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Abstract—
Bit Index Explicit Replication (BIER) is an efficient domain-

based transport mechanism for IP multicast (IPMC) that in-
dicates receivers of a packet through a bitstring in the packet
header. Recently, BIER forwarding has been implemented on 100
Gbit/s per port hardware using the P4 programming language.
However, the implementation requires packet recirculation to
iteratively serve one next-hop after another. The objective of
this paper is to reduce this inefficiency.

Static multicast groups can be configured on P4 switches so
that traffic can be sent to all next-hops without recirculation.
We leverage that feature to make BIER forwarding more
efficient. However, only a limited number of static multicast
groups can be configured on a switch, which is not sufficient
to cover all potential port patterns. In a first step, we develop
efficient BIER forwarding that utilizes static multicast groups
derived from so-called configured port clusters. Then, we design
port clustering algorithms that observe multicast patterns and
compute configured port clusters which are more efficient than
randomly selected port clusters. These methods are based on
Spectral Clustering, an unsupervised machine learning technique.
We perform simulations that underline the effectiveness of this
approach to reduce inefficient packet recirculations. We further
implement the new forwarding behaviour on programmable
hardware and provide a controller that samples BIER packets on
the switch, runs the port clustering algorithms, and updates the
configured static multicast groups. We validate this open source
implementation in a testbed and show that the experimental
results are in line with the simulation results.

Index Terms—Software-Defined Networking, Bit Index Explicit
Replication, Multicast, Resilience, Scalability, Unsupervised Ma-
chine Learning

I. INTRODUCTION

IP multicast (IPMC) is an efficient way to distribute one-
to-many traffic. It is organized into multicast groups that are
identified by unique IP addresses. Traffic of a multicast group
is sent to all subscribers along a distribution tree, i.e., nodes
replicate and forward packets to specific neighbors towards
the subscribers. Therefore, only one packet is sent over each
involved link, which reduces the load in comparison to unicast.
To that end, core nodes store for each multicast group the
neighbours that should receive a packet copy. As a result,
traditional IPMC has two scalability issues. First, whenever
the composition of an IPMC group changes, signaling to core
nodes is necessary to update the neighbors that should receive
packet copies. Second, link or node failures, and topology
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changes may affect multiple multicast groups, which puts high
signaling and processing load on core devices.

The IETF proposed Bit Index Explicit Replication (BIER)
[1] as an efficient and stateless domain-specific transport
mechanism for IPMC traffic. Ingress routers equip an IPMC
packet with a bitstring in the BIER header which contains all
destinations of the packet within the domain. Core nodes repli-
cate and forward the BIER packet according to its bitstring
and the paths from the interior gateway protocol (IGP) which
is called routing underlay. Egress routers remove the BIER
header, and IPMC processing continues. With BIER, only
ingress and egress routers of a domain know IPMC groups
and are involved in signalling, but not the core routers.

Recently, we presented an open source BIER implementa-
tion for 100 Gbit/s per port in P4 for the Tofino ASIC hardware
[2]. This implementation is inefficient as it requires one
pipeline iteration per next-hop of a BIER packet as packets are
transmitted iteratively instead of simultaneously. Therefore, a
packet with n next-hops requires n− 1 recirculations. On the
one hand this is due to the fact that packet replication to a
dynamic set of outgoing ports is not supported on the specific
hardware device. On the other hand, it is difficult1 to derive
the set of outgoing ports from the bitstring within a single
pipeline iteration, which is a general challenge for all switch
architectures.

In this paper we present an efficient BIER implementation
in P4 for the Tofino ASIC. First, we propose a forwarding al-
gorithm that utilizes static multicast groups to simultaneously
forward BIER packets to many outgoing ports. However, the
number of configurable static multicast groups is limited and
does not suffice to cover all port combinations on a 32-port
switch. Therefore, the algorithm leverages subsets of ports, so-
called “configured” port clusters. All port combinations within
a configured port cluster are configured as static multicast
groups. This allows efficient BIER forwarding within a very
few pipeline iterations (at most 3 or 4 on the Tofino). To
further improve the efficiency, we suggest to choose configured
port clusters such that they contain ports over which BIER
packets are frequently forwarded together. To that end, we
propose port clustering algorithms that learn port patterns from
sampled BIER traffic and compute configured port clusters that
reduce the number of required forwarding cycles. The methods
are based on Spectral Clustering which is an unsupervised

1BIER bitstrings consist of at least 256 bits and each of them identifies
a receiver. This results in 2256 possible bit combinations which need to be
mapped to up to 232 outgoing port combinations on a switch with 32 ports.
This is a challenge for naive table matching.
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machine-learning technique. In practice, a controller applies
port clustering from time to time on recently sampled BIER
traffic and updates the configured port clusters on the switch.

The paper is structured as follows. In Section II and III
we describe related work and give an introduction to Bit
Index Explicit Replication (BIER). Sections IV and V give
a primer on the programming language P4 and cover impor-
tant aspects of the existing P4-based BIER implementation.
Section VI proposes the efficient BIER forwarding algorithm
and shows simulation results for arbitrarily selected configured
port clusters. Section VII suggests various port clustering
methods. Their performance is compared by simulation in
Section VIII and by hardware experiments in Section IX.
Finally, we conclude the paper in Section X.

II. RELATED WORK

In this section we first review related work on traditional
multicast and resilience. Then, we present work related to both
SDN- and BIER-based multicast. Finally, we review clustering
approaches.

A. Traditional Multicast

Islam et al. [3] and Al-Saeed et al. [4] investigate related
work for traditional multicast. The majority of cited papers aim
to improve the scalability of traditional IPMC. They present
intelligent tree-building mechanisms for multicast to make it
more efficient, e.g., by reducing required state, or signaling.

Elmo [5] encodes topology information of data centers in
packet headers to improve the scalability of IPMC. It leverages
characteristic properties of those topologies to reduce the size
of the forwaring information base (FIB) of core routers. The
Avalanche Routing Algorithm (AvRA) [6] follows a similar
approach where it optimizes link utilization for multicast by
leveraging topology characteristics of data center networks.
Dual-Structure Multicast (DuSM) [7] separates forwarding
structures for high-bandwidth and low-bandwidth traffic to
improve scalability and link utilization in data centers. Li et al.
[8] optimize the FIB to improve the scalability of traditional
multicast in data center networks. To that end, they propose
to partition the multicast address space and aggregate those at
bootleneck switches.

Application layer multicast (ALM) [9] monitors the traffic
on application-specific distribution trees to optimize their
structures for the corresponding group objective. Mokhtarian
et al. [10] construct minimum-delay trees to reduce latency
for delay sensitive data with different requirements like min-
average, min-maximum, real-time requirements, etc. Adaptive
SDN-based SVC multicast (ASCast) [11] follows a similar
approach. The authors describe an integer-linear program to
build optimal distribution trees and fast forwarding tables to
optimize multicast forwarding in terms of latency and delay
for live streaming.

Kaafar et al. [12] present a building scheme for efficient
overlay multicast trees based on location-information of sub-
scribers. Boivie et al. [13] propose small group multicast
(SGM) which aims at avoiding management and set up over-
head for multicast groups with a small number of receivers.

To that end, the multicast packets of such groups carry
the distribution information in their headers, which avoids
signaling in the core. Simple explicit multicast (SEM) [14]
stores multicast information only on branching nodes of the
distribution tree. Non-branching nodes forward packets to the
next-branching node via unicast. Jia et. al. [15] leverage prime
numbers and the Chinese remainder theorem to efficiently
organize the FIB. They reduce the size of the FIB in core
devices and facilitate implementation.

Steiner trees [16] are tree structures that are used to build
efficient multicast trees. Many research papers modify Steiner
trees to build multicast trees optimized with regard to a specific
metric, e.g., link costs [17], delay [18], number of hops [19],
number of branch nodes [20], retransmission efficiency [21],
or optimal placement of IPMC sources [22].

B. Resilience for Multicast

Shen et al. [23] extend Steiner trees so that distribution trees
contain recovery nodes. Such nodes cache multicast traffic for
retransmission to cut off receivers after recomputation of the
FIB. The authors of [24] investigate resilience of several multi-
cast algorithms against node failures. Kotani et al. [25] deploy
primary and backup multicast trees that are identified by a field
in the packet header. After failure detection, the source sends
its packet over a working backup tree by indicating the backup
path in the packet header. Pfeiffenberger et al. [26] propose
that each node in a distribution tree is also the root of a backup
tree that reaches all downstream destinations over paths that
do not include the failed link/node. Nodes switch packets on
a backup tree by setting a VLAN tag in the packet header.

C. SDN-Based Multicast

Rückert et al. [27], [28] propose and extend Software-
Defined Multicast (SDM) which is an OpenFlow-based multi-
cast platform to facilitate management. It focuses on overlay-
based live streaming services for P2P video live streaming.
The authors of [29] describe address translation in OpenFlow
switches to reduce the number of multicast-dependent for-
warding entries in near-to-leaf nodes. To that end, the forward-
ing action from the last hop towards the receivers is done with
a unicast address. Lin et al. [30] implement shared multicast
trees between different IPMC groups on OpenFlow switches.
Thereby, the number of forwarding entries is reduced. The
authors of [31] leverage bloom filters to reduce the number of
TCAM-entries that is required for SDN-based multicast.

D. BIER Multicast

In [32], [33] we presented an early prototype of a BIER
implementation in P4 for the software switch bmv2 [34].
However, bmv2 yields only low throughput (900 Mbit/s) [35].
Therefore, we developed a P4 implementation of BIER and
BIER-FRR for the P4-programmable switching ASIC Tofino
[2] with a switching capacity of 3.2 Tb/s, i.e., 100 Gbit/s
per port in a 32-port switch. We demonstrated its technical
feasibility and performance limits.

Giorgetti et al. [36], [37] presented an OpenFlow imple-
mentation of BIER. However, it requires extensive state or
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controller interaction for efficient BIER forwarding. Further-
more, it is capable of addressing only 20 receivers per packet
due do the limited size of MPLS labels which are used to
implement arbitrary header fields.

Desmouceaux et al. [38] investigate the retransmission
efficiency of BIER. That is, when subscribers signal missing
packets, BIER allows to retransmit packets to only specific
subscribers while still forwarding only one packet copy per
link. Traditional multicast retransmits either via unicast or to
the entire multicast group. The evaluations show that BIER
is significantly more efficient than traditional multicast, i.e.,
it causes fewer retransmitted packets and achieves better link
utilization.

BIER with tree engineering (BIER-TE) [39] encodes the en-
tire distribution tree in the packet header to have more control
of the paths. Carrier grade minimalist multicast (CGM2) [40]
is a novel derivate of BIER-TE. It encodes the distribution
tree in a recursive manner in the packet header. Thereby, it
can scale to larger networks than BIER-TE. However, CGM2
has not been implemented, yet, and is still under development.

Braun et al. [41] propose 1+1 protection for BIER where
traffic is transported on two disjoint trees. As a result, traffic
is delivered successfully to receivers even when a failure
interrupts one tree.

The state of the art for BIER multicast with P4 is limited
due to the following reasons. First, existing implementations
require additional forwarding capacity as shown in [2] which
may significantly reduce the usable physical ports of a switch.
Second, other BIER implementations require either exponen-
tial state or significant controller interaction (as in native IP
multicast), which is contrary to the stateless nature of BIER.
In this work, we present a novel approach for efficient BIER
forwarding that leverages static multicast groups to reduce the
required forwarding capacity by eliminating excessive recircu-
lation. Further, we optimize the selection of the static multicast
groups with unsupervised machine learning to further reduce
the required recirculation and therefore forwarding capacity.

E. Clustering

Clustering is an unsupervised machine learning technique
that solves the problem of identifying clusters of data points
in a multidimensional space. Given a set of D-dimensional
points {x1, ..., xN}, the goal of clustering is to partition the
data into groups/clusters such that points in the same cluster
are similar and points in different groups are dissimilar.

k-Means [42] is one of the most applied clustering algo-
rithms. Its incentive is to find an assignment of data points
to k cluster centers such that the sum of the squares of the
distances of each data point to its cluster center is minimized.

DBSCAN [43] is a density-based clustering algorithm that
can form arbitrary clusters and is especially suited for outlier
detection. It is not suited for high-dimensional data sets as it
uses the euclidean distance as similarity measure.

Spectral Clustering [44] is a clustering algorithm that is
based on graph properties. It uses the normalized Laplacian2

2The normalized Laplacian of a graph with weight matrix W and degree
matrix D is given as L = D−1/2(D −W )D−1/2 [44].

of the similarity matrix of the data points to build k clusters.
Data points are embedded in Rk through the so-called spectral
embedding. Thereby, the first k eigenvectors of the Laplacian
are computed and used to project the data points. Finally, the
embedded data points are clustered with a simple clustering
algorithm, e.g, k-Means.

III. BIT INDEX EXPLICIT REPLICATION (BIER)

In this section we give a short primer on BIER. BIER is
a domain-based transport mechanism for multicast traffic. It
can be explained with three layers as shown in Figure 1. On
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Figure 1: Layered BIER architecture according to [33].

the IPMC layer sources and receivers send and receive IPMC
packets. The BIER layer is responsible for the transport of the
IPMC packets from the IPMC sources to the IPMC receivers
along paths from the unicast routing, i.e., the routing underlay,
through the so-called BIER domain.

The BIER domain consists of three types of BIER devices.
First, bit forwarding ingress routers (BFIRs) are the entry
points to the BIER domain. They encapsulate IPMC packets
with a BIER header for forwarding within the BIER domain.
The BIER header contains a bit string that indicates all
destinations of the BIER packet. That is, each bit position
corresponds to a specific destination. A bit is activated if the
corresponding destination should receive a copy of the packet.
Second, bit forwarding routers (BFRs) forward BIER packets
towards their destinations according to the activated bits in
the BIER header. That is, a BFR sends a packet copy to the
first next-hop over which at least one destination is reached. It
leaves only those bits activated in the bit string of the packet
copy which correspond to destinations that are reached via that
next-hop, and clears all other bits to prevent duplicates at the
receivers. The BFR repeats this procedure until all destinations
are served. As a result, the forwarding path of a BIER packet
is a tree whose links carry only a single packet copy. Third, bit
forwarding egress routers (BFERs) remove the BIER header
and pass the IPMC packet to the IPMC layer.

Next-hops on the BIER distribution tree may not be reach-
able due to link or node failures. In this case, downstream
destination nodes do not receive any BIER traffic until BIER
forwarding tables are updated. Therefore, two BIER fast
reroute (BIER-FRR) concepts have been proposed [45] to
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forward BIER traffic over backup paths from the detection of
the failure until BIER forwarding tables have been updated.
The methods have been compared in [46] and tunnel-based
BIER-FRR has been implemented in [2].

IV. INTRODUCTION TO P4

In this section we give an overview of P4, explain the P4
processing pipeline, packet cloning, packet recirculation, and
multicast groups in P4.

A. P4 Overview

P4 (programming protocol-independent packet processors)
[47] is a high-level programming language to describe the
data plane of P4-programmable devices. It is applied in a
wide range of applications and research [48]. Target-specific
compilers map the P4 programs to the programmable pro-
cessing pipeline of the target devices which are also called
targets. The P4 compiler also generates a data plane API that
can be used by a control plane to manage runtime behavior,
e.g., by writing forwarding entries. P4 targets follow a certain
architecture that may vary between different targets, e.g., Intel
Tofino implements the TNA architecture whereas some P4 ca-
pable SmartNICs may implement the PSA architecture. Packet
cloning, multicast, and recirculation are common features that
are supported by most P4 architectures. We implemented the
subsequently presented mechanism for the Intel Tofino, which
follows the TNA architecture. Therefore, most explained P4
related concepts are done with the TNA in mind. However,
the presented concepts and mechanisms can be implemented
similarly in other architectures.

B. P4 Pipeline

Figure 2 shows the abstract pipeline model of a P4 pro-
grammable device [47]. A programmable parser deserializes
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Figure 2: Abstract forwarding model according to [47].

the packet header and stores the information in so-called
header fields. The header fields are carried through the
pipeline together with packet-specific metadata fields which
are comparable to variables from other high-level program-
ming languages. Only header fields and metadata are processed
afterwards in the ingress pipeline, i.e., the payload of the
packet remains untouched. The ingress pipeline consists of one
or more match-action-tables (MATs) that map header fields

or metadata to actions. Examples for actions are changing
header fields or metadata, e.g., setting the egress port of the
packet. After processing in the ingress pipeline, the packet
is temporarily buffered so that it can be processed by the
egress pipeline which works similarly to the ingress pipeline.
Finally, the deparser serializes the possibly changed header
fields, forwards the packet through the designated egress port,
and discards the metadata.

C. Packet Cloning

P4 has an operation for packet cloning. Depending on the
architecture, different clone operations are defined. In the
following, we explain ingress to egress (I2E) cloning which
we used for the implementation. With I2E cloning, a set
metadata flag indicates that the packet should be cloned after
its processing in the ingress pipeline has concluded. However,
the header fields and metadata of the clone resemble the packet
that is initially parsed before the ingress pipeline. Figure 3
shows the concept. After the ingress pipeline has finished,

Dst. IP: 10.0.0.1 Change Dst.
IP to 10.0.0.2

Header field 
of parsed packet

clone Change Dst.
IP to 10.0.0.3

End of the 
ingress pipeline

Dst. IP: 10.0.0.3

Dst. IP: 10.0.0.1

Original packet

Cloned packet

 Start of the 
ingress pipeline

Figure 3: When a packet is cloned, the copy is created only
after the ingress pipeline and its header fields are reset to the
initial value after the packet has been parsed.

the packet is cloned and both the original packet, i.e., with
header changes, and the packet copy, i.e., without header
changes, enter the egress pipeline where they are processed
independently of each other. Some architectures allow to carry
additional information during cloning. In the case of the TNA,
this is done through a so-called mirror header.

D. Packet Recirculation

Packet recirculation in P4 allows a packet to be processed a
second time by the entire pipeline, i.e., by ingress and egress
pipeline. To recirculate a packet, its egress port, i.e., a special
metadata field, is set to a particular port ID that corresponds
to a switch-intern recirculation port. The recirculation port
functions as a regular port of the switch with the exception
that it has no physical connector, i.e., only the switch itself
can send to and receive traffic from the recirculation port.

After the packet has been processed by both the ingress and
egress pipeline, it is sent to the recirculation port. Afterwards,
the packet is processed again as if it has been received on a
physical port.

E. Static Multicast Groups

P4 allows controllers to configure multicast groups on
forwarding devices. A multicast group consists of a tuple of
multicast group identifier and a set of egress ports. In addition,
there is a special metadata field that allows the ingress pipeline
to assign a multicast group identifier to a packet. After the
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ingress pipeline has completed, the packet is replicated to the
pre-defined set of egress ports.

In the following we refer to those configured multicast
groups as “static multicast groups” to differentiate them from
multicast groups of IPMC. A static multicast group is a local
mechanism on a switch to simultaneously forward a packet to
multiple egress ports.

V. SIMPLE P4-BASED BIER IMPLEMENTATION

In this section we review the simple P4-based BIER im-
plementation of [2]. The target is the Intel Tofino high-
speed switching ASIC [49]. It is used for a prototype on the
Edgecore Wedge 100BF-32X [50] with 32 100 Gbit/s ports.
The implementation makes heavy use of packet recirculation,
which causes capacity issue, e.g., 100 Gb/s incoming multicast
traffic with 5 next-hops requires 400 Gb/s additional forward-
ing capacity for recirculation purpose, i.e., it requires #next-
hops - 1 recirculations. The efficient BIER implementation in
Section VI builds upon the simple implementation and greatly
reduces the need for recirculations.

A. BIER Processing

BFRs leverage the Bit Index Forwarding Table (BIFT) to
determine the next-hops of a BIER packet. We implement the
BIFT as common match-action table in P4. For each BFER
there is one entry in the BIFT. The match key is a bitstring
with only the single bit activated for the corresponding BFER.
The other entry fields, i.e., the corresponding action with its
parameters, are a next-hop and a forwarding bitmask (FBM).
The FBM is a bit string similar to the BIER bitstring and it
indicates the BFERs with the same next-hop. When a packet
arrives, the BFR first copies the bitstring of the packet to a
temporary metadata field which we call “remaining bits”. The
remaining bits indicate the BFERs that still have to be served.
Then, the least-significant activated bit in the remaining bits
is matched against the BIFT using a ternary match operation.
The match-action table entry returns the corresponding next-
hop and FBM for that BFER. The BFR clears all bits in the
bitstring of the packet that are not activated in the FBM. Thus,
only the bits of BFERs that are reached through this next-hop
remain in the BIER bitstring. The BFR further clears all bits
in the remaining bits that are activated in the FBM as they
have already been served. Afterwards, the clone operation is
applied. Figure 4 shows the processing flow of the original
and cloned BIER packet. The original packet is sent through

Ingress pipeline Egress pipeline 

Path of cloned BIER packet Path of original BIER packet 
Figure 4: The original BIER packet is sent through an egress
port while the packet copy is recirculated.

the appropriate egress port to reach the selected next-hop. The

packet copy is cloned to the egress pipeline and recirculated
to a recirculation port. Within the egress pipeline, the BIER
bitstring of the packet copy is set to the remaining bits so
that only the remaining BFERs are served in the next pipeline
iteration. Further details about the original BIER forwarding
implementation can be found in [2].

B. Recirculation Capacity and Problem Statement

The Tofino ASIC has a switch-intern recirculation port
which has the same packet processing capacity as regular
ports. If its capacity does not suffice, packet loss occurs.
To increase the recirculation capacity, physical ports may be
turned into loopback mode, and recirculation traffic may be
distributed over the internal ports and the loopback ports in a
round-robin manner [2]. As these ports cannot be utilized for
other traffic, recirculations are costly.

The simple BIER implementation requires n− 1 recircula-
tions for BIER packets with n next-hops. This approach obvi-
ously does not scale well with increasing number of next-hops
and traffic rate. The objective of this paper is a more efficient
P4-based implementation that requires fewer recirculations per
BIER packet (see Section VI) and an optimized configuration
thereof using clustering methods (see Section VII).

VI. EFFICIENT BIER FORWARDING WITH P4
We explain how static multicast groups can be leveraged

to make BIER forwarding using P4 more efficient, and how
BIER-FRR can be integrated. To demonstrate the efficiency
of the new forwarding algorithm, we present a simulative
performance study.

A. Efficient BIER Forwarding with Static Multicast Groups

We first explain how BIER forwarding can profit from
configured port clusters consisting of static multicast groups
such that multiple next-hops can be served within a single
pipeline iteration. Then we explain how the forwarding al-
gorithm determines a port cluster and the appropriate static
multicast group for a BIER packet, and forwards it.

The presented algorithm is specific to P4 and the archi-
tecture of the Tofino ASIC. However, efficient forwarding
algorithms for any switch architecture need to determine the
set of egress ports for a BIER packet. This is a difficult
task as bitstrings are at least 256 bits large. Therefore, the
presented approach may also be a useful base for efficient
BIER forwarding on other switch architectures.

1) Use of Static Multicast Groups: The idea to make BIER
forwarding more efficient is the use of static multicast groups
so that multiple egress ports can be simultaneously served
instead of using recirculation.

A naive solution is configuring static multicast for all
possible combinations of egress ports. When a packet arrives,
the set of egress ports is determined and the corresponding
static multicast group forwards the packet to all needed egress
ports without packet recirculation. However, on a 32 port
switch this requires 232 = 4294967296 static multicast groups,
which exceeds the number of configurable static multicast
ports.
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We propose now a more sophisticated approach which
requires fewer static multicast groups. We define a set C =
{C1, ..., Ck} of so-called “configured port clusters” (or port
sets) Ci such that all configured port clusters together cover
all ports of a switch. Configured port clusters may be disjoint
or overlapping. For each port set Ci, static multicast groups
Mj ∈ P(Ci) are configured for all sets of ports in the powerset
of Ci. Thus, a configured port cluster C implies

m(C) = 2|C| − |C| − 1 (1)
static multicast groups that need explicit configuration on
the switch; the empty group and groups with only a single
destination do not need to be configured. On a 32-port
switch three port clusters with 10, 11, and 11 ports may be
configured, which requires in total 5085 explicitly configured
static multicast groups. This is well feasible on a switch like
the Tofino which supports up to 216 = 65536 static multicast
groups3. With this approach, a BIER packet needs to be sent
to at most |C| static multicast groups, which requires |C| − 1
recirculations instead of nh − 1 with nh being the number of
next-hops of a BIER packet. Moreover, the administrator may
set a threshold mmax on the number of static multicast groups
usable for efficient BIER forwarding.

2) Forwarding Procedure: We first give a forwarding exam-
ple. Then, we describe how the forwarding procedure selects
a set of configured port clusters Si ⊆ C for BIER forwarding,
and then we present how the appropriate static multicast group
is chosen from a selected configured port cluster Cj ∈ Si.

a) Forwarding Example: Figure 5 illustrates an exam-
ple for a 8-port switch with three configured port clusters,
C = {C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {6, 7, 8}}.
For each configured port cluster, all port combinations are
configured as static multicast groups. The empty group and
groups with only a single port do not need to be configured.
We consider all subsets of configured port clusters Si ⊆ C.
A packet destined for ports 1, 3, and 4 requires the subset
S4 = {C1, C2} for forwarding, i.e., it will be served by
the multicast group {1, 3} from C1 and the multicast group
{4} from C2, which requires a single recirculation. Note that
groups with a single destination do not need to be configured
as static multicast group.

b) Selection of Set of Configured Port Clusters: Now
we explain how the appropriate subset Si for forwarding is
determined in the data plane. C-FBM(Si) is the combined
forwarding bitmask of a subset of configured port clusters
and indicates all BFERs that are reachable through Si. We
set up a match-action table with one entry per subset Si in
increasing order with regard to subset size |Si|, as shown
in Figure 5. The entry ¬C-FBM(Si) is the complement of
C-FBM(Si). The objective is to find the smallest subset of
configured port clusters that serves all BFERs of a BIER
packet. To that end, the bitstring of a packet is bitwise
ANDed with the complement of the C-FBM in the match-
action table. We define a match if the result of that operation
is zero. Then, all BFERs of the BIER packet are served by
the corresponding subset Si. This operation is done through a

3The actual usable number of available resources depends on the program
complexity.

ternary match. A ternary match in P4 is defined by a source
value sv , e.g., a header field, and a (mask, value) pair. The
corresponding table entry matches when sv & mask = value.
The source value is given by the BIER bitstring, the mask is
the complement of the C-FBM and the value is 0. Due to the
order within the match-action table, the first match Si is the
smallest subset with that property. The first configured port
cluster Cj in that subset Si is selected for the remainder of
the forwarding process.

We consider the example of Figure 5, where 8 BFERs are
reachable over ports 1-8. For simplicity, BFER i corresponds
to the i-th bit in the BIER bitstring and is reachable over port
i, i.e., BFER 1 corresponds to the least significant bit and is
reachable over port 1. The C-FBMs for all subsets Si ⊆ C are
given in Table 1.

Table 1: Subsets Si ⊆ C with corresponding C-FBMs.

Subset C-FBM ¬C-FBM

S1 : {C1} 00000111 11111000
S2 : {C2} 00111000 11000111
S3 : {C3} 11100000 00011111

S4 : {C1, C2} 00111111 11000000
S5 : {C1, C3} 11100111 00011000
S6 : {C2, C3} 11111000 00000111

S7 : {C1, C2, C3} 11111111 00000000

Again, we assume a BIER packet to be destined for ports
1, 3, and 4, i.e., towards BFERs 1, 3, and 4 with a bitstring
bs = 00001101; then only S4 or S7 can cover all BFERs of
the packet4. Due to the order within the match-action table,
the first match is S4 and C1 is selected for the remainder of
the forwarding process.

c) Selection of the Static Multicast Group: Only a single
static multicast group Mh of the configured port cluster
Cj will be used for forwarding. We now determine that
Mh ∈ P(Cj) and take a similar approach as in Section VI-A2b
for that purpose. We set up a match-action table for Cj which
has an entry for any static multicast group Mh ∈ P(Cj). The
entries are sorted by increasing group size |Mh| and contain
the complement of the C-FBM of the corresponding multicast
group. Single ports are also considered as static multicast
groups although they do not require explicit configuration on
the switch. The bitstring of a BIER packet is first ANDed with
the C-FBM of the selected configured port cluster Cj . This
excludes all BFERs from the bitstring that cannot be served
by Cj . The result is bitwise ANDed with the complement of
the C-FBM(Mh) of the multicast groups in the table entries.
We define a match if the result is zero. This is done with a
ternary match operation as with the selection of a configured
port cluster. Due to the increasing order of entries in the
match-action table, the first match refers to the smallest static
multicast group Mh within the configured port cluster that
covers all relevant BFERs.

d) Forwarding and Bitstring Adaptation: At the end of
the ingress pipeline, the original BIER bitstring is stored in a
transient metadata header. The activated bits in C-FBM(Mh)

4This is ensured through the ternary match operation: bs & ¬C-FBM(Si)
== 0.
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Figure 5: Configured port clusters Ci together cover all ports of a switch. All port combinations within a configured port
cluster are configured as static multicast groups. A match-action table chooses a minimum subset of configured port clusters
and selects its first configured port cluster for forwarding.

are deactivated in this transient metadata header which repre-
sents the remaining bits that need processing; if the bitstring
is not zero, the packet is recirculated and the BIER bitstring
is restored through the transient metadata header in the egress
pipeline of the recirculation port5. In addition, a copy of the
original packet is sent to all egress ports of the selected static
multicast group Mh. The egress pipelines of these ports clear
all bits in the packet’s bitstring that are not activated in the
FBM of the corresponding port and then they transmit the
packets.

B. Integration of BIER-FRR

The proposed efficient forwarding scheme is compatible
with BIER-FRR if BIER-FRR is integrated as follows. First,
the switch processes the egress ports that are affected by a
failure, i.e., a failed link or a failed node. To that end, the
BIER packets are forwarded by regular BIER forwarding but
over alternate ports. When all affected egress ports have been
served, the BIER packet is recirculated and the remaining
ports, i.e., working ports, are processed by the presented, effi-
cient forwarding algorithm. This approach prevents duplicates
at subscribers and unnecessary double transmissions of the
same packet over one link. Details are given in [2].

C. Simulative Performance Evaluation

We evaluate the concept of static multicast groups for
efficient BIER forwarding through the following experiment.
We examine different numbers of disjoint configured port
clusters k ∈ {1, 2, 4, 8, 16, 32}. With k configured port
clusters and a 32 port switch, each configured port cluster
contains 32

k ports. Further, we simulate BIER packets with
nh ∈ {1, 2, 4, 8, 16, 32} random next-hops. They are processed
by the different configured port clusters. Figure 6(a) and
Figure 6(b) show the average number of recirculations per
packet and the required static multicast groups. Although
multicast traffic with random next-hops is unrealistic (see Sec-
tion VIII-A1), it serves as a good baseline for a performance
evaluation of the efficient BIER forwarding mechanism. The
average number of recirculations increases with the number

5This restores all bits from the original BIER bitstring that have not been
processed yet.

of next-hops nh and the number of configured port clusters k.
In fact, the number of recirculations is bound by k − 1. For
k = 32, the results are equivalent to the simple (original) BIER
forwarding. Higher values of k lead to smaller configured port
clusters, and hence, to fewer next-hops that can be served
in one shot. The number of required static multicast groups
decreases with the number of configured port clusters k. To
keep the number of recirculations low, larger configured port
clusters should be preferred. However, the number of available
static multicast groups may be limited due to technical reasons
or based on administrative decisions.

In the given traffic model, we randomly selected next-hops
for BIER packets. This is not a realistic model for multicast
traffic. The next-hops of subsequent BIER packets are likely
to be correlated and so are the ports over which the packets
are sent. Therefore, some configured port clusters reduce
the average recirculation more than others. To effectively
minimize the number of recirculations, it is necessary to form
meaningful configured port clusters that take the current traffic
model into account.

VII. PORT CLUSTERING ALGORITHMS FOR EFFICIENT
BIER FORWARDING

In this section, we first illustrate the optimization poten-
tial of efficient BIER forwarding through configuration of
appropriate port clusters. Then, we present three clustering
algorithms to reduce the average recirculations per packet:
random port clustering (RPC) as a simple baseline, port
clustering based on Spectral Clustering (PCSC), and recursive
clustering with overlaps (RPCO) which also leverages Spectral
Clustering for subroutines. For the latter two algorithms we
present a graph embedding method that turns ports of sampled
packets into a graph structure from which the algorithms learn
correlated port clusters.

A. Optimization Potential and Approach

The bits in the BIER header require a packet to be sent
to a certain set of next-hops, and, thereby, to specific ports
of a switch. To be brief, we talk about “ports of a packet”.
In the previous section we showed how multiple ports of a
BIER packet can be served at once to speed up the forward-
ing process. For example, port clusters {1, .., 8}, {9, .., 16},



8

1

2

4

8

16

32

1 2 4 8 16 32
# configured port clusters k

# 
re

ci
rc

ul
at

io
ns

 p
er

 p
ac

ke
t

# next−hops  nh 1 2 4 8 16 32

(a) Average number of recirculations per packet for nh ∈ {1, 2, 4, 8, 16, 32}
random next-hops.

24

211

218

225

232

1 2 4 8 16 32
# configured port clusters k

# 
st

at
ic

 m
ul

tic
as

t g
ro

up
s

(b) Number of required static multicast groups.

Figure 6: Average number of recirculations and number of static multicast groups for k ∈ {1, 2, 4, 8, 16} configured port
clusters.

{17, .., 24}, and {25, .., 32} may be configured. Then, a BIER
packet needs to be processed at most four times, i.e., it must be
recirculated at most three times, no matter how many BFERs
are set in the BIER header. If a packet has only ports in the
range {1, .., 8}, the packet does not need to be recirculated
at all. However, if a packet has ports {1, 9, 17, 25}, it still
requires three recirculations. The worst-case performance of
the presented mechanism is therefore the number of configured
port clusters |C| - 1 instead of #next-hops - 1. This also holds
for the subsequently presented optimization algorithms RPC,
PCSC, and RPCO.

We now assume that ports of a packet are not random but
correlated. That is, certain ports sets tend to occur together. We
call them correlated port clusters. We propose to learn these
correlated port clusters from sampled traffic and to utilize them
as configured port clusters. Then it is likely that BIER packets
can be forwarded with fewer processing steps and, thereby,
the number of recirculations may be reduced. In practice,
a controller can continuously sample multicast traffic from
a switch, learn the correlated port clusters of the sampled
multicast traffic, and adjust the configured port clusters on
the switch.

Large configured port clusters require lots of static multicast
groups, but they have the potential to effectively reduce the
number of recirculations. A constraint is the maximum number
mmax of static multicast groups usable for configured port
clusters which may be a technical limit or defined by the
administrator.

B. Random Port Clustering (RPC)

With RPC, np ports are randomly partitioned into approx-
imately k equal-size clusters. The number of clusters k is
determined such that the resulting number of configured static
multicast groups is at most mmax. As the algorithm is trivial,
we do not provide any further details. The method will serve
as a baseline for a performance comparison.

C. Port Clustering based on Spectral Clustering (PCSC)

We first present a graph embedding method that turns ports
of sampled packets into a graph structure from which the
algorithms learn correlated port clusters. Then we present the

PCSC algorithm which is based on Spectral Clustering. It
partitions np ports into approximately equal-size port clusters.

1) Graph Embedding: We embed the port information
of sampled packets into a graph which is needed by the
algorithms for PCSC and RPCO. The nodes of the graph
represent the ports of a switch. The graph is fully connected
and the edges have weights. All weights are initially zero.
The embedding iteratively processes the sampled packets. For
every combination of two ports of a packet, the weight of
the link between these ports is increased by one. Figure 7(a)-
Figure 7(b) illustrate how two sampled packets with ports
{1, 2, 3} and {4, 5}, respectively, modify an embedded graph
with 5 nodes whose edges are initially all zero.

(a) The edge weights between
egress ports 1, 2, and 3 are in-
creased by one.

(b) The edge weights between
egress ports 4 and 5 are increased
by one.

Figure 7: Graph embedding: a full-mesh graph is augmented
by port information from sampled packets: high edge weights
indicate port pairs that frequently occur together in a BIER
packet.

2) PCSC Algorithm: We first develop a metric for port
clusters that correlates with the number of recirculations
needed for the sampled traffic. Then we propose pseudocode
for PCSC that minimizes that number while respecting the
number of usable static multicast groups.

a) Metric: We consider two port clusters C1 and C2.
The clustering is good if only a few BIER packets need to
be sent through ports of C1 and C2. We identify a metric
for the graph embedding that correlates with that number of
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Figure 8: Most BIER packets are sent to ports {1, 2, 3, 4}, {3, 4}, and {4, 5} on a 7-port switch and the maximum number
of usable static multicast groups is mmax = 12. PCSC produces equal-size port clusters while the optimum port clusters
minimizing the overall number of recirculations has unequal size.

packets although it is not an exact measure for it. The function
cut(C1, C2) is the sum of the weights on the edges between
any two nodes v1 ∈ C1 and v2 ∈ C2. It gives an upper bound
on the number of packets with ports in both C1 and C2. It
is an upper bound and not the exact number as a packet may
have multiple ports from C1 and/or C2. To assess whether the
clustering is good, we need to relate cut(C1, C2) to the overall
number of nodes in the considered clusters. This can be done
with the so-called normalized cut (Ncut) and is given below,
generalized for multiple clusters.

Ncut(C1, ..., Ck) =

k∑
i=1

cut(Ci, Ci)

vol(Ci)

Thereby, cut(Ci, Ci) measures the sum of the edge weights
between nodes in Ci and nodes that are not in Ci (Ci). The
function vol(Ci) sums up the edge weights of all nodes in Ci –
as a result, edge weights between nodes within the cluster are
counted twice, weights of outgoing edges are counted once.
The objective is to find clusters C1, ..., Ck that minimize the
normalized cut. Ncut is known to be NP hard and therefore
cannot be solved efficiently. However, Spectral Clustering is
a relaxation of Ncut. It yields a partition C with preferably
equal-size6 clusters Ci ∈ C and can be solved efficiently [44].

b) Pseudocode for PCSC: PCSC is described in Algo-
rithm 1. It first performs the graph embedding for the set of
sampled packets S and the given number of nodes np. Then,
Spectral Clustering is called to provide a partition C of the np

nodes into k clusters. This is performed in a loop, starting from
a single cluster up to np clusters. As soon as a partition C is
found that requires at most mmax static multicast groups, the
algorithm stops and C is returned. It is the clustering with the
lowest number of clusters that can be configured with mmax

static multicast groups.

6This property is desirable as the number of static multicast groups
increases exponentially with the number of nodes in a cluster.

Algorithm 1 PCSC
Input: samples: S

number of ports: np

number of multicast groups: mmax

graph = graphEmbedding(np,S)
for k from 1 to np do

C = SpectralClustering(graph, k)
if number of multicast groups for C ≤ mmax then

return C
end

end

D. Recursive Port Clustering with Overlap (RPCO)

We first explain two major shortcomings of PCSC. Then
we explain how RPCO solves these shortcomings. Finally, we
give a high-level pseudocode description of RPCO.

1) Shortcomings of PCSC: PCSC has two major shortcom-
ings. First, if the configured port clusters cannot be built,
the number of clusters is increased by one. As a result,
an important cluster that significantly reduces the number
of recirculations may not be built although a less important
cluster could be split to save static multicast groups.

We illustrate that with a 7-port switch and mmax = 12
usable static multicast groups. We assume that most multicast
packets are sent to port clusters {1, 2, 3, 4}, {3, 4}, and {4, 5}.
When PCSC is called with k = 2, the clusters in Figure 8(a)
may be returned which require 15 static multicast groups,
which exceeds mmax so that it is not a valid solution.
Therefore, PCSC increases k to 3, which may return the
clusters in Figure 8(b) which require only 6 static multicast
group. As this is feasible, this clustering is PCSC’s final result.
However, the optimal clustering that minimizes the overall
number of recirculations might be the one in Figure 8(c) with 4
unequal-size clusters. They require 11 static multicast groups,
which is also feasible.

Second, PCSC creates disjoint clusters. This, however,
may not be optimal. We illustrate that by a small example.
We consider packets with ports {1, 2, 3} and {2, 3, 4} and
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mmax = 8 usable static multicast ports. A single, large cluster
C = {1, 2, 3, 4} requires m(C) = 11 static multicast groups
so that it cannot be configured. When working with smaller,
non-overlapping clusters, it is not possible to cover the port
sets of both packets with only a single port cluster. However,
when working with overlapping port clusters C1 = {1, 2, 3}
and C2 = {2, 3, 4}, only 7 static multicast groups are needed7,
which is feasible. Moreover, the port sets of both packets can
be covered. Thus, overlapping clusters may help to further
reduce the number of recirculations with a limited number of
usable static multicast groups.

2) Design Ideas: We discuss major design ideas of RPCO.
If the number of usable static multicast groups mmax does not
suffice to configure k clusters proposed by Spectral Clustering,
RPCO selects the clusters that reduce recirculations in the most
efficient way and recursively re-clusters the remaining clusters.
To that end, we review and adapt the knapsack algorithm to
select the clusters that reduce recirculations most efficiently.
Given a clustering, we further suggest how to add nodes also to
other clusters they are not yet part of, which facilitates cluster
overlaps.

a) The Knapsack Algorithm: In the knapsack problem
[51], a set of items is given, and each item has a weight and
a value. The knapsack objective is to select items such that
their overall weight is less than a given limit while their overall
value is maximized.

We apply the knapsack algorithm as follows. The set of
items is given as set of port clusters C = {C1, ..., Ck}.
The value of a port cluster Ci is given by the number of
recirculation it saves for the set of packets S which is evaluated
by simulation. The weight of a port cluster Ci is given by
its number of required static multicast groups m(Ci). The
limit is the number of usable static multicast groups. The
algorithm selects those clusters that maximize the number of
saved recirculations with the available static multicast groups.

b) Adding Single Nodes to Multiple Clusters: We first
define the so-called port-cluster relevance r(x,C) of a port x
and a cluster C, x /∈ C. Then, we explain how the port-cluster
relevance is used to add single nodes to multiple clusters.

The port-cluster relevance measures the connectivity be-
tween port x and cluster C. It is the sum of the edge weights
w between x and C, i.e., r(x,C) =

∑
y∈C w(x, y).

Ports are initially assigned to a cluster with Spectral Cluster-
ing. However, ports may also be important for other clusters.
The list of all port-cluster pairs sorted by decreasing port-
cluster relevance suggests the order in which nodes should be
additionally added to another cluster provided the remaining
static multicast groups suffice. As a result, a partition of ports
becomes a port clustering with overlaps.

3) Pseudocode for RPCO: We give a high-level pseu-
docode for RPCO and refer to the Github repository8 for
details.

Algorithm 2 describes the outer control loop of RPCO.
First, the graph embedding of the samples S is computed and

7When working with overlapping port clusters, the static multicast groups
required by multiple port clusters need to be configured only once on the
switch.

8Github: https://github.com/uni-tue-kn/rpco

stored in graph. Then, the best clustering Cbest is initialized
with single node clusters. A graph with np nodes (number
of ports on the switch) can be partitioned into up to np

clusters. Therefore, the subsequent loop is called with k
between 1 and np. Within the loop, the current clustering C is
initialized empty and the number of remaining static multicast
groups mleft is initialized with mmax. Both C and mleft are
global variables so that they can be modified by subroutines.
RecursiveClustering computes a partition of all nodes and
stores it in C. Details of the procedure will be explained
later. Then, OverlapClusters utilizes remaining usable static
multicast groups mleft to add nodes to other clusters they are
not yet part of (see Section VII-D2b). This leads to overlapping
clusters. Afterwards, the best clustering Cbest is updated by
C if C requires fewer recirculations than the best clustering.
The function Recirculations(C,S) computes the number of
recirculations required for clustering C for the packets in S.
Finally, RPCO returns the best clustering of all switch ports
that minimizes the number of recirculations for the samples
S.

Algorithm 2 RPCO
Input: samples: S

number of ports: np

max. number of multicast groups: mmax

graph = GraphEmbedding(np,S)
Cbest = {{1}, ...{np}}
for k ∈ [1, np] do

C = {∅}
mleft = mmax

RecursiveClustering(graph, k)
OverlapClusters(graph)
if Recirculations(C,S) <Recirculations(Cbest,S) then

Cbest = C
end

end
return Best port clustering Cbest

RecursiveClustering is described in Algorithm 3. If the
graph contains only a single node v, the node is added as
a separate cluster to C and the recursion ends. Otherwise,
Spectral Clustering is executed to produce clustering C′ with
the desired number of clusters k. Then, the cluster set C∗

is identified which makes best use of the remaining static
multicast groups mleft to reduce recirculations. All clusters
in C∗ are added to the current clustering result C and mleft is
decreased by their number of required static multicast groups.
The clusters not selected by knapsack (C′ \C∗) are recursively
clustered. To that end, the corresponding embedded subgraph
is computed. The recursion ends if either the recursion was
called with a single node or if all clusters C′ can be selected.

VIII. SIMULATIVE PERFORMANCE COMPARISON

In this section we compare the performance of the three
port clustering methods Random Port Clustering (RPC), Port
Clustering based on Spectral Clustering (PCSC), and Re-
cursive Port Clustering with Overlaps (RPCO). We first de-
velop a model for correlated multicast traffic and explain the
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Algorithm 3 RecursiveClustering
Input: graph embedding: graph

number of clusters: k

if graph contains only the single node v then
C = C ∪ {{v}}
return

end
C′ = SpectralClustering(graph, k)
C∗ = knapsack(C′,S,mleft)
for C ∈ C∗ do

C = C ∪ {C}
mleft = mleft −m(C)

end
for C ∈ C′ \ C∗ do

subgraph = subgraph of graph limited to nodes in C
RecursiveClustering(subgraph, 2)

end

performance evaluation methodology. Then, we compare the
performance of the mentioned clustering methods for various
correlated multicast traffic models. Finally, we compare the
runtime of the algorithms and discuss their scalability proper-
ties.

A. Traffic Model and Evaluation Methodology

We define a simple model for correlated multicast traffic
and explain the methodology for the subsequent comparison
of the port clustering methods.

1) Model for Correlated Multicast Traffic: In Section VI-C
we utilized a model for multicast traffic that assumes random
ports for subsequent multicast packets. However, random ports
are not realistic for two reasons. First, subsequent multicast
packets belong to a set of active multicast groups and packets
of a multicast group have identical ports as long as the groups
do not change. Second, receivers of multicast groups are users
or connected upstream aggregation points in specific time
zones, geographical regions, or neighborhoods. Therefore, we
assume the users have common interests for certain multicast
content so that they belong to multicast groups with correlated
receivers. We have not found any literature studying this issue
and think this would be useful future work.

We propose a model for correlated multicast traffic for use
in the subsequent performance comparison. We define a set
of generating port clusters Cg = {C1, C2, ..., Ck} from which
ports of a packet are preferentially chosen. First, we randomly
choose one generating port cluster Ci; thereby all Ci have
equal probability. Then, we determine a random number of
ports which is equally distributed between 1 and the size |Ci|
of the chosen cluster. We draw these ports with a probability p
from Ci (without duplicates) and with probability 1− p from
ports outside Ci (without duplicates).

For p = 1, all ports of a sampled BIER packet are
from a single, generating port cluster Ci. In that case, if
the generating port clusters Cg are configured for efficient
BIER forwarding, BIER packets can be forwarded without
recirculation. As p decreases, a sampled BIER packet is likely
to have increasingly more ports outside the selected generating

port cluster Ci. That means, the resulting multicast traffic is
more random and more recirculations are needed. We take p
as a measure for port correlation in the generated multicast
traffic.

2) Evaluation Methodology: The objective of port cluster-
ing algorithms for efficient BIER forwarding is the reduction
of recirculations. Therefore, we take the average number
of recirculations per packet as performance metric for the
subsequent comparisons.

We generate 1000 BIER packets. Based on these packets
we compute sets of port clusters for optimized configuration
using the considered port clustering methods and various
numbers of usable static multicast ports mmax. Then, we
generate another 10000 packets and simulate efficient BIER
forwarding using the optimized configuration. We count the
number of recirculations and compute the average number
of recirculations per packet. We conduct the experiments 100
times and produce 95% confidence intervals for the average
number of recirculations. As they are very small, we omit them
in the figures for the sake of readability.

B. Performance Comparison of Port Clustering Methods

We compare the efficiency of the port clustering algorithms
for different traffic models. We consider disjoint and overlap-
ping generating port clusters of equal and unequal size. We
choose the models such that they all lead to 4.5 ports per BIER
packet, which makes their results comparable.

1) Multicast Traffic Generated from Disjoint Port Clusters:
We study correlated multicast traffic generated from disjoint
generating port clusters. We consider symmetric and asym-
metric generating port clusters.

a) Symmetric Generating Port Clusters: We consider
four symmetric, disjoint, generating port clusters of size 8:
C1 = {1, .., 8}, C2 = {9, .., 16}, C3 = {17, .., 24}, C4 =
{25, .., 32}. If they are used for configuration, 4·(28−8−1) =
988 static multicast groups are needed.

Figure 9(a) shows the average number of recirculations
per packet for traffic models with port correlation p ∈
{0.7, 0.9, 0.99}, for usable static multicast groups mmax ∈
{0, 32, 64, 128, 256, 10.24, 2048, 4096, 8192, 16384}, and for
the port clustering methods RPC, PCSC, and RPCO.

If no static multicast group is available for efficient BIER
forwarding (mmax = 0), the port clustering is disabled,
and the forwarding behaviour is the same as the one for
simple BIER forwarding. Therefore, packets with 4.5 ports
on average require 3.5 recirculations on average. Increasing
the number of usable multicast groups mmax allows efficient
BIER forwarding to decrease the average number of recir-
culations per packet. This holds for all traffic models and
for all port clustering methods. However, if sufficient static
multicast groups are available, the degree to which the average
number of recirculations can be reduced depends on the port
correlation p and the port clustering method.

If a packet with l ports is generated from a specific
generating port cluster, all the ports are taken from that cluster
with a probability of pl. Setting l = 4.5 yields 20.1% for
p = 0.7, 62.2% for p = 0.9, and 95.6% for p = 0.99.
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Thus, the chosen traffic models are quite divers. For port
correlation p = 0.7, the average number of recirculations
are similar for all considered port clustering algorithms. The
advanced port clustering algorithms hardly outperform the
random method due to the lack of sufficient port correlation in
the generated multicast traffic. For port correlation p = 0.99,
most packets are entirely drawn from a single generating port
cluster. As a result, the advanced packet clustering methods
lead to significantly fewer packet recirculations than random
clustering. With mmax = 1024 or more usable multicast
groups, PCSC and RPCO reduce the average number of
recirculations to almost zero. Apparently they are able to learn
the right port clusters. The generating port clusters are optimal
for configuration; as mentioned above, they require 988 static
multicast groups. This explains why mmax = 512 or fewer
static multicast groups require more recirculations, also with
advanced port clustering methods. The results in Figure 9(a)
show that PSCS and RPCO lead to about the same number
of recirculations per packet for symmetric, disjoint, generating
port clusters.
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(a) Traffic sampled from four generating port clusters of size 8 with different
port correlation p.
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(b) Traffic sampled from four clusters of size 12, 10, 6, 4 with port correlation
p = 0.9.

Figure 9: Impact of port clustering methods and number mmax

of usable, static multicast groups on the average number of
recirculations per packet; multicast traffic is sampled from
disjoint generating port clusters.

In the following, we choose port correlation p = 0.9
as this generates sufficiently correlated multicast traffic with
substantial port deviation from the generating port clusters.

b) Asymmetric Generating Port Clusters: We consider
four asymmetric, disjoint, generating port clusters of size 12,
10, 6, 4: C1 = {1, .., 12}, C2 = {13, .., 22}, C3 = {23, .., 28},
and C4 = {29, .., 32}. If used for configuration, they require
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(a) Traffic sampled from six clusters of size 8.
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(b) Traffic sampled from six clusters of size 12, 10, 8, 8, 6, 4.

Figure 10: Impact of port clustering methods and number
mmax of usable, static multicast groups on the average number
of recirculations per packet; multicast traffic is sampled from
overlapping, generating port clusters with port correlation
p = 0.9.

(212−12−1)+(210−10−1)+(26−6−1)+(24−4−1) = 5164
static multicast groups.

Figure 9(b) illustrates the average number of recirculations
per packet for port correlation p = 0.9. Again, more usable
static multicast groups cause fewer recirculations. We now ob-
serve that RPCO reduces the average number of recirculations
to lower numbers than PCSC, in particular for mmax ≤ 4096.
For larger mmax, PCSC and RPCO lead to almost equal
results. This is in line with the design goal of RPCO: it
makes better use of a limited number of static multicast
groups than PCSC by proposing unequal-size port clusters.
For mmax = 64, PCSC causes 3 recirculations per packet
while RPCO causes only 2. For port correlation p = 0.99,
which is not shown in the figure, both PCSC and RPCO
reduce the average number of recirculations to almost zero
for mmax ≥ 8192.

2) Multicast Traffic Generated from Overlapping Port Clus-
ters: We study the performance of the presented clustering
algorithms for overlapping, generating port clusters.

a) Symmetric Generating Port Clusters: We consider six
overlapping, generating port clusters of size 8: C1 = {1, .., 8},
C2 = {6, .., 13}, C3 = {11, .., 18}, C4 = {17, .., 24}, C5 =
{22, .., 29}, and C6 = {28, .., 32, 1, .., 3}. Configuring them
as port clusters requires 6 · (28 − 8− 1)− 4 · (23 − 3− 1)−
2 · (22 − 2− 1) = 1464 static multicast groups.

Figure 10(a) indicates the average number of recircula-
tions per packet for port correlation p = 0.9. Here, PCSC
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outperforms RPC, and RPCO outperforms PCSC for any
number mmax > 0 of usable static multicast groups. While
PCSC computes only disjoint port clusters, RPCO may yield
overlapping port clusters. This can lead to fewer recirculations
when frequently observed port groups of packets are partly
overlapping. For port correlation p = 0.99, which is not
shown in the figure, only RPCO reduces the average number
of recirculations to almost zero for mmax ≥ 2048.

b) Asymmetric Generating Port Clusters: We consider
six overlapping, generating port clusters of size 12, 10, 8, 8, 6,
4: C1 = {1, .., 12}, C2 = {27, .., 32, 1, .., 4}, C3 = {9, .., 16},
C4 = {22, .., 29}, C5 = {18, .., 23}, and C6 = {16, .., 19}.
Configuring them as port clusters requires 5630 static multicast
groups.

Figure 10(b) illustrates the average number of recirculations
per packet for port correlation p = 0.9. The results are very
similar to those in Figure 10(a), only a few recirculations
more are required. That means, PCSC clearly outpeforms
RPC, and RPCO outperforms PCSC. For p = 0.99 and
mmax ≥ 8192, which is not shown here, RPCO even reduces
the average number of recirculations to almost zero. That is,
it is able to find optimal clusters for configuration even under
challenging conditions (overlapping, unequal-size, generating
port clusters).

C. Runtime

The presented clustering algorithms, especially RPCO, seem
rather complex at first glance. We measure the runtime of the
presented algorithms for the evaluation in Section VIII-B2b.
The experiments are executed on a 2022 Mac Studio with M1
Max and 32 GB of RAM. Figure 11 compiles the results.
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Figure 11: Average runtime in seconds for the clustering algo-
rithms RPC, PCSC, and RPCO while performing experiments
for Section VIII-B2b.

Random Port Clustering (RPC) has the shortest runtime with
at most 9 ms. It partitions all ports into equal-size clusters
and its runtime is therefore independent of port correlation p.
PCSC reveals the second lowest runtime with up to 86 ms. It
calls the Spectral Clustering subroutine at most np times where
np is the number of ports. PCSC’s runtime decreases with
increasing mmax because larger values of mmax lead to fewer
subroutine calls (return leaves the loop in Algorithm 1). RPCO
has the longest runtime with up to 527 ms. It also performs

np iteration steps but may call Spectral Clustering multiple
times within a single iteration step. Its runtime primarily
depends of the number of recursive calls. With decreasing
p, RPCO’s runtime decreases. Lower values of p lead to
more uncorrelated packets, which leads to a blurred graph
structure in the sense of more homogeneous edge weights. The
Spectral Clustering subroutine tends to return larger clusters
on a blurred graph. When not all clusters can be built, RPCO
recursively re-clusters them. This is more likely with a blurred
graph structure than with a sharp graph structure, i.e., a higher
correlation between packets.

Although RPCO has the longest runtime, RPCO can be
carried out sufficiently fast so that it can be well applied in
practice as configured port clusters may be adapted rather on
the time scale of minutes than seconds.

D. Scalability

In the following, we discuss the scalability properties of
the presented mechanisms, i.e., how they behave in larger
networks. First, the presented clustering algorithms leverage
only local information for optimization, i.e., they only require
sampled packets from a switch. Therefore, the optimization
is preferably done by a controller running on the switch
itself, which eliminates the need for additional control plane
traffic in the network. Second, the used graph embedding
(Section VII-C1) has a constant size per switch, i.e., it scales
linearly with the number of switch ports. Therefore, the
runtime is bounded by a small constant for a realistic number
of maximal ports of a switch. As a consequence, the presented
mechanisms are highly scalable and also suited for large
networks.

IX. EXPERIMENTAL PERFORMANCE EVALUATION

In this section we perform experiments in a hardware
testbed to demonstrate the practical feasibility of the pro-
posed concepts and to validate the theoretical results from
Section VIII. First, we explain the concept and the testbed
setup. Then, we describe the performed experiments.

A. Concept

Figure 12 illustrates the concept for the hardware testbed.
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BIER traffic
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Learn MC groups
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Cluster egress ports  
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Figure 12: Concept for the hardware evaluation.
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The Tofino [49], a P4-programmable switching ASIC, is
the core of the hardware testbed. We utilize a Tofino-based
Edgecore Wedge 100BF-32X switch [50] with 32 100 Gbit/s
ports that runs the adapted BIER implementation as described
in Section VI. BIER traffic is sampled at the Tofino with a rate
of 0.1%, i.e., every 1000th BIER packet. Sampled packets are
sent to the controller and used for the graph embedding as
described in Section VII. For 100 Gbit/s incoming multicast
traffic, this amounts to 100 Mbit/s which can be efficiently
handled by the controller. Alternatively, the number of sampled
packets can also be limited through a Meter9 instance. After
210 samples, the controller applies the optimization heuristic
and installs the static multicast groups of the configured port
clusters. We measure the average recirculation traffic on the
Tofino to assess the effectiveness of the presented optimization
heuristics. To that end, packets on the recirculation port are
cloned to a separate end host that measures the incoming
bandwidth which equals the rate of the recirculation traffic.

B. Traffic Generation

Generating UDP traffic at high rate according to a given
distribtion is a difficult task. We leverage Iperf [53] to generate
homogeneous UDP traffic on an end host. It is sent to the
Tofino which adapts it according to a specified distribution
of BIER headers. When the Tofino receives a UDP packet
generated by Iperf, it generates a random number between 0
and 2w − 1, where w is a parameter of the random extern on
Tofino that generates a random number between 0 and 2w −
1. The generated random number is then used as index to a
match-action table that maps the random number to a BIER
header (see Figure 13). Then, the header of the UDP packet is
substituted by the BIER header indicated in the table. Thereby,
a UDP packet stream with any distribution of BIER headers
can be generated.

Traffic

Match key Action data

Match-action-table (MAT)

1 BIER header 1
BIER header 2

...
2
...

BIER pktRandom
number

Tofino

Install BIER header

Controller

Figure 13: A match-action table is used to turn homogeneous
UDP traffic into BIER traffic with headers following a desired
distribution.

The match-action tables is populated a priori by a controller
which has sampled 2w BIER headers according to the traffic
model in Section VIII-A1 for a given set of generating port
clusters and a port correlation p. As a result, the Tofino turns
homogeneous UDP traffic into BIER traffic whose headers
follow a desired distribution.

9Intel Tofino supports 3-color metering as described in [52].

C. Experiment

We validate our hardware implementation by conducting
the same experiments as in Section VIII-B2b. Thus, the traffic
model consists of six overlapping generating port clusters of
size 12, 10, 8, 8, 6, and 4. We choose port correlation p =
0.9, and use w = 14 to install 2w sampled BIER headers
of that distribution in the match-action table on the Tofino.
We generate 5 Gbit/s UDP traffic via Iperf and send it to
the Tofino which turns it into BIER traffic with the desired
header distribution. We perform 5 runs per experiment and
report average values.

The controller samples the BIER traffic and computes opti-
mized port clusters for configuration on the Tofino. Thereby,
different port clustering methods and different numbers mmax

of usable static multicast groups are considered. Figure 14
shows the average recirculation traffic in Gbit/s.
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Figure 14: Average recirculation traffic for RPC, PCSC and
RPCO and different numbers mmax of usable static multicast
groups; the traffic model has six overlapping generating port
clusters and port correlation p = 0.9; the results are to be
compared with those in Figure 10(b).

If no static multicast group is available (mmax = 0),
efficient BIER forwarding is essentially disabled, and the
observed behaviour is the same as the one for simple BIER
forwarding. Therefore, packets with 4.5 ports on average
require 3.5 recirculations on average, which results in 3.5 · 5
Gbit/s = 17.5 Gbit/s recirculation traffic. This closely matches
the results of Section VIII-B2b. An increasing number mmax

of usable static multicast groups decreases the average number
of recirculations per packet and therefore the recirculation
traffic. Again, PCSC and RPCO clearly outperform RPC and
RPCO performs better than PCSC (for mmax > 0). In fact,
for mmax = 8192, RPCO reduces the recirculation traffic
by 71% compared to RPC and 52% compared to PCSC.
The experimental results in Figure 14 are in line with the
simulation results in Figure 10(b) as they show the same
proportions.

We performed this experiment with only 5 Gbit/s incoming
traffic due to the lack of a fast generator for contant bit rate
traffic. However, efficient BIER forwarding runs at line rate
at the Tofino10, i.e., it is capable of handling 32 × 100 Gbit/s
incoming traffic.

10Every P4 program that compiles for the Tofino runs at line rate.
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X. CONCLUSION

Bit Index Explicit Replication (BIER) forwards multicast
traffic without signalling and states within BIER domains.
Thereby, it greatly improves scalability for multicast in core
networks. However, a simple implementation of that concept
implies iterative packet transmission which requires additional
processing capatity [2] on a single switch. In this paper we pre-
sented efficient BIER forwarding with static multicast groups
such that a BIER packet can be sent to multiple next-hops in a
single pipeline iteration. To that end, we configure port clusters
on the switch and install all combinations of ports within each
port cluster as static multicast group. Simple match-action
operations choose the appropriate port clusters and therein the
right static multicast group so that packets are transmitted to
multiple next-hops in a single iteration step. As a result, a
BIER packet can be processed in high-speed with a single or at
most a few iteration steps. We demonstrated by simulation that
randomly selected disjoint equal-size configured port clusters
can decrease the required recirculations by 90% with only
1024 static multicast groups on a 32 port switch with 32
next-hops (Section VI-C) compared to simple iterative BIER
forwarding. Further, we presented port clustering algorithms
based on Spectral Clustering which learn the current BIER
traffic pattern and compute port clusters for configuration.
Recursive Port Clustering with Overlap (RPCO) reduces the
required recirculations by up to 96% compared to randomly
selected port clusters (Section VIII). We implemented efficient
BIER forwarding on the Edgecore Wedge 100BF-32X, a 32
100 Gbit/s port high-performance P4 switch, and validated the
simulation results in a hardware testbed.

The work comes with a few byproducts. We developed
efficient BIER forwarding for data plane programming with
the Tofino ASIC. Other switch architectures will also face the
challenge to determine outgoing ports of a BIER packet with
little effort and can benefit from the presented algorithms. We
proposed a traffic model for the outgoing ports of multicast
traffic on a switch for evaluation purposes. Future work may
validate that traffic model based on measured data. Finally,
we developed a simple method for data plane programming
to modify traffic such that its headers correspond to a specific
distribution. This may also be useful in other experimental
work.
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