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Abstract

The integration of renewable energy sources in single family homes is challenging. Advance knowledge of the demand of
electrical energy, heat, and domestic hot water (DHW) is useful to schedule projectable devices like heat pumps. In this
work, we consider demand time series for heat and DHW from 2018 for a single family home in Germany. We compare
different forecasting methods to predict such demands for the next day. While the 1-day-back forecast method led to the
prediction of heat demand, the N-day-average performed best for DHW demand when Unbiased Exponentially Moving
Average (UEMA) is used with a memory of 2.5 days. This is surprising as these forecasting methods are very simple and
do not leverage additional information sources such as weather forecasts.

1 Introduction

Energy optimization for single family homes requires pre-
dictions of future energy demands, typically for heat, do-
mestic hot water (DHW), and electrical power. An exam-
ple is the control of a heat pump which is fueled by the
power grid and photovoltaic energy from the roof top. The
latter should be well utilized, but switching cycles for the
heat pump must be kept low to ensure a long lifetime of the
heat pump. This optimization problem requires knowledge
of the energy demand at least one day in advance.

While it is easy to predict energy demands for large neigh-
borhoods consisting of hundreds of units, it is harder for
single family homes. In this work, we evaluate the appro-
priateness of different forecasting methods for this task.
We utilize them to create models from historical energy
data of a single family home and predict those demands
based on these models. We compare the suitability of the
forecasting approaches by the error between their predic-
tions and the historical data.

The paper is structured as follows. Section 2 gives an
overview of related work. In Section 3 we describe the
studied forecasting methods. Section 4 presents and inves-
tigates the data set. An evaluation of the forecasting meth-
ods is presented in Section 5. We conclude this work in
Section 6.

2  Related Work

Aydinalp et al. developed and evaluated a neural net-
work approach to model residential energy consumption
in their paper [5]. They adopted their model to heat and
DHW demand and evaluated the accuracy of the predic-
tions. They focused on the construction of a good neural
network model and on features, but did not compare differ-
ent approaches.

Lomet et al. [3] investigated the DHW consumption of sin-

gle family homes. They analysed real data from such hous-
ing units and developed an ARMA model to forecast DHW
demands. Their results indicate that this type of model
could be suitable to forecast such demands, but they have
not performed evaluations to compare different forecasting
approaches for DHW demands.

Idowu et al. [4] analysed DHW and heat demand for multi-
family apartments. Based on their analysis, forecasts were
computed using supervised machine learning approaches.
They concluded that using super-vector regression leads
to least errors, but their evaluation lacks comparison with
simpler approaches like 1-day-back.

Idowu et al. [6] also evaluated and compared more recently
multiple advanced machine learning approaches to forecast
heat and DHW demand in residential and industrial build-
ings. Their evaluations show that support vector machines
are well suited to forecast both DHW and heat. However,
also these evaluations lack inclusion of simpler approaches
like 1-day-back.

3  Forecasting Methods

In this section, we give a short primer on the studied fore-
casting methods. Forecasting predicts values for a primary
time series. Historical data for that time series may be used
to estimate most probable future values. Formally, fore-
casting the z-th value J; of a known discrete time series
Y0,Y1,--,Y:—1 1S the computation of some forecasting func-
tion

)A]t = F(y07y17"ayt71)~

Sometimes forecasting is not only based on historical data
of the primary time series but also on a secondary time se-
ries xg,X1,...,x; which is correlated with the primary time
series. Thereby, xo,x1,...,x;—1 is historical and x; is pre-
dicted. For example, the demand for heat (primary time
series) may strongly correlate with the outside temperature
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(secondary time series). Then, the secondary time series
helps to forecast the desired value y; of the primary time
series:

yAt = F(y07y17“aytflax03 "'axt)-

Different forecasting methods can be used to compute ;.
In the following, we describe several simple forecasting
methods that we evaluate later in this paper.

3.1 N-Day-Back

The N-day-back forecast method utilizes the time time se-
ries of the N'* preceding day (historical data) as forecast
of the next day. Let n be the number of data points per
day. Then the forecasting function can be described as
F (Y0, Y1, Yi—1) i= Yi—(vn)- A special case is the 1-day-
back forecast method which uses the historical time series
of the previous day as forecast of the next day.

3.2 N-Day-Average

For the N-day-average method, we take the average de-
mand of N preceding days as a demand forecast of the next
day. Thereby, we utilize two different averaging methods
presented in [1].

3.2.1 Window Moving Average (WMA)

WMA defines a window containing the last W data points
and computes their arithmetic mean. Thus, W is an integral
value. In this work, we apply WMA to daily demands and
compute the average demand of the last W = N days. A
memory M = W - At can be defined where Ar is the inter-
sample distance, i.e., a day in our context. The memory
expresses the time over which a sample is remembered in
the moving average.

3.2.2 Unbiased Exponential Moving Average
(UEMA)

UEMA can be calculated by A; = If,—’[ where the weighted
sum S; and the weighted number N, are recursively defined

as
g Xo t=0
e a-S;_;+X, otherwise
1 t=0
Nl - .
a-N;_j+1 otherwise.

Past values of the original time series X; contribute to all
future average values A;. However, their impact decreases
exponentially over time. The parameter a determines the
memory of the moving average by M = ]A%a. Again, the
memory cannot be smaller than the inter-sample distance
At. However, any larger memory M is possible with a =
1— %. In the context of N-day-average we set the memory
to M = N. Therefore, N does not need to be an integral

value if UEMA is used for averaging.

3.3 Linear Regression (LR)

LR [7] describes the dependency of the primary time series
Y0,Y1,---,Ys—1 on the secondary time series xo, X1, ...,X; with

a linear function f(x) := Bo + P; - x. This may be useful if
both time series are highly correlated. The forecast value y;
is then the mapping of x; under this linear function. Mostly
LR finds a best-fit line that minimizes the sum of squared
distances for a set of data points (x;,y;)o<i<u- This line is
efficient to compute by a compact formula. However, our
comparative metric in Section 5 is the absolute average er-
ror %20§i<n | f(x;) — yi| between the best-fit line f and a
set of data points. Therefore, we prefer a simple numeri-
cal method based on nested intervals to derive appropriate
parameters B and B; that minimizes - Yo<;, [ f(xi) — yil.

3.4 Bounded LR (BLR)

As the LR-based best-fit line yields negative heat demands
for high outside temperatures in Section 4.1, we propose
BLR. It utilizes a best-fit line, but yields zero instead of
negative values. Also for BLR we compute the parame-
ters By and P for a best-fit line by minimizing the sum of
absolute errors.

3.5 Daytime-Specific BLR

We will first apply LR and BLR based on entire days, i.e.,
we compute a best-fit line that takes the average daily tem-
perature as input and yields the daily energy demand as
output. As an alternative, we will apply LR and BLR based
on the average temperature of the daily time intervals 0-6,
6-12, 12-18, and 18-24 o’clock and predict their energy de-
mands. Finally, we sum up the predicted energy demands
over a day to obtain the daily energy demand.

3.6 Smoothing

The dependency of the forecast time series on the predic-
tion time series may be time-delayed. For example, the
temperature in a building does not fall immediately when
it becomes cool outside, in particular in case of good insu-
lation. As a consequence, average temperatures smoothed
over time may yield better forecasts for energy demands.
Therefore, we propose to apply the LR and BLR methods
based on smoothed historical data. We use UEMA (see
Section 3.2.2) to smooth the data series, i.e., we use the
average value A; instead of X;.

. . Time series
Smoothing variant :
Primary | Secondary
no-smoothing original original
x-smoothing smoothed original
y-smoothing original smoothed
Xy-smoothing smoothed | smoothed

Table 1 The smoothing variant determines whether
model parameters are calculated based on original or
smoothed times series.

We now explain several smoothing variants for LR/BLR
forecasting. Secondary and/or primary historical time se-
ries may be smoothed for forecasting. The linear functions
for the LR/BLR model are computed based on either orig-
inal or smoothed time series. Table 1 shows 4 variants and
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the time series based on which the parameters for the best-
fit line are fitted.

For prediction purposes, the original secondary time se-
ries are utilized for no-smoothing and x-smoothing. For
y-smoothing and xy-smoothing, the secondary time series
X0,X1,--.,X 1s smoothed including the predicted value x; for
which the corresponding value J; of the primary time series
is to be forecast based on the computed LR/BLR model.

4  Data Analysis

The data set used for the evaluation in Section 5 contains
real data from a single family home near Diisseldorf of the
year 2018. The data set consists of time series for PV pro-
duction, outside temperature, heat demand, DHW demand,
and other electrical demand. The resolution is one data
point per minute. In contrast, our objective in Section 5 is
to forecast the heat and DHW demand for the entire next
day.

Figure 1 illustrates the data while temperature is averaged
and demands are accumulated per day. The temperature is
low in winter and high in summer with considerable oscil-
lations throughout the year. In the following, we analyse
the data for heat and DHW demand in more detail.
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Figure 1 Daily heat and DHW demand together with
mean outside temperature per day in 2018.

4.1 Heat

Figure 1 shows that the energy demand for heat is a multi-
ple of the one for DHW. In addition, we clearly see that it
strongly depends on the outside temperature. We demon-
strate this phenomenon by the scatter plot in Figure 2a. The
coordinates of the points consist of the average tempera-
ture of a single day and the corresponding heat demand.
The points are clustered along a line and we recognize the
obvious trend that heat demand decreases with increasing
outside temperature. This proposes a linear relation be-
tween daily heat demand and mean outside temperature.
We obtain the the best-fit lines for LR with the parameters
Bo = 66.830 and ; = —3.484 and for BLR with the param-
eters By = 69.600 and B; = —3.910. These lines minimize
the average deviation to the data points. They are also il-
lustrated in Figure 2a. In contrast to LR, the BLR best-fit
line does not yield negative heat demands.
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(a) Heat demand with best-fit lines for LR and BLR.
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(b) DHW demand with best-fit line for LR.

Figure 2 Impact of mean outside temperature on the
daily heat and DHW demand.

4.2 Domestic Hot Water (DHW)

Figure 1 shows that the demand for DHW is rather low
over the year compared to the demand for heat. It oscillates
over days and there is some seasonal impact.

We provide a scatter plot in Figure 2b. The points are clus-
tered, but they are more distributed than in 2a, i.e., the lin-
ear dependency of the DHW demand on the outside tem-
perature is weaker than the one of heat. The figure also
shows the LR best-fit line which is obtained for fp = 9.122
and B; = —0.305. As this line does not yield negative val-
ues in the relevant range, there is no need for BLR.

5 Evaluation

In this section we evaluate several forecasting methods for
heat and DHW demand. First, we describe the evaluation
methodology. Then, we apply the forecasting methods pre-
sented in Section 3 to the data set presented in Section 4 in
order to compare their predicted heat and DHW demands.

5.1 Methodology

We predict the per-day heat and DHW demand for all days
of 2018 in the data set. To assess the accuracy of the fore-
casting methods, we compute the difference of the real de-
mands in the data set and the forecast values, and provide
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absolute and relative average errors.

The N-day-back and the N-day-average methods can be
applied to the data set just after aggregating the demands
for entire days.

Parameter fitting is not needed for N-day-back and for N-
day-average. This is different for LR and BLR. For these
methods we derived the best-fit lines based on the entire
data set as presented in Section 4. We use it to predict
the demand for a specific day based on its average outside
temperatures. That is, we predict the data based on which
we calibrated the LR and BLR model. We do that due to
lack of sufficient data. This is not feasible in practice and
rather overrates the quality of the forecast. Nevertheless,
we will see that these methods are outperformed by simpler
methods.

For N-day-back, N-day-average, or smoothing variants,
preceding days may be missing at the beginning of the year.
Then we take the days at the end of the year as a substitute
in a cyclic manner.

5.2 Heat

We consider forecast for heat demands. Table 2 compiles
the absolute and relative average forecast errors to quantify
the accuracy of various forecasting methods.

Forecast method Abs. avg. Rel. avg.

error (kKWh) error (%)
1-day-back 4.303 15.9
3-day-back 7.723 28.5
7-day-back 9.692 35.7
Linear regression 6.226 22.9
Bounded LR 5.232 19.3
Daytime-sp. BLR 5.375 19.8

Table 2 Absolute and relative average errors for forecasts
of daily heat demands; the average demand is 27.15 kWh.

The 1-day-back method leads to the least forecast errors,
followed by BLR and the daytime-specific BLR method.
The other methods cause significantly larger forecast er-
rors. The 7-day-back method performs particularly badly.
We tested that method as we suspected that weekly pat-
terns in human behaviour could have a measurable impact
on heat demand.

BLR clearly outperforms linear regression because it does
not forecast negative values for high outside temperatures.
For daytime-specific BLR we obtained daytime-specific
best-fit lines with the parameters given in 3. However,
daytime-specific BLR is worse than normal BLR so that
its complexity does not pay off.

Interval | Sy Bi
0-6 14.2 | -1.203
6-12 | 255 | -1.269
12-18 | 27.8 | -1.536
18-0 6.2 | -0.408

Table 3 Parameters for best-fit lines for BLR-based
daytime-specific forecasts.

We consider N-day-average whose forecast errors are com-
piled in Table 4, both for WMA and for UEMA as averag-
ing methods. N-day-average with a memory of a single day
yields 1-day-back, therefore, we see the same errors. Val-
ues for WMA can be computed only for memories that are
multiples of entire days. Increasing the memory degrades
predictions of heat demands both for WMA and UEMA so
that N-day-average is not useful compared to 1-day-back.

Memory WMA UEMA
(d) Abs. Rel. Abs. Rel.
avg. avg. avg. avg.
error error error error
(kWh) (%) (kWh) (%)
1 4.303 15.9 4.303 15.9
1.5 - - 4.682 17.2
2 4.990 18.4 5.053 18.6
2.5 - - 5.362 19.8
3 5.579 20.6 5.618 20.7

Table 4 Absolute and relative average errors for forecasts
of daily heat demand using the N-day-average method
with WMA and UEMA.

We investigate the potential of the smoothing variants
mentioned in Table 1 to improve forecasts. For no-
smoothing and y-smoothing, we take the outside tempera-
tures of the same day in the data set as x-input for the BLR
model. In case of x-smoothing and xy-smoothing, we com-
pute a time series for smoothed temperatures in 2018 and
use the smoothed temperature of the corresponding day as
x-input for the BLR model.

Table 5 provides forecast results for different memories. A
memory of 1 day means no smoothing. We observe that no
smoothing variant improves the forecast of the simple BLR
method. In contrast, increasing memory degrades forecast-
ing results.

Memory X- y- Xy-
(d) smoothing | smoothing | smoothing

(%) (%) (%)

1 19.3 19.3 19.3

2 19.4 19.4 19.4

3 19.8 19.8 19.5

4 20.1 20.0 19.5

Table 5 Relative error for the forecasts of daily heat de-
mand; different memories are considered for x, y, and
Xxy-smoothing in combination with BLR.

5.3 Domestic Hot Water (DHW)

We consider forecast of DHW demands. Table 6 compiles
the absolute and relative average errors for various fore-
casting methods. Again, the 1-day-back method is best,
followed by LR. The 3- and 7-day-back methods do not
perform well. As the best-fit line for LR does not yield
negative values, there is no need for BLR as LR and BLR
lead to the same best-fit line under such conditions.
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Forecast method Abs. avg. Rel. avg.
error (kWh) error (%)
1-day-back 1.867 33.0
3-day-back 2.222 39.3
7-day-back 2.437 43.1
Linear regression 2.091 37.0

Table 6 Absolute and relative average error for forecasts
of daily DHW demand; the average demand is 5.653kWh.

We have also experimented with all the presented smooth-
ing variants but without any improvement up to large mem-
ories of 84 days.

Finally, we consider N-day-average as forecasting method.
Table 7 presents the absolute and relative average errors
for this method. The forecast errors depend on the spe-
cific averaging method, i.e., WMA or UEMA, and the cho-
sen memory. UEMA vyields better forecasts than WMA
and the best memories are 2.5 days for UEMA and 3 days
for WMA. Both methods clearly outperform even 1-day-
back so that UEMA leads to the best forecasting results for
DHW.

Memory WMA UEMA
(d) Abs. Rel. Abs. Rel.
avg. avg. avg. avg.
error error error error
(kWh) (%) (kWh) (%)
1 1.867 33.0 1.867 33.0
1.5 - - 1.702 30.1
2 1.740 30.8 1.672 29.6
2.5 - - 1.666 29.5
3 1.724 30.5 1.678 29.7
3.5 - - 1.692 29.9
4 1.751 31.0 1.708 30.2
4.5 - - 1.721 30.4
5 1.757 31.1 1.733 30.6
6 1.777 314 1.756 31.1
7 1.793 31.7 1.774 314
14 1.936 34.3 1.871 33.1
21 1.936 34.3 1.935 34.2
28 1.967 34.8 2.002 354

Table 7 Absolute and relative average error for the fore-
casts of daily DHW demand using the N-day-average
method with WMA and UEMA.

6 Conclusion

We compared different methods to predict the demand for
heat and domestic hot water (DHW) for the next day in a
single family home.

To predict heat demand, we obtained the best results with
the very simple 1-day-back method. It clearly outper-
formed linear regression (LR), bounded LR (BLR), and
daytime-specific BLR. This is surprising as 1-day-back
does not take advantage of available weather forecast,
which is in contrast to some other methods. Averaging

methods led to worse results. Smoothing-based BLR could
not achieve any improvement with regard to BLR.

To forecast DHW demand, 1-day-back again outperformed
LR including smoothing methods. However, the N-day-
average led to even better results for small memories.
We obtained the best forecasts for the UEMA averaging
method with a memory of 2.5 days. This is again surprising
as N-day-average does not leverage additional information
like weather forecast, either.

Although we have identified best forecast methods for heat
and DHW including parameters, we point out that these re-
sults have been gained from a single single family home in
2018. It would be helpful to validate our findings on a
larger data set, over a longer duration, and for houses with
different energy demands. Moreover, it would be interest-
ing to consider aggregated demands from multiple houses
or blocks of flats. The use of machine learning approaches
is certainly also worthwhile to study provided sufficient
data is available.

7  Literatur

[1] M. Menth and F. Hauser, “On Moving Averages, His-
tograms and Time-Dependentrates for Online Mea-
surement”, in Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineer-
ing, 2017, pp. 103-114.

[2] J. Ferrero Bermejo, J. F. Gomez Fernandez, F. Oliven-
cia Polo, and A. Crespo Marquez, “A Review of the
Use of Artificial Neural Network Models for Energy
and Reliability Prediction. A Study of the Solar Pv,
Hydraulic and Wind Energy Sources”, Applied Sci-
ences, vol. 9, no. 9, pp. 1844-1862, 2019.

[3] A.Lomet, F. Suard, and D. Cheze, “Statistical Model-
ing for Real Domestic Hot Water Consumption Fore-
casting", Energy Procedia, vol. 70, pp. 379-387, 2015.

[4] S.Idowu, S. Saguna, C. Ahlund and O. Schelén, "Fore-
casting Heat Load for Smart District Heating Systems:
A Machine Learning Approach", 2014 IEEE Inter-
national Conference on Smart Grid Communications
(SmartGridComm), Venice, 2014, pp. 554-559.

[5] M. Aydinalp, V. Ismet Ugursal, and A. S. Fung, “Mod-
eling of the Space and Domestic Hot-Water Heating
Energy-Consumption in the Residential Sector Using
Neural Networks”, Applied Energy, vol. 79, no. 2, pp.
159-178, 2004.

[6] S.Idowu, S. Saguna, C. Ahlund, and O. Schelén, “Ap-
plied Aachine Learning: Forecasting Heat Load in
District Heating System”, Energy and Buildings, vol.
133, pp. 478488, 2016.

[7] R.J. Hyndman and G. Athanasopoulos, “Forecasting:
Principles and Practice”, OTexts, 2nd ed., 2018.

© 2021 VDE VERLAG GMBH



