
©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Softwarization of Automotive E/E Architectures: A
Software-Defined Networking Approach

Marco Haeberle∗, Florian Heimgaertner∗, Hans Loehr‡, Naresh Nayak†,
Dennis Grewe†, Sebastian Schildt†, and Michael Menth∗

∗ University of Tuebingen, Chair of Communication Networks, Tuebingen, Germany
Email: {marco.haeberle,florian.heimgaertner,menth}@uni-tuebingen.de

† Robert Bosch GmbH, Corporate Sector Research and Advance Engineering, Renningen, Germany
Email: {naresh.nayak,dennis.grewe,sebastian.schildt}@de.bosch.com
‡ SUSE Software Solutions Germany GmbH, Nuremberg, Germany

The author was with † when the study was performed.
Email: hans.loehr@suse.com

Abstract—Traditional in-vehicle networks are based on low-
bandwidth technologies like CAN. They are statically deployed
and configured in the manufacturing process depending on
the vehicle configuration. With the introduction of additional
camera and entertainment applications and increased bandwidth
demand, Ethernet technology becomes more relevant in the
automotive sector. Use cases like trailer networks and integration
of new applications requiring in-vehicle sensor data require re-
configurable network architectures. In this work, we propose a
flexible architecture for automotive Ethernet networks accommo-
dating both high-bandwidth multimedia streams and time-critical
low bandwidth data. Based on the software-defined networking
paradigm, the in-vehicle network can be re-configured for the
integration of additional hardware and applications. We illustrate
its concepts for operations, management, safety, and security.

I. INTRODUCTION

Connected and smart vehicles will have a disruptive impact
on tomorrow’s mobility solutions. The way vehicles will be
used in the future will change fundamentally. One driving
force of such change is highly automated driving (HAD). It
will have an impact on quality of life by relieving drivers
from the burden to deal with stressful or hazardous situations,
enabling new models for using vehicles, e.g., as “mobile
offices” or “living room on wheels” [1], [2].

In the past years, the rapid development of communica-
tion technologies formed the basis for the interconnection of
multiple devices. This includes the evolution of the in-vehicle
electrical/electronic (E/E) architecture – from a single CAN
bus to a heterogeneous system with several bus technologies
and centralized gateways – as well as the interconnection
of vehicles and its surroundings towards a seamless mobile
extension of the digital world of data and services.

To leverage the business potential, enabling technologies
are required to introduce innovative use cases that profit
from combining in-vehicle data with resources outside of
the vehicle. Contemporary in-vehicle architectures have to
deal with their legacy in-vehicle network architecture which
consists of several bus systems (e.g., CAN [3], FlexRay [4],
LIN [5], MOST [6], etc.) plus several dozens of network
components and applications.

Currently, these networks are configured statically, resulting
in tremendous planning overhead during the manufacturing
process. The static communication patterns of these networks
make it hard to introduce any new application/function during
the lifetime of the vehicle as the network has to be re-
configured to adapt to changes. This will cause issues with the
upcoming HAD and the vision of a “living room on wheels”
which are expected to increase the number of in-vehicle
and ex-vehicle information exchange, deployed functions and
applications, and to enable a faster innovation cycle on the
software side.

Software-defined networking (SDN) [7] is a promising net-
work paradigm to solve the problem set of statically configured
networks by providing concepts to re-configure the behavior
of network components during runtime. While SDN does not
provide mechanisms to meet the real-time requirements of
vehicular communication systems, Time-Sensitive Networking
(TSN) [8] provides a collection of tools supporting real-time
communication.

This work proposes an SDN architecture for heterogeneous
automotive E/E architectures, supporting real-time capabilities
using principles of TSN that can be re-configured on demand.

The remainder of the paper is structured as follows. Sec-
tion II reviews the principles of SDN and TSN and provides
an overview of SDN in the automotive context. Based on the
introduction of automotive use cases, Section III introduces
requirements for future E/E architectures. Section IV presents
the novel SDN automotive architecture and discusses design
rationales such as network management and security. Finally,
Section V concludes the paper.

II. RELATED WORK

In this section we first review fundamentals of SDN and
TSN. Then, we discuss related work in the area of automotive
network architectures.

A. Software-Defined Networking

SDN separates the data plane and the control plane by
shifting intelligence from distributed forwarding nodes, i.e.,

©2020 IEEE Vehicular Networking Conference (VNC), December 2020, Virtual Conference



routers or switches, to a logically centralized controller [7].
While non-SDN switches establish a forwarding table by
learning addresses, e.g., locally or through distributed routing
protocols, a controller installs a set of forwarding rules on
SDN switches either on initialization or during run-time.

Figure 1 shows the layers of the SDN architecture as defined
by the Open Networking Foundation (ONF). The infrastructure
layer corresponds to the data plane, consists of the network
nodes, and is responsible for data forwarding. The control
layer corresponds to the control plane and is responsible for the
configuration of the packet matching and forwarding rules of
the data plane. The application layer consists of network appli-
cations implementing specific functionality giving input to the
control layer. The southbound interface is the communication
channel between the SDN control layer and the SDN infras-
tructure layer. The predominant standard southbound interface
is OpenFlow [9] specified by the ONF. Southbound messages
can be transmitted over the data plane infrastructure (in-band
signalling) or over a dedicated control network (out-of-band
signalling). The interface between the application layer and
the control layer is called northbound interface. While there
is no accepted standard for the northbound interface to date,
a REST API is a common implementation.

Fig. 1. 3-layer architecture of SDN.

SDN approaches like OpenFlow specify a data plane steered
by a central SDN controller. While a highly flexible control
plane behavior can be implemented in controller applications,
the data plane is limited to a fixed set of functions which are
determined by the OpenFlow protocol.

The concept of programmable data planes goes a step
further and also enables flexible implementation of data plane
behavior for programmable network devices in a high-level
programming language such as P4 [10].

B. Time Sensitive Networking

The IEEE Time-Sensitive Networking Task Group (TSN-
TG), originally started as the Audio-Video Bridging (AVB)
Working Group, strives for handling synchronized low latency

communication over Ethernet. As a part of this initiative, the
TSN-TG has added several extensions to the IEEE 802.1Q
and also published new standards like the IEEE 802.1CB.
The extensions and new standards cover different aspects of
real-time communication over Ethernet ranging from clock
synchronization to traffic shaping and policing [8]. Overall,
TSN can be seen as a collection of tools, each targeting
a specific problem of real-time communication. While an
elaborate description of all TSN mechanisms is out of scope
in this summary, we briefly describe a few of those in the
following.

The end points of a TSN stream are called talker and lis-
tener. TSN supports point-to-multipoint streams with multiple
listeners. Credit-Based Shaper (CBS) from IEEE 802.1Qav
is used for reserving (and limiting) bandwidth for multime-
dia streams in the network while the Time-Aware Shaper
(TAS) from IEEE 802.1Qbv [11] handles scheduled periodic
traffic typically stemming from industrial control systems.
The IEEE 802.1Qbu [12] provides mechanisms for a higher-
priority Ethernet frame to preempt the transmission of a
lower priority frame. The mechanisms to replicate critical
frames in the network and transport them over disjoint paths
before eliminating duplicates (aka 1+1 protection) are included
in IEEE 802.1CB [13]. TSN also includes traffic policing
mechanisms to secure real-time traffic from best-effort traffic
along with many other variants of traffic shapers.

The multitude of features available with TSN increases the
complexity of network configuration. The IEEE 802.1Qcc pro-
poses several configuration models for this purpose. The cen-
tralized configuration model resembles the SDN approach and
requires a Central Network Controller (CNC) for configuration
of the network nodes and a Centralized User Configuration
(CUC) for setting up talkers and listeners. CNC and CUC
communicate via the User Network Interface (UNI), similar
to the southbound interface in SDN. This configuration model
is the most likely bet to be able to use the full set of TSN
features. SDN concepts for configuration and management of
real-time networks based on TSN are discussed in the literature
[14], [15].

C. Automotive Network Architectures

The most common in-vehicle communication technology
is the Controller Area Network (CAN) [3]. CAN uses a bus
topology and provides a low-bandwidth CSMA network that is
used to connect all kinds of Electronic Control Units (ECUs).
With the growing number of ECUs, manufacturers started
to install multiple CAN buses. Using gateways, those buses
are interconnected with each other and with other specialized
communication systems, like LIN, FlexRay, and MOST.

The Local Interconnect Network (LIN) [5] uses a bus
topology and a master/slave media access control scheme.
LIN is mainly used for comfort features like window lifts
or air conditioning. FlexRay [4] is a communication system
for hard real-time requirements. It supports both bus and star
topologies and uses a TDMA access scheme. The Media
Oriented Systems Transport (MOST) [6] is a communication



system for multimedia applications. It uses a ring topology
and a CSMA access control scheme.

While the traditional architecture model is based on dis-
tributed ECUs connected to a central gateway (see Figure 2(a))
there are efforts to consolidate functionality into more power-
ful devices known as vehicle computers. While conventional
ECUs are mostly based on microcontrollers, vehicle comput-
ers are based on microprocessors and feature virtualization
technologies. Shifting functionalities from many ECUs to few
vehicle computers reduces the complexity of the architecture
and allows for new features like over-the-air updates [17]. The
domain architecture shown in Figure 2(b) separates ECUs into
multiple domains (e.g., powertrain, safety, comfort, etc.) and
each domain is managed by a domain controller (DC) ECU.
The DCs are interconnected by a backbone network. In a zone
architecture as shown in Figure 2(c) the ECUs are separated
into topological zones instead of functional domains. Each
ECU is connected to the nearest local zone I/O controller. The
zone I/O controllers are interconnected via a backbone or mesh
network. Zone architectures reduce cabling effort compared
to domain architectures and enable stronger centralization of
computing resources.

With increasing bandwidth demand resulting from the inte-
gration of camera and high-definition multimedia applications,
Ethernet becomes a relevant network technology for in-vehicle
networks [18]. Automotive Ethernet is based on 100Base-T1
over UTSP cables. It can be used as backbone network for
domain and zone architectures.

Future enhancements of automotive Ethernet systems are
discussed in the literature. Lo Bello et al. [19] provide an
overview of recent development in automotive network sys-
tems. Alderisi et al. [20] perform simulation studies with AVB
for advanced driver assistance systems. Brunner et al. [21]
propose the use of TSN in a zone-based automotive Ethernet
architecture. Migge et al. [22] present a case study about per-
formance of AVB and TSN in automotive Ethernet networks.
Additional use cases for the proposed TSN automotive profile
IEEE P802.1DG are discussed by Pannell et al. [16].

Using SDN in automotive networks architectures is an active
field of research. Fussey and Parisis [23] discuss the advan-
tages that stem from in-vehicle network architectures using
SDN. Among others, they name dynamic re-configuration that
is one of the main features of the architecture presented in this
work.

Häckel et al. [24] explore how SDN and TSN can be
combined for use in automotive networks. They implement
time-sensitive flows using OpenFlow.

Halba et al. [25] use an SDN approach to enable commu-
nication between ECUs using different in-vehicle networks.
They equip ECUs with ”IP to Legacy-In-Vehicle-Network
adapters” and interconnect them with a Time Triggered Ether-
net backbone and OpenFlow switches. In a related work [26],
they also introduce a fast failover mechanism for mitigating
link failures. However, they do not make use of most of the
benefits that come with SDN.

III. USE CASES AND REQUIREMENTS

In this section, we present two use cases that require
flexible network architectures and summarize their resulting
requirements.

A. Trailer Networks

Trailers connected to cars or trucks constitute a use case
that can particularly benefit from re-configurable in-vehicle
networks. Nowadays, trailers are connected to the car elec-
trically using one of several standardised connectors using
5 to 22 pins. The connectors support only a limited set of
functions, e.g., tail lamps, stop lamps, turn signals, or in
rare cases electric brakes. More sophisticated applications are
not supported by traditional trailer connectors. An automotive
SDN architecture facilitates the connection of arbitrary com-
ponents in the trailer to the car’s network. In addition, the SDN
architecture enables automated adjustment of configuration
parameters like the brake bias or settings of the blind spot
sensor.

One demonstrative application in this use case is connecting
park distance control (PDC) sensors or a rear view camera
located in the trailer to the car’s infotainment system. Another
application could be allowing the trailer to use the Internet
uplink of the car, e.g., for a Wi-Fi access point in a camping
trailer. With TSN, it may even be possible to control brake
systems in the trailer.

B. Downloadable Driver-Assistance Systems

An automotive SDN architecture can also change how
connected components are developed and serviced during their
life cycle. Traditionally, the feature set of a car and the
functionality of its components does not change after the car
is manufactured. Applying software patches normally requires
the car to be brought to a repair shop. Adding new features
with updates is usually not possible at all as the car’s E/E
architecture is static and cannot be changed. However, in
recent years, the complexity of automotive software increased
continuously and the state of the art of complex systems like
driver assistance changes rapidly. This makes the possibility
to patch existing systems and add new features to it via over-
the-air (OTA) updates desirable. Decoupling the development
of automotive software from the development of hardware has
thus been called for by market analysts [27]. Software-wise,
this becomes possible when replacing ECUs with vehicle com-
puters that feature virtualization. Coupled with an automotive
SDN architecture, this gives manufacturers more flexibility to
develop updates and new features for cars as it enables them
to change the car’s data network.

One hypothetical example is an update of a collision
avoidance system. Originally, the collision avoidance monitors
traffic in front of the car using a camera. The manufacturer
then wants to update the system and add a feature that
monitors traffic behind the car while reversing by checking
the PDC sensors. Using a traditional E/E architecture, this
feature cannot be added as the collision avoidance system has
no access to the PDC sensors. With an SDN architecture, the



(a) Topology with central gateway. (b) Domain model. (c) Zone model.

Fig. 2. Topology models for E/E architectures [16].

Fig. 3. Trailer network connected to vehicle network.

network can be re-configured to clone the packets coming from
the PDC sensors and send the copies to the collision avoidance
system.

C. Requirements

In both use cases, the most required feature is the ability
to re-configure the network. Re-configuration of the network
requires a central management entity that has a global view of
the network in order to ensure that all necessary communica-
tion between the components and applications of the car can
take place. This includes the need for a view of legacy field
buses like CAN or LIN. To that end, a mechanism to discover
the components installed in the car is necessary.

To benefit from the global view and optimally and efficiently
manage networking resources, there is also a need for a
northbound interface of the central controller that facilitates
reactions to changed requirements of the components and
applications. For safety-critical systems, the central controller
needs to ensure that all requirements to the network, e.g., real-
time constraints, are met. Both the northbound interface of
the controller and the discovery mechanism must be well-
defined and the definitions need to be accessible by all
potential manufacturers of data plane devices for the purpose
of interoperability between devices of different manufacturers.

As the network of the car is vital to the operation of the
car, safety and security of the network architecture need to be
guaranteed. This includes conformity to international standards
like ISO 26262, but also the security of the architecture itself.
In particular, attackers need to be prevented from gaining
control over the network, e.g., by adding a malicious device
to the network. In addition, the network architecture needs to
be able to cope with failed components and be either fail-

operational or fail-safe. A single-point-of-failure thus needs to
be avoided.

IV. ARCHITECTURE

In the following, we give an overview of the components of
the proposed automotive SDN architecture and describe their
interaction. We use the topology introduced in [16] as a basis.
Figure 4 shows the set-up.

Data plane

Control plane
Inventory DB
TSN calculator
Authenticator
Network controller

TSN scheduler
Rate limiters
Firewalls
Failsafe mechanisms
Access control

W E
S

N

Management system

Fig. 4. Overview of the proposed automotive SDN architecture.

The in-car data plane consists of schedulers, rate limiters,
firewalls, fail-safe mechanisms, access control mechanisms
and redundant links. It connects the car’s components to
the applications and a management system. The manage-
ment system is responsible for authenticating components and
applications, takes care of TSN configuration, controls the
in-car network, and keeps an inventory of components and
applications and their permissions. The internal inventory is
augmented by an external database containing information
about components that may be added to the car.

A. Data Plane

The in-car data plane is shown in Figure 5 and consists of
two switches connected with two redundant backbone links.
One of the switches is located in the front of the car and the
other in the back to keep the cables to the ECUs as short as
possible. Each backbone link runs on one side of the car to
minimize the risk of both links failing in case of a crash.



Traffic on the data plane is divided into hard real-time
traffic, soft real-time traffic, best-effort traffic and network
configuration traffic classes. Hard real-time traffic originates
from safety-critical components, e.g., the brake system, and
must always be transmitted within fixed deadlines. Soft real-
time traffic is associated with systems that are less critical and
can operate in a degraded state if the deadline is not met, e.g.,
light and rain sensors. Best-effort traffic is associated with
systems that are not safety-critical, e.g., infotainment systems.
Soft real-time and best effort traffic classes may prioritize
certain traffic within the class. Hard real-time traffic does not
need prioritization within its class as all hard real-time traffic
needs to be transmitted in time. A rate limiter prevents faulty
components from flooding the network. Non-related traffic
flows are isolated from each other. Further protection from
intruders is achieved by authenticating traffic using systems
like MACsec (IEEE 802.1AE) or AUTOSAR SecOC [28]. The
in-car network provides an Internet uplink that is secured using
a firewall.

Fig. 5. Network with in-band controller.

During normal operation, the two links between the back
and the front of the car are bonded using link aggregation.
Different scheduling variants can be used depending on the re-
quirements regarding throughput and safety. Possible schedul-
ing variants may be round-robin scheduling for creating one
logical link, load-balancing traffic over both links on a per-
flow or per-component basis, or using 1+1 protection based
on IEEE 802.1CB for traffic with redundancy requirements.
In case of a link failure, all traffic is redistributed to the
functioning link. If maximum throughput on the single link is
not sufficient, best-effort traffic can be dropped to guarantee a
safe operation of the car. Furthermore, it is possible to reduce
sensor rates to the minimal safe rate to reduce total traffic.

B. Management

The data plane is configured by the network controller via
in-band signalling. In-band signalling is preferred over out-of-
band-signalling in this application as the reduced amount of
cabling reduces cost and especially weight. Furthermore, in-
band signalling enables an easier expansion of the network,
e.g., as described in Section III-A, as no separate cables for
management are needed. The network controller is connected
directly to one of the switches (see Figure 5). It features a
northbound interface that can be used by components and

applications to trigger certain re-configurations of the network.
Access to the northbound interface is regulated by access
control lists (ACLs) and different permission levels.

The configuration of the network utilizes information from
an inventory of components (e.g., sensors, actuators, and
infotainment systems) and applications.

C. Operations

In the following we explain how TSN schedules are con-
figured, we describe discovery mechanisms for new devices
or applications, and we show how the architecture can handle
failures of network components.

1) TSN Configuration: When a new safety-critical de-
vice requiring TSN communication is connected to the car’s
network, the TSN configuration needs to be updated. This
includes updates of the routing for 1+1 protection, bandwidth
re-allocation for credit-based shaping, and re-calculation of
the TSN schedule. To ensure safe operation, the TSN re-
configuration is not done automatically after device discovery
has finished. Re-calculation of the TSN schedule has to be
triggered by the device in question via the northbound interface
of the controller. As TSN schedule calculation is an NP-hard
problem, calculating it fully in-car is not feasible. External
schedule calculation, e.g. in a cloud environment, may not
be possible at all times as it requires an Internet connection.
We thus propose a hybrid approach with internal and external
calculation.

At first, the in-car controller updates the existing schedule
by adding additional flows. The configuration of existing flows
is not changed by the in-car controller. The resulting schedule
provides guarantees for all safety-critical systems, but it is
not optimal. This may result in a higher network utilization
and might make it necessary to disable less critical systems.
Afterwards, calculation of a schedule in a cloud service
is triggered as soon as an Internet connection is available.
This cloud service first checks if a schedule for the same
constellation of devices and applications has already been
calculated in the past and re-uses this schedule if possible. If a
cached schedule is not available, a schedule is calculated, sent
to the car and cached for further use. As an initial schedule
has already been calculated by the car’s controller, it is not
necessary that the cloud service responds with a schedule
immediately upon the controller’s request. It thus can take
the time to calculate an optimal schedule that can satisfy the
requirements of all systems.

2) Device and Application Discovery: As additional par-
ticipants like devices or applications may be added to the
network at any time, means must be provided to re-configure
the network and provide some sort of access control. We
propose two similar discovery mechanisms that enable devices
and applications to authenticate themselves and communicate
their requirements regarding the network to the controller.

The discovery mechanism for devices is illustrated in Fig-
ure 6(a). When the device is connected to a switch for the
first time, all traffic but the traffic on a dedicated discovery
channel is dropped by the switch it is connected to. The



(a) Device discovery.

(b) Application discovery.

Fig. 6. Discovery mechanisms for devices and applications.

device communicates its identification and requirements by
sending a signed manifest to the network controller via a
broadcast message on the discovery channel. The switches
forward all packets sent on this channel to the network
controller. The controller then checks the manifest’s integrity
and trustworthiness by verifying if the manifest’s signature is
valid and originates from a trusted manufacturer.

If the signature is valid, the information in the manifest is
stored in the local device inventory and the network is re-
configured to meet the requirements of the device. This may
include re-calculation of the TSN schedule. If the manifest
indicates that the requirements are not static, e.g., if network
flows need to be configured on demand, the device is given
access to the northbound interface of the network controller.

One case where access to the northbound interface is nec-
essary is the installation of a new application on a device. The
device that hosts the application needs to notify the network
controller about the application’s properties like necessary
network flows and access permissions. This happens similarly
to the discovery of devices by sending a signed manifest to
the controller. As shown in Figure 6(b), the manifest is not
sent over a discovery channel by the application itself, but by
the device via the northbound interface.

These discovery mechanisms configure communication
paths and access to the network only. However, it may be
necessary that ECUs discover services that are provided by
other ECUs. For this purpose, existing mechanisms, e.g., as
defined in Adaptive AutoSAR, may be used [29].

3) Failover Scenarios: There are three different cases of
component failures that need to be addressed: failure of one
of the backbone links, failure of one of the switches or both
backbone links, and failure of the controller.

If one of the backbone link fails, all traffic between the front
and the back switch needs to be routed through the other link.
For safety-critical traffic scheduled by TSN, a pre-calculated
outage schedule is applied. This guarantees transmission of
the most critical traffic to ensure safe operation of the car.
If the capacity of the single remaining backbone link is not
sufficient to carry critical traffic, traffic generation by non-
critical systems may be restricted or even stopped.

Coping with a failure of one of the switches or of both
backbone links is more difficult. If a switch fails, all devices

connected to it lose the connection to the car’s network. If both
backbone links fail, devices can only communicate with other
devices connected to the same switch. It has to be ensured that
safety-critical systems needed to stop the car in this situation,
e.g., the brake system, can continue their operation in such a
situation. These systems thus need to be able to operate even if
connectivity is lost, or they need to be connected via a back-up
network like a bus system.

The third case of failure is the failure of the network con-
troller. If the controller fails, re-configuration of the network
is no longer possible. As a precaution, the network controller
configures backup flows and a backup TSN schedule on the
switches. These flows and schedule represent the minimal
configuration that guarantees safe operation of the most critical
systems in the car. Similar to the failure of one of the backbone
links, communication of non-critical systems may be restricted
or stopped. If the switches lose connection to the controller,
they apply the backup flows and schedule.

D. Security Considerations

An SDN architecture for automotive applications enables
several novel use cases. However, it can also cause problems
if security is not addressed properly. In the following, we take
a look at what has to be done to secure the SDN architecture.

1) Security of Devices and Applications: The biggest po-
tential threat comes from devices that are added to the car and
applications that are installed. As described in Section IV-C,
new devices only have access to the network for discovery
purposes. Further access to the network is granted only if
the device can provide a manifest that is signed by a trusted
manufacturer. Applications have no access to the network at all
until the device they are installed on sends a signed manifest to
the controller via the northbound API. As the signatures of the
manifest need to be checked, a central certification authority
(CA) store must be provided that contains the CA certificates
of all providers. Today, several public key infrastructures
(PKIs) for automotive applications exist that could be extended
accordingly. The car must either query this CA store when a
device is installed or it must keep a local copy of it. In case
a CA certificate becomes compromised, e.g., when a signing
key is leaked or when a manufacturer loses its trust, the CA
certificate must be revoked. Because of this, the car must
refresh its local CA cache regularly. In addition to revoking
a CA certificate, a way should be provided to exclude both
new and existing devices and applications from the network
in certain cases, e.g., if a product call back is issued for a
device. One possible way would be the use of a mechanism
similar to certificate revocation lists.

Even if an application is deemed trustworthy when it is
installed, it may pose security threats afterwards, e.g., if an
attacker alters an application. To prevent this, applications
need to be authenticated and their integrity needs to be checked
on every startup of the application, e.g., by code signing. In
addition, applications need to be isolated from each other and
their resource usage needs to be monitored. However, these



tasks are out-of-scope for the SDN architecture and are within
responsibility of the devices that host the applications.

2) Network Security: Besides ensuring the security of de-
vices and applications, the network has to be secured as well.
As the network is no longer static in contrast to traditional
E/E architectures, the segmentation of the network needs to
be dynamic as well. It is not possible anymore to segment
the network physically by using separate buses. For this rea-
son, the proposed automotive SDN architecture supports only
specific flows between devices and applications. These flows
are derived by the network controller from the requirements
stated in the manifest of devices and applications. These
requirements include resources that the device or application
needs to access. By installing flows only for these resources,
the network is effectively segmented logically in slices of
minimal size. This also removes the need for VLANs and
similar technology. Flows that connect a device or application
to the outside world are steered through a firewall. This is
particularly necessary for the Internet upstream, V2X com-
munication, or wireless networks like Bluetooth or Wi-Fi for
the car’s passengers.

Aside from protecting the devices and applications from
each other as far as possible, the transmitted data needs to be
protected as well. We propose to use MACsec to ensure in-
tegrity of the transmitted data. In addition to ensuring integrity,
MACsec can also be used to encrypt the transmitted data if
required. While this is generally desirable, it should be op-
tional as it is not common practice in automotive applications.
However, encrypting the traffic can help secure the network
from intruders with physical access to the network. Hardware
modules implementing MACsec are widely available, which
facilitates integration. Keying material can be generated by the
SDN controller comparable to P4-MACsec [30]. AUTOSAR
Secure Onboard Communication [28] may be an alternative to
MACsec.

The network controller requires special attention as well.
As it is possible to request re-configuration of the network via
the northbound interface, access has to be restricted. Devices
and applications may gain permission according to the content
of their manifest. Whenever a request is received through the
northbound interface, its origination needs to be authenticated.
Furthermore, care must be taken that none of the devices or
applications exhausts the resources of the network.

V. CONCLUSION

The E/E architecture in vehicular application evolved from
a single CAN bus with few control units to highly com-
plex architectures with several buses and numerous control
units. This trend will continue even further, especially due
to advancements in driver assistance systems and automated
driving systems. With these advancements, the complexity
of the vehicular E/E architectures will increase even more,
bringing traditional approaches to their limits.

This paper proposed an architecture for automotive Ethernet
networks based on the SDN paradigm and with support for
TSN. Using SDN enables re-configuration of the network if

needed. Combining an SDN-controlled network with a discov-
ery mechanism enables new use cases, e.g., integrating ECUs
of a trailer into the network of the car. As the network is used
by several systems that have different requirements concerning
bandwidth and transmission reliability, traffic is divided into
traffic classes ranging from best-effort traffic to hard real-
time traffic that uses TSN. Calculation of TSN schedules is
performed using a hybrid calculation approach that computes
a basic TSN schedule in the car first and then computes
an optimal schedule in a cloud environment. Separation of
systems that are not supposed to communicate with each other
is ensured by supporting only specific network flows. Access
to the network is controlled by using signatures and a PKI
with CA certificates of trusted device manufacturers. Failures
of links, switches or the central controller are dealt with by
pre-computing backup network flows and TSN schedules.

The architecture is a visionary sketch. Domain-specific
protocols, data formats, and interfaces are needed. Prefer-
entially, existing technology should be extended to facilitate
integration and adoption of the architecture. The next steps are
prototypical implementations to validate the overall concept.

ACKNOWLEDGMENT

The authors thank Mark Schmidt for valuable input and
fruitful discussions.

REFERENCES

[1] BMW AG, “The Road to Autonomous Driving,” 2019, accessed
on March 5th, 2020. [Online]. Available: https://www.bmw.com/en/
innovation/the-development-of-self-driving-cars.html

[2] Audi AG, “Future cars: Relaxing in the Audi AI:ME,” 2019, accessed
on March 5th, 2020. [Online]. Available: https://www.audi.com/en/
experience-audi/models-and-technology/concept-cars/audi-aime.html

[3] International Standards Organisation, “ISO 11898: Road Vehicles: In-
terchange of Digital Information: Controller Area Network (CAN) for
High-speed Communication,” 1993.

[4] FlexRay Consortium, “FlexRay Communications System Protocol Spec-
ification Version 2.1,” 2005.

[5] LIN Consortium, “LIN Protocol Specification Package , Revision 1.3,”
2002.

[6] A. Grzemba, MOST: The Automotive Multimedia Network. Franzis
Verlag, 2012.

[7] W. Braun and M. Menth, “Software-Defined Networking Using Open-
Flow: Protocols, Applications and Architectural Design Choices,” Future
Internet, vol. 6, no. 2, pp. 302–336, 2014.

[8] J. L. Messenger, “Time-Sensitive Networking: An Introduction,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.

[9] Open Networking Foundation, “OpenFlow Switch Specification,” 2012.
[10] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” ACM SIG-
COMM Computer Communications Review, vol. 44, no. 3, pp. 87–95,
Jul. 2014.

[11] “IEEE Standard for Local and Metropolitan Area Networks - Bridges
and Bridged Networks - Amendment 25: Enhancements for Scheduled
Traffic,” IEEE Std. 802.1Qbv-2015, 2015.

[12] “IEEE Standard for Local and Metropolitan Area Networks - Bridges
and Bridged Networks - Amendment 26: Frame Preemption,” IEEE Std.
802.1Qbu-2016, 2016.

[13] “IEEE Standard for Local and Metropolitan Area Networks - Frame
Replication and Elimination for Reliability,” IEEE Std. 802.1CB-2017,
2017.

[14] N. G. Nayak, F. Duerr, and K. Rothermel, “Time-Sensitive Software-
Defined Network (TSSDN) for Real-Time Applications,” in Interna-
tional Conference on Real-Time Networks and Systems (RTNS), 2016.



[15] S. Ben Hadj Said, Q. H. Truong, and M. Boc, “SDN-based configuration
solution for IEEE 802.1 time sensitive networking (TSN),” SIGBED
Rev., vol. 16, no. 1, pp. 27–32, Feb. 2019.

[16] D. Pannell, L. Chen, J. Dorr, W. Lo, M. Potts, H. Zinner, and A. Zu,
“Use Cases - IEEE P802.1DG V0.4,” Jul. 2019.

[17] A. Lock, N. Tracey, and D. Zerfowski, “Entering New Worlds: New
E/E Architectures With Vehicle Computers Offer New Opportunities,”
ETAS GmbH, Tech. Rep., 2020.

[18] L. L. Bello, “The Case for Ethernet in Automotive Communications,”
SIGBED Rev., vol. 8, no. 4, pp. 7–15, Dec. 2011.

[19] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent Ad-
vances and Trends in On-Board Embedded and Networked Automotive
Systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 1038–1051, 2019.

[20] G. Alderisi, G. Iannizzotto, and L. L. Bello, “Towards IEEE 802.1
Ethernet AVB for Advanced Driver Assistance Systems: A preliminary
assessment,” in Proceedings of 2012 IEEE 17th International Confer-
ence on Emerging Technologies Factory Automation (ETFA 2012), Sep.
2012.

[21] S. Brunner, J. Roeder, M. Kucera, and T. Waas, “Automotive E/E-
Architecture Enhancements by usage of Ethernet TSN,” in Workshop
on Intelligent Solutions in Embedded Systems (WISES), Jun. 2017, pp.
9–13.

[22] J. Migge, J. Villanueva, N. Navet, and M. Boyer, “Insights on the Per-
formance and Configuration of AVB and TSN in Automotive Ethernet
Networks,” Proc. Embedded Real-Time Software and Systems (ERTS

2018), 2018.
[23] P. Fussey and G. Parisis, “Poster: An In-Vehicle Software Defined Net-

work Architecture for Connected and Automated Vehicles,” Proceedings
of the 2nd ACM International Workshop on Smart, Autonomous, and
Connected Vehicular Systems and Services, 2017.

[24] T. Hackel, P. Meyer, F. Korf, and T. C. Schmidt, “Software-Defined
Networks Supporting Time-Sensitive In-Vehicular Communication,” in
IEEE 89th Vehicular Technology Conference (VTC2019-Spring), 2019,
pp. 1–5.

[25] K. Halba and C. Mahmoudi, “In-Vehicle Software Defined Networking:
An Enabler for Data Interoperability,” in Proceedings of the 2nd Inter-
national Conference on Information System and Data Mining (ICISDM
’18), 2018.

[26] K. Halba, C. Mahmoudi, and E. Griffor, “Robust Safety for Autonomous
Vehicles through Reconfigurable Networking,” Electronic Proceedings
in Theoretical Computer Science, vol. 269, p. 48–58, 4 2018.

[27] S. Apostu, O. Burkacky, J. Deichmann, and G. Doll, “Automotive Soft-
ware and Electrical/Electronic Architecture: Implications for OEMs,”
McKinsey & Co, Tech. Rep., Apr. 2020.

[28] AUTOSAR, “Specification of Secure Onboard Communication - AU-
TOSAR CPRelease 4.3.1,” 2017.

[29] ——, “Specification of Service Discovery - AUTOSAR CPRelease
4.3.1,” 2017.

[30] F. Hauser, M. Schmidt, M. Haeberle, and M. Menth, “P4-MACsec:
Dynamic Topology Monitoring and Data Layer Protection With MACsec
in P4-Based SDN,” IEEE Access, vol. 8, pp. 58 845–58 858, 2020.


