs) that run in the cloud or on data
center infrastructures. Examples are containers that enclose
web applications with their requirements, e.g., an nginx web
server with a PHP runtime and a MySQL database server.
The idea of leveraging Docker containers to deploy desktop
applications with a GUI was first presented in [22]. The author
proposes to mount X11 sockets for GUI presentation and
hardware devices of the host system, e.g., an audio card or
a web camera, to the Docker container. Thereby, even more
complex GUI applications such as the Chrome web browser,
the Spotify music player, or the Skype video chat application
can be run in containers and be deployed as container images.
Today, many Docker container images with GUI applications
can be downloaded from Docker Hub.

III. 802.1X: TECHNICAL BACKGROUND AND RELATED
WORK

We give an overview of 802.1X and explain how it supports
AA. We present EAPoUDP which is an alternative protocol
to carry AA data in 802.1X. We summarize how AA for
applications is currently performed in practice and review
another research work that provides AA for applications based
on 802.1X.

A. Overview

IEEE 802.1X [23]–[25] introduces port-based network ac-
cess control in wired Ethernet networks. However, it is mainly
known from wireless 802.11 networks today. An example
is Eduroam [26], a federation of wireless university campus
networks. Participants can connect to the Internet no matter
if located at their home institution or at a foreign university
campus, e.g., while attending a conference.

Figure 2 depicts the three components of 802.1X and the
principle of port-based network access control. The supplicant
system is a network host that contains the 802.1X supplicant
(802.1X S). The authenticator system contains the 802.1X
authenticator (802.1X A) and controls network access of
network hosts. Examples are access switches that connect
network hosts to the main network. Prior to authorization,
the supplicant system can reach the 802.1X A but not the
network. The 802.1X AS is an authentication, authorization,
and accounting server. It stores authentication data to verify
user identities and authorization data to grant permission
to the network. It authenticates the 802.1X S and delivers
authorization information to the 802.1X A.

802.1X system

802.1X AS

Ethernet network

802.1X A802.1X S Network

802.1X A system 802.1X AS system

Fig. 2: Port-based authorization model of 802.1X [24].

B. AA with 802.1X

802.1X leverages the Extensible Authentication Protocol
(EAP) [27] and the Remote Authentication Dial In User
Service (RADIUS) [28] to exchange AA data. Both provide
a fixed request and response scheme to exchange AA data.
The Diameter protocol [29] is a less widespread alternative.
Authentication data is transmitted in Ethernet frames as EAP-
over-LAN (EAPoL) encapsulation between the 802.1X S
and 802.1X A and as EAP-over-RADIUS (EAPoRADIUS)
between the 802.1X A and 802.1X AS. Figure 4 depicts the
packet structure of EAPoL. Authorization data is transmitted
in RADIUS frames between the 802.1X AS and 802.1X A.

We explain the details of 802.1X with the four-step process
of AA as depicted in Figure 3. In the first step (1), the
802.1X S initializes authentication by sending an EAPOL-Start
message to the 802.1X A. In the second step, the 802.1X A
requests the identity from the 802.1X S (2a) and forwards
it to the 802.1X AS (2b). RADIUS supports large domains
that consist of many hierarchically organized RADIUS servers.
Each identity is associated with a domain and known by
the RADIUS server of that domain so that AA attempts can
be forwarded in RADIUS infrastructures. In the third step
(3), authentication is performed between the 802.1X S and
802.1X AS. The authenticator decapsulates EAP packets from
EAPoL frames and reencapsulates them as EAPoRADIUS
frames and vice versa. The flexible message structure of EAP
allows the use of different authentication procedures. Simple
approaches carry plain-text identity information or simple
MD5-hashed passwords, but more secure authentication pro-
cedures like EAP Tunneled TLS [30] and EAP-TLS [31] are
also supported. The authenticator only relays EAP messages
in pass-through manner. Therefore, new EAP types only need
to be implemented on the 802.1X S and 802.1X AS but not
on the 802.1X A. In the fourth step, the RADIUS server
may return authorization data after successful authentication
to the 802.1X A (4a). It can be coarse-granular, e.g., a binary
access decision whether the supplicant system gets access or
no access, or fine-granular, e.g., VLAN tags [32] to be set for
prospective user traffic or filter rules [33] that are applied by
the authenticator. The authenticator applies the authorization
data on the particular physical port of the switch, e.g., it sets a
VLAN tag. Afterwards, the authenticator confirms successful
AA to the supplicant with an EAP-Success message (4b).

C. EAP-over-UDP (EAPoUDP)

EAPoUDP is a variation of EAP that allows transmission
of EAP data over UDP and IP. Figure 4 depicts its packet



(1) EAPOL-Start

(2a) EAP-Request (Identity)

(2b) EAP-Response (Identity)

(4b) EAP-Success
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(3) Authentication using EAP
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EAPoL EAPoRADIUS / RADIUS

Fig. 3: Communication example of 802.1X based AA.

structure in comparison to EAPoL. In contrast to EAPoL,
EAPoUDP can be used to authenticate multiple applications
that run on a network host. Also, UDP packets can be transmit-
ted over any link layer technology or even routed within multi-
domain networks. EAPoUDP was introduced as Internet draft
[34] that expired without standardization in the PANA working
group of the IETF in 2002. Cisco leveraged EAPoUDP in its
Trust Agent [35] tool that runs on network hosts and interacts
with Cisco NAD, a prorietary network control system. The
Trust Agent collects host system information, interfaces host
software, and delivers notifications to network hosts within
EAPoUDP frames. xRAC leverages EAPoUDP for frontend
authentication.
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Fig. 4: EAPoUDP (a) in comparison to EAPoL (b). EAPoUDP uses UDP as
transport protocol, EAPoL leverage Ethernet frames along an EAPoL header.

D. AA for Applications in Practice

802.1X focuses on port-based access control for network
hosts. In practice, AA for applications is implemented as part
of the application or with the help of Kerberos.

Most network applications implement some form of AA
mechanism. Examples are login forms in the launch window
where users are required to enter valid credentials to start using
the application. Other examples are client certificates that are
used in conjunction with TLS and a public key infrastructure.
However, AA functionalities that are part of the application
have an impact that is limited to the client and server side of
the network application. Neither the start of the application
nor the network infrastructure in between can be controlled.

Kerberos [36], [37] is a network authentication protocol
that provides mutual authentication for clients and servers
over an insecure network. Clients are entire hosts, users,
or applications; servers represent hosts that offer particular
network applications. Kerberos adapts user tickets for authen-
tication for various network applications. Kerberos needs to be

implemented by applications on client and server side, which
prevents its application for legacy applications that cannot be
modified. Again, neither the start of kerberized applications
nor the network infrastructure in between can be controlled.

E. AA for Applications with FlowNAC

FlowNAC [38] introduces a fine-granular SDN network ac-
cess control system that adapts 802.1X for AA of applications
on network hosts. To enable multiple AA for different appli-
cations on a network host, the authors introduce EAPoL-over-
EAPoLAN encapsulations. As depicted in Figure 4, FlowNAC
introduces another variation of EAPoL. An EAPoL-in-EAPoL
packet field identifies up to 64K different EAP processes that
are transmitted as encapsulated EAP payloads. However, this
deviation from legacy 802.1X requires major changes of the
802.1X S and 802.1X A. The 802.1X S is part of an OS’s
kernel, the 802.1X A is part of network switches so only open
source OSs and firmwares allow modifications. Nevertheless, it
is difficult to carry on the modifications in new versions of the
OS’s kernel or firmware image. The authors rely on EAPoL,
i.e., AA data transfer is limited to the Ethernet link. EAPoUDP
would solve those shortcomings but was not considered in the
work. Unlike xRAC, FlowNAC neither introduces IP addresses
for applications nor restricts the start of applications by AA.

IV. XRAC ARCHITECTURE

In this section, we first explain RACs and give an overview
of xRAC. Then, we explain the operation of its three control
components in details.

A. Restricted Application Containers (RACs)

RACs are executable container images that enclose a single
application, its dependencies, and configuration data such as
program settings or software licensing information. As de-
picted in Figure 5, RACs are executed on a container runtime
in parallel to OS-native applications. The CMD controls the
execution of RACs and provides an interface for users to
create, delete, start, or stop RACs. Each RAC has a unique
IPv6 address so that its traffic can be easily identified in the
network. RAC images are created by network administrators
and deployed via RAC registries. They are either downloaded
from those registries by users or automatically synchronized
to managed hosts.
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Fig. 5: The managed host executes a RAC and a OS application (osApp).



B. Overview of xRAC

xRAC provides execution and access control for RACs
on managed hosts. A RAC needs to be authenticated and
authorized before launching. Figure 6 depicts the AA process
for RACs with 802.1X. First, a user attempts to start a RAC
via the CMD (1), and the CMD requests the 802.1X CS for
AA (2). After successful authentication (3), the 802.1X AS
responds with authorization data via the 802.1X CA (4) to the
802.1X CS (4a). The 802.1X CS notifies the CMD to launch
the RAC (4b). In addition, the 802.1X CA informs network
control elements about the authorized RAC. In our example, it
configures the firewall to permit access to the proteced server
(4c). Other examples are SDN controllers that program SDN
switches. Now, the authorized RAC but not the managed host
or other RACs can communicate with the protected server (5).

Start RAC

(3) Authentication

802.1X AS802.1X 
CA

Protected 
Server

Managed host

CMD

User

RA
C

80
2.

1X
CS

(1)

(2, 4b) AA of 
RAC start

Authorization
(4a) Permit start of RAC

(4c) Permit access to 
protected server
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Fig. 6: Adaption of 802.1X for AA of RACs. The 802.1X CS authenticates
the RAC using the 802.1X AS. The 802.1X CA receives authorization data
and forwards them to the 802.1X CS and to a firewall that secures a protected
server from unauthorized traffic.

AA for RACs introduces two additional advantages to
common application deployment and network security. First,
AA of RACs restricts RAC launches on managed hosts to
predefined RAC images and permitted users. This allows net-
work operators to ensure that only up-to-date and unmodified
RAC images can be launched. This improves computer and
network security as only valid RAC images can be executed
on the managed hosts. In addition, network operators may
deploy RAC images to managed hosts in advance, e.g., by
synchronizing their set of RAC images with an internal RAC
repository in the background. Users have all available RAC
images on managed hosts but are only able to start them if they
become authorized after AA. Last, each RAC has a globally
unique IPv6 address that can be used to identify and steer all
traffic originating from a particular RAC. RAC authorization
data on the 802.1X AS includes information on how the RAC’s
traffic should be steered by network elements that can be
applied by network control elements.

C. 802.1X Authentication Server (802.1X AS)

The authentication request from the 802.1X CS to the
802.1X AS contains user and container authentication data
(UAND, CAND). The 802.1X AS authenticates the user and
verifies the integrity of the RAC image. If the RAC image
is valid, and if the user is authenticated, and if the user has

permissions to run the RAC, the 802.1X AS responds to the
802.1X CA with authorization data. To perform that decision,
the 802.1X AS requires a new data model which is depicted in
Figure 7. It consists of user profiles, RAC profiles, and groups
that define whether a particular user is permitted to run a
particular RAC. User profiles contain user authentication data
(UAND) that is used to authenticate the user. Examples are
user credentials, e.g., user names and passwords. RAC profiles
contain container authentication data (CAND) and container
authorization data (CAZD). The first is used to verify the
integrity of the RAC through calculating the cryptographic
hashing function over the RAC image. CAZD include all
permissions of a RAC, i.e., to be started by the requesting user
and to utilize network resources. In the depicted example, the
RAC is allowed to access a specified network resource. The
AA data for the described model is stored on the 802.1X AS.
The data model is an example that can be easily extended to
support other requirements.

username = foo 
password = bar

User profile phd-student

req-res = 10.0.2.25/32CAZD

img-cksum=f27a29…CAND

RAC profile

UAND

Group

Fig. 7: The AA data model for RACs consists of user profiles, RAC profiles,
and group mappings. User profiles include UAND, RAC profiles contain
CAND for authentication and CAZD for authorization.

D. 802.1X Container Supplicant (802.1X CS)

The 802.1X CS authenticates RACs with the 802.1X AS
via the 802.1X CA. It transmits UAND and CAND to the
802.1X AS and receives CAZD from the 802.1X CA.

Figure 8a illustrates the process of AA from the perspective
of the 802.1X CS. It runs on the managed host, interfaces the
CMD, and is configured with the IP address or URL of the
802.1X CA so that it can initiate AA. In (1), the user requests
the CMD to start a particular RAC on the managed host. The
request includes UAND. The CMD requests the 802.1X CS
to permit the user’s demand (2). The request includes UAND
and CAND collected by the CMD. The 802.1X CS initiates
AA by establishing an EAPoUDP session with the 802.1X CA.
Afterwards, it performs authentication with the 802.1X AS via
the 802.1X CA (3). Backend authentication is performed via
EAPoRADIUS while frontend authenticated is performed via
EAPoUDP as in legacy 802.1X. In case of successful authen-
tication, the 802.1X CS receives CAZD from the 802.1X CA
(4). Then, the 802.1X CS permits the CMD to start the RAC
(5).

E. 802.1X Container Authenticator (802.1X CA)

The 802.1X CA relays AA data between the 802.1X CS and
the 802.1X AS. Moreover, it informs network control elements
about authorized RACs.

In step (1) of Figure 8b, authentication data are transported
over EAP between 802.1X CS and 802.1X AS. Between



802.1X CS and 802.1X CA, the EAP data are carried over
UDP (EAPoUDP) and between 802.1X CA and 802.1X AS,
they are carried over RADIUS. Thus, one task of the 802.1X
CA is to modify the tunnel for EAP data. Moreover, after
successful authentication the 802.1X AS returns CAZD over
RADIUS to the 802.1X CA (2) which then informs the
802.1X CS about successful authorization (3a). While the
conventional 802.1X A just opens ports on a switch for
authorized devices, the 802.1X CA may also inform other
network control elements about authorized RACs. Those may
be ports on a switch, firewalls (3b), or SDN controllers (3c).
The firewall is then programmed to pass through all outbound
traffic with the RAC’s IP address and the SDN controller
instructs SDN switches to forward all traffic with the RAC’s
IP address appropriately. More specific flow descriptors are
not needed.
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Fig. 8: AA from the perspective of the 802.1X CS and the 802.1X CA.

V. USE CASES AND DISCUSSION

We discuss two exemplary use cases of xRAC and discuss
its benefits and limitations.

A. Use Case I: Web Browsers in High-Security Areas

Research departments, state departments, or clinics dealing
with highly sensitive data isolate their internal networks from
the Internet. However, web browsers are still required for
online research activities. We propose to deploy web browsers
as RACs on managed hosts. The isolation of RACs prevents
that malicious users may misuse the Internet access to leak
internals or contaminate the internal network through infec-
tious downloads, e.g., PDF documents that include a trojan or
virus. The network flow control of RACs ensures, that only

the web browser can reach the Internet. If the RAC’s traffic
is encrypted, e.g., DNS queries and web site data, network
control elements can still perform packet filtering based on
the IP addresses of the RAC.

B. Use Case II: Confidential Data Access

Applications dealing with confidential data, e.g., research
activities, medical documentation, or law enforcement, often
access servers with confidential data. If such applications
are deployed as RACs on managed hosts, only legitimate
users have access to those servers. The isolation feature of
RACs prevents remote hackers from attacking the server.
Normally, they get system access through gateways provided
by viruses or trojans received as browser downloads or e-mail
attachments which is not possible with RACs. Furthermore,
malicious users of legitimate applications may use hacker
tools to gain access to the server and to leak information
from it, which is not possible in the digital domain with an
isolated application. The isolation of RACs prevent malicious
users or applications from attacking the server. The network
flow control ensures that the server can be reached only by
legitimate RACs and users but not by other RACs or the
managed host itself.

C. Benefits of xRAC

xRAC inherits the advantages generally known from virtu-
alization and container virtualization that we have discussed
in Section II-B. In addition, xRAC can guarantee that only
valid containers are launched on managed hosts and that they
can be used only by legitimate users. Thus, xRAC performs
AA for applications without the need to modify them, which
is a particular benefit for legacy applications. Moreover, the
802.1X CA can configure network control elements such that
authorized RACs have access to protected network resources.
RACs facilitate this control as all traffic of a RAC is identified
by a single IPv6 address. This is a particular benefit as in
today’s networks there is no information about legitimate
flows, many application flows may have the same IP address,
and applications may even be invisible due to encryption
using TLS. Thus, steering traffic from legitimate or trusted
applications is a tough problem for which xRAC provides a
solution. xRAC is flexible as it implements software-defined
network control by interacting with other network control
elements. In particular, it does not depend on and is not limited
to specific technologies.

D. Limitations of xRAC

xRAC requires a managed infrastructure where the managed
host, its CMD, and the 802.1X components, i.e., 802.1X CS,
802.1X CA, and 802.1X AS, are trusted. Encapsulating ap-
plications in RACs complicates access to shared resources so
that xRAC may be cumbersome or infeasible for some use
cases.



VI. PROTOTYPICAL IMPLEMENTATION

We describe a prototypical implementation of xRAC and
publish its source code with a testbed setup guide on GitHub
[1]. In the following, we give an overview on the testbed
environment and describe all components in detail.

A. Testbed Environment
Figure 9 depicts the testbed environment. The managed host

executes RACs. The SDN switch connects the managed host,
the protected server, and the public server and is controlled by
an SDN controller. The SDN controller runs the 802.1X CA
as SDN application that communicates with an 802.1X AS.

Public 
server

RADIUS server
Managed 

host

RAC

SDN 
Controller

802.1X 
CA

Protected 
server

2001:db8::aa:0 2001:db8::bb:0

localhost:1812

2001:db8::11:0

2001:db8::11:2

localhost:6653

Testbed system

Fig. 9: Testbed environment.

We execute the testbed on a ThinkPad T460s with an i5-
6200U CPU, 20GB RAM, SSD, and running Ubuntu 18.04.3
LTS. The managed host and both servers are Virtual Box
virtual machines (VMs), each running Ubuntu 18.04.3 LTS.
Open vSwitch [39] serves as SDN switch that is controlled
by the Ryu SDN controller [40] (v4.34). The FreeRADIUS
802.1X AS (v3.0.16) is executed directly on the testbed host.

B. Docker as Container Virtualization Platform for RACs
We use Docker [2] (v19.03.5) as container virtualization

platform to implement RACs. We configure the Docker CMD
so that each RAC gets a dedicated IPv6 global unicast address
that is reachable by other network hosts. Figure 10 depicts
the applied networking configuration that follows the approach
presented in [41]. By default, RACs only receive a link-local
IPv6 address. Therefore, we set up a fixed IPv6 subnet with
routable addresses for RACs. The managed host is configured
with the IPv6 subnet 2001:db8::11:0/116 and the RACs
receive an IPv6 address from that range. The first IPv6
address is reserved for the docker0 interface. Therefore,
the first RAC receives 2001:db8::11:2 and the second
RAC 2001:db8::11:3, respectively. The Docker daemon
automatically adds routes to the routing table of the system
and enables IPv6 forwarding so that all traffic to the IPv6
subnet will be routed via the docker0 interface. To make
the RACs reachable from other network hosts, we leverage the
NDP proxy daemon [42]. It forwards L2 address resolution
for IPv6 addresses of the RACs, i.e., it listens to neighbor
solicitation requests for the RACs addresses and answers with
the MAC address of the managed host. Afterwards, packets
that address a RAC are received and forwarded through the
Docker host via the docker0 device to the particular RAC.

Managed host

RAC

2001:db8::11:2

RAC

2001:db8::11:3

…

NDP proxy 
daemon

RAC

2001:db8::11:4

eth0
2001:db8::11:0

docker0
fe80::1 /64

Fig. 10: Network configuration of Docker in the testbed environment. Each
RAC gets an IPv6 address of the IPv6 subnet that is assigned to the managed
host. The NDP proxy daemon resolves L2 addresses for the RACs.

C. 802.1X Container Supplicant (802.1X CS)

We implement the 802.1X CS as plugin for the Docker
Authorization Framework introduced in Section II-D. We pro-
gram the plugin in Python and leverage the Flask [43] library
to implement its REST interface. Figure 11 depicts the autho-
rization process. In (1), the user requests the CMD to start a
container. The request includes UAND, e.g., a user name and a
password. The Docker Authorization Framework predefines a
two-step authorization process, but we only require the second
step. The first authorization request (2) includes only minimal
data, e.g., the name of the RAC image. As we solely rely
on the second authorization step, the 802.1X CS responds
with a permit by default. The second authorization request
(3) includes UAND and CAND. The 802.1X CS performs
authentication with the 802.1X AS through the 802.1X CA
(3) as discussed before. In (4), 802.1X AS returns CAZD that
is forwarded to the 802.1X CS in case of successful AA.

(2)

Allow

Start RAC

AS
UAND

CANDUAND

Authorization
CA

CAZDCAZD

User CMD 802.1X CS

(1)

(3)

(4)

CANDUAND

RAC name

Fig. 11: Two-step authorization process in the Docker Authorization Frame-
work [20]. The CMD requests the 802.1X CS to perform AA.

D. 802.1X Container Authenticator (802.1X CA)

We implement the 802.1X CA as SDN application for
the Ryu SDN controller framework [40]. We extend the
802.1X A of [44] by adding support for authentication with
the 802.1X CS using EAPoUDP. The 802.1X CA opens a
UDP socket on port 5995 and waits for connections from the
802.1X CS. The 802.1X CA still may act as legacy 802.1X A.
As example for network control with xRAC, we implemented a
restricted MAC-learning switch. It learns MAC addresses from
connected hosts but only forwards packets if the IP addresses
of both sender and receiver are in a whitelist. The whitelist
contains static entries, e.g., for public servers, and dynamic
entries that can be modified by the 802.1X CA after receiving
CAZD from the 802.1X AS. We implement the restricted
MAC-learning switch by extending the L2 switch [45] from
the Ryu SDN controller framework.



E. 802.1X Authentication Server (802.1X AS)

We leverage the widely-used 802.1X AS software FreeRA-
DIUS and extend its AA data model to implement CAND
and CAZD. In FreeRADIUS, additional attributes for AA can
be implemented using vendor-specific attributes (VSAs) [28],
[46]–[48]. Simple policies are defined with the unlang [49]
processing language. The defined AA data model can be easily
extended and modified by adding more VSAs.

F. Protected and Public Server

We run a public server with the static IPv6 address
2001:db8::aa:0 that is accessible without authorization.
As example for a protected network host, we run a protected
server with the static IPv6 address 2001:db8::bb:0.

VII. EXPERIMENTAL VALIDATION

We describe the experiment setup and validation experi-
ments for the testbed from Section VI to validate xRAC.

A. Experiment Setup

The experiments investigate the communication between the
managed host, a particular RAC, the protected server, and
the public server. We use the latest Busybox [50] image as
RAC. In our experiments, we use the RAC to send ICMP echo
request packets to both, the protected and the public server. We
add UAND, CAND and CAZD on the 802.1X AS that allows a
particular user to run the RAC and access the protected server.

B. Validation Experiments

We perform the following experiments as depicted in Fig-
ure 12. Before launching the RAC, we validate with ICMP
echo requests from the managed host that the public server
(1a) but not the protected server (1b) is accessible without
authorization. Now, we demonstrate that the integrity of RACs
is verified during authentication, i.e., that a RAC with a
divergent image checksum cannot be started. We start an
Alpine Linux [51] container image as RAC and try to start
it using the user credentials as set up on the RADIUS server.
Authentication fails, i.e., the RAC cannot be started on the
managed host. Now, we demonstrate that the correct RAC can
be started and that it can access the protected server after
successful AA. After issuing the command to start the RAC,
it is authenticated and authorized as described before (2a).
The SDN controller receives CAZD and programs the SDN
switch to permit packet forwarding between the RAC and the
protected server (2c). Now, the RAC is able to exchange ICMP
packets with the protected server (2d). Trying to exchange
ICMP packets directly from the managed host fails (2e), i.e.,
the protected server can be reached by the RAC but not by
the managed host.

VIII. PERFORMANCE CONSIDERATIONS

Container virtualization has no remarkable performance
overhead compared to native application execution [52]. xRAC
adds delay only to the startup time through the CMD. The
CMD requires time to calculate the container’s integrity check-
sum and to perform AA using network-based 802.1X. Without
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Fig. 12: Experiments to investigate the communication between the managed
host, a RAC, and both servers.

xRAC, starting the wget container from Section VII-A takes
approximately 0.6 s. With xRAC, the startup time is increased
to 1.51 s. The Busybox container image is 6 MB large and the
calculation of its SHA256 hash takes 0.12 s on our platform.
However, the computation time scales with the image size.
For example, a Chrome browser container image with 880
MB takes 3.2 s. The duration of the AA operation depends
on the performance of the three 802.1X components and
the network in between. The container supplicant is part of
the managed host and, therefore, covers only little load. The
container authenticator is part of the controller and responsible
for many hosts. However, its performance can be scaled up by
running multiple instances. The 802.1X AS may be based on
RADIUS. This technology is proven to scale well with large
deployments and high load by replicating server instances.

IX. CONCLUSION

In this work we proposed xRAC, a concept for execution
and access control for restricted application containers (RACs)
on managed clients. It includes authentication and authoriza-
tion (AA) for RACs such that only up-to-date RAC images
can be executed by permitted users. Moreover, authorization is
extended to protected network resources such that authorized
RACs can access them. Traffic control is simplified through the
fact that all traffic of a RAC is identified by its IPv6 address.
We presented the architecture of xRAC and showed by a pro-
totype implementation that xRAC can be built from standard
technologies, protocols, and infrastructure. Our prototype of
xRAC leverages Docker as container virtualization platform,
signalling is based on 802.1X components. Modifications were
needed to the supplicant, the authenticator, and the authenti-
cation server so that both user and container AA data can be
exchanged. Moreover, the container authenticator is extended
to inform required network control elements about authorized
RACs. We used the prototype to experimentally validate xRAC
and investigate on the performance. After all, we discussed
use cases and showed that xRAC supports software-defined
network control and improves network security without mod-
ifying core parts of applications, hosts, and infrastructure.
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