
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

A Caching SFC Proxy Based on eBPF
Marco Haeberle∗, Benjamin Steinert∗†, Michael Weiss∗, Michael Menth∗

∗ University of Tuebingen, Chair of Communication Networks, Tuebingen, Germany
† University of Tuebingen, Zentrum für Datenverarbeitung, Tuebingen, Germany

Email: {marco.haeberle,benjamin.steinert,menth}@uni-tuebingen.de
michael-tobias.weiss@student.uni-tuebingen.de

Abstract—Service Functions (SFs) are intermediate processing
nodes on the path of IP packets. With SF chaining (SFC),
packets can be steered to multiple physical or virtual SFs in
a specific order. SFC-unaware SFs can be used flexibly but they
do not support SFC-specific encapsulation of packets. Therefore,
an SFC proxy needs to remove the encapsulation of a packet
before processing by an SFC-unaware SF, and to add it again
afterwards. Such an SFC proxy typically runs on a server
hosting virtual network functions (VNFs) that serve as SFs.
Simple SFC proxies adapt a flow-specific static header stack.
That is, each VNF requires an own SFC proxy, and the proxy
cannot be extended to support per-packet metadata in the SFC
encapsulation. The caching SFC proxy presented in this work
caches packet-specific headers while packets are processed by
a VNF, i.e., packet-specific header information is preserved. We
present concept, use cases, and an eBPF-based implementation of
the caching SFC proxy. In addition, we evaluate the performance
of a prototype.

I. INTRODUCTION

Service function chaining (SFC) steers defined traffic
through a specific set of network functions (NFs) which are
also called service functions (SFs) in that context. Traffic is
classified at the network edge and the classification decision
is encoded in additional SFC headers. This information is
leveraged to forward the packets along the desired list of
SFs. SFC is preferentially combined with software-defined
networking (SDN) and network function virtualization (NFV)
so that virtual NFs (VNFs) are used as SFs instead of physical
appliances. This permits rapid changes to the sequence of SFs
applied to a flow as both the path of the packets and the SFs
can be managed by software-defined control.

There are many competing SFC solutions, e.g., the Network
Service Header (NSH) [1], Segment Routing based on MPLS
(SR-MPLS), or Segment Routing based on IPv6 (SRv6) [2].
SFC-aware VNFs implement mechanisms to handle the SFC
headers, i.e., their implementation is specific to the used SFC
technology. However, it is desirable to use SFC-unaware VNFs
that are not specific to any SFC technology.

SFC-unaware VNFs can be integrated into SF chains by
coupling them with an SFC proxy [3]. Such an SFC proxy is
applied per SF within a SF chain. It receives SFC-encapsulated
packets, removes their SFC header, sends them decapsulated
to the VNF, and adds the SFC header again to the packets

This work was supported by the bwNET2020+ project which is funded by
the Ministry of Science, Research and the Arts Baden-Württemberg (MWK).
The authors alone are responsible for the content of this paper.

after they have been processed by the VNF. Most SFC proxies
that are discussed in literature and Internet standards today
work on the level of SF chains. They are either configured
with information about the supported SF chain (static proxy)
or learn relevant information from arriving packets (dynamic
proxy). With the help of that information, packets returning
from a VNF are classified by the SFC proxy and equipped
again with a correct SFC header. SFC proxies working on the
level of SF chains reach their limit when packets belonging to
the same SF chain have different SFC headers. This happens,
e.g., when per-packet metadata is added to the SFC header.
Examples are in-band network telemetry (INT) [4] or proof of
transit [5]. Another use case where these proxies reach their
limit is when load balancing between several SF instances is
performed, resulting in different SFC headers for the same SF
chain. Such use cases require more flexible SFC proxies that
can handle SFC headers that may be different for each packet
of a SF chain. Moreover, SFC proxies working on the level of
SF chains are unable to support multiple SF chains with the
same VNF.

Extended Berkeley Packet Filters (eBPF) [6] is a technology
to execute simple programs inside an operating system kernel
like Linux in a secure way. It can be used to apply operations
like filtering or modifications to network packets that are
processed by the kernel. This allows to add new functionality
to the kernel.

VNF VM

Proxy
ingress

Proxy
egress

VNF application

Cache
SFC headers SFC headers

IP packets IP packets

SFC-encapsulated IP packets SFC-encapsulated IP packets

Fig. 1. Operation principle of a caching SFC proxy.

In this paper, we propose a caching SFC proxy that works
on a per-packet level instead of on the level of SF chains. Its
operation principle is shown in Figure 1. The caching SFC
proxy removes the SFC header of an arriving packet, caches

©2022 IEEE International Conference on Network Softwarization (NetSoft), June/July 2022, Milan, Italy

that header, and adds the cached header to the packet after
processing by the VNF.

The proposed caching proxy implements two modes that
differ in the keys used for caching. The first mode utilizes
immutable parts of the packets’ IP and TCP header as key. The
second mode adds a unique identifier to the kernel metadata of
the packets and utilizes it for caching. This approach is more
versatile as it copes with VNFs modifying a packet’s IP and
TCP header, but it requires VNFs running in kernel mode. We
show that these approaches are general enough to be applied
to most traffic types on the Internet. We provide an eBPF-
based implementation of the caching proxy and publish it on
GitHub [7]. It supports any Linux-based system and achieves
high throughput.

The rest of the paper is structured as follows. In Section II,
we give a detailed introduction to SFC and eBPF. Then,
we discuss related work in Section III. Section IV describes
the concept of the proposed caching proxy, illustrates use
cases, and gives details on a proof-of-concept implementation.
We evaluate the performance of the prototype in Section V.
Finally, we draw conclusions in Section VI and give an outlook
on future work.

II. TECHNICAL BACKGROUND

We give a short introduction to SFC and eBPF.

A. Service Function Chaining

Before SFC, providing a network service consisting of
multiple chained NFs was a challenge. Network operators
had to manually set up a series of physical appliances and
manage the forwarding of the packets such that they traverse
the desired NFs. With the advent of NFV [8] and SDN
[9], provisioning of network services became more dynamic,
scalable and manageable. The process of chaining VNFs
requires configuration, deployment, and interconnection of the
respective VNF instances, which are called SFs in the context
of SFC. The resulting ordered set of SFs is called a SF chain.
A reference architecture for SFC has been proposed by the
IETF in RFC 7665 [3].

In this architecture, traffic is classified at the edge of an
SFC-enabled domain. A classifier processes the traffic and
decides based on configured policies and header information
in the packets which SF chain should be traversed by each
packet. After classification, the packet is encapsulated with an
SFC header that contains information about the classification
outcome. Within an SFC-enabled domain, SF Forwarders
(SFFs) process steering information in the SFC encapsulation
and forward traffic accordingly. For SFC-unaware NFs, SFC
proxies are necessary to remove the SFC header before the
packet can be further processed, and to add the encapsula-
tion again after successful processing by the SF. An egress
node processes traffic leaving the SFC-enabled domain and
removes any SFC-related information from the packets not
to leak sensitive data outside the SFC domain. The specific
implementation of the SFC-encapsulation may be realized in
different ways, e.g., via Network Service Header (NSH) [1],

Segment Routing (SR) based on MPLS (SR-MPLS) [2], or SR
based on IPv6 (SRv6) [2].

With NSH, the classification outcome is encoded in a
Service Path Identifier (SPI) field of the NSH to indicate
the used SF Path (SFP). A Service Index (SI) field indicates
which SF should be traversed next. This approach requires the
forwarding elements to be NSH-aware and to be reconfigured
appropriately for every new SFC.

SR implements source routing. In SR-MPLS a header stack
is used for that purpose, SRv6 utilizes a segment list. When
SR-MPLS or SRv6 are used for SFC, either the classifier
encodes the path of a SF chain in the respective header, or
another downstream node performs this task based on the
classification outcome. These approaches have the benefit that
the underlay network does not need to be reconfigured for
every new SFC.

Additional metadata can also be carried in the SFC encap-
sulation, e.g., in NSH context headers or in special-purpose
MPLS labels [10]. Examples include telemetry data, OAM
data, or context data. This data may be used or augmented
by forwarding elements such as the SFF or SFC proxy, or by
SFC-aware SFs, e.g., in the case of in-band OAM.

SFC has use cases in various fields such as broadband
networks, mobile networks, or datacenter networks [11]. In
broadband networks, SFC may be used to dynamically and
selectively provide services to users such as DPI, NAT, DS-
Lite, NPTv6, or parental control, just to name a few. In mobile
networks, SFC can help to ensure agreed service policies, to
provide security and privacy functions, or to include other
Value Added Services (VAS) [12]. In data center networks,
SFC can improve server security by adding security SFs
before the servers [13]. Additionally, in 5G network slicing,
SFC plays a critical role in delivering sophisticated services
per slice, and SFC can increase the network management
flexibility in 5G networks [14]. Escolar et al. presented a
scalable software SFF and classifier that supports network
slicing and that is based on Open vSwitch (OVS) [15].

An SFC proxy facilitates integration of an SFC-unaware
SF into a SF chain. A simple SFC proxy serves only a single
SF chain and is configured with a header stack for that SF
chain so that it cannot support SFC headers with packet-
specific metadata. These are obvious drawbacks. However,
there are challenges for more sophisticated proxies. In contrast
to transparent SFs, opaque SFs alter packet headers. NAT is an
example. Changed packet headers make it difficult to recognize
packets from different SF chains after processing. Further-
more, SFs may drop packets or even generate new packets.
The latter is a problem when SFs serve multiple SF chains,
since it is not clear to which SF chain a newly generated packet
belongs. Headers with packet-specific metadata require SFC
proxies to cache SFC headers per packet and add them again
after processing by the SF. Most proxies either support only
transparent SFs or only a single SF chain. In Section V, we
show that the proposed caching SFC proxy supports multiple
SF chains, opaque in-kernel SFs, SFs that drop packets, and
SFC headers carrying packet-specific metadata.

B. eBPF

Extended Berkeley Packet Filters (eBPF) support secure
and isolated execution of custom programs within the Linux
kernel. Originating back in 1992, the original purpose of the
BPF technology was to write arbitrary user-level packet filters
for networking tools like tcpdump. eBPF is an extension of
this technology to allow for the execution of general-purpose
programs, written in a subset of C. Using a compiler backend,
e.g., for LLVM, the C code is translated into BPF bytecode,
and can then be just-in-time (JIT) compiled to native code
by the kernel. Thereby, the performance of eBPF programs is
close to natively compiled in-kernel code.

Today, eBPF is considered a new type of software or
technology that facilitates adding/altering functionality to/of
the Linux kernel, without changing the kernel source code or
writing kernel modules. This adds a programmable layer to the
Linux kernel that enables a whole new flexibility and new use
cases such as kernel tracing/debugging, or high-performance
load balancing.

eBPF permits to reprogram the runtime behavior of the
Linux kernel without compromising stability, safety, or ex-
ecution efficiency. Thanks to a combination of sandboxing
using an in-kernel VM, and strict verification of source code
by the eBPF Verifier, it can be ensured that the execution
of a program is safe. This includes guarantees that the code
will terminate or that there is no access to arbitrary memory
resources, possibly leaking sensitive information.

Compiled eBPF bytecode runs on different Linux systems,
without having to recompile it. Also, (user space) implemen-
tations of compilers and interpreters are available that make
it possible to run eBPF programs on different platforms and
operating systems [16], [17], [18].

The execution of eBPF programs is event-driven. Different
so-called hooks are available that eBPF programs can be
attached to. Examples include system calls, tracepoints, or
network events. The latter is particularly interesting for the
present use case since programs can be triggered each time a
packet is received or sent.

Since kernel version 4.1, eBPF programs can be attached
to hooks within the Traffic Control (TC) subsystem on Linux.
It offers features like shaping, scheduling, policing, dropping,
classifying, or marking [19]. It may be configured using the
TC utility which is part of the iproute2 package and which
is installed by default on most Linux distributions. eBPF
programs can be attached to TC qdiscs as filters or actions.

A special hook for eBPF is called XDP (eXpress Data
Path). It is the earliest possible method to perform network
packet processing, namely immediately after packets arrive at
the network interface card (NIC). The network stack of the
Linux kernel is not invoked and can be bypassed completely,
allowing for high-performance network processing.

Storing state and sharing information can be done through
eBPF maps. Those maps can be used to write and retrieve data,
and are accessible by both in-kernel eBPF programs and user
space applications. Different types of eBPF maps are available

such as arrays, hash maps, or least recently used (LRU) hash
maps.

eBPF programs also have write access to the socket buffer
that stores the packets and corresponding metadata. This
allows for attaching identifiers to the metadata of packets,
which makes them uniquely identifiable even if header fields
are modified during kernel processing. Once packets leave the
kernel space and enter user space, this metadata is lost as the
socket buffer is not involved anymore.

To conclude, TC filters and actions written in eBPF can
support many use cases. As an example, eBPF has been
used for creating programmable network functions based on
SRv6 [20]. Also, eBPF has been used in the context of
SFC for different purposes such as monitoring VNF packet
processing time [21] or building flexible, low-latency, high-
throughput VNFs [22]. Castanho et al. proposed a transparent
SFC architecture that implements SFC in eBPF-based stages,
without the need to adapt SFs or network devices [23]. An
extensive survey with more detailed information about eBPF
and XDP was presented by Vieira et al. [6].

III. RELATED WORK

Various approaches for the integration of SFC-unaware SFs
into SFC-enabled domains via proxies have been discussed at
IETF and in academia. We review them in the following.

Song et al. [24] describe several mechanisms to map cached
SFC headers to packets. In case of transparent SFs that do not
modify the packet, they propose to add an ID that identifies
the SFC header to the packet using either a VLAN tag, or
VXLAN. This is not transparent to the SF and requires that it
supports the respective technology. Alternatively, they propose
to use the source MAC address or the 5-tuple of the packet
for mapping. For opaque SFs, the SF needs to inform the SFC
proxy about mapping rules via a SFC control plane. While
these mechanisms use caching for the SFC headers, the key
space is limited when using VLAN or VXLAN. Thus, it is not
possible to cache SFC and metadata headers on a per-packet
level. When using the 5-tuple or MAC adresses for mapping,
packets belonging to the same flow cannot be kept apart at all.

Cabellos et al. [25] use the LISP Mapping System to store
SFC headers in the form of the NSH. The SFC proxy stores
the NSH data in the Mapping System using a map-register
message. It uses the 5-tuple of the packet for indexing. After
processing by the SF, the SFC proxy retrieves the NSH data
using a map-request. Similar to Song et al., the 5-tuple is not
sufficient for caching data on a per-packet level.

Clad et al. [2] describe both a static and a dynamic proxy for
service programming using SR-MPLS and SRv6. Both proxies
map the MPLS label stack or SRv6 segment list to a network
interface of the proxy. Thus, the proxy cannot perform map-
ping on a per-packet level and a dedicated network interface
is needed for each cache entry.

Ueno et al. [26] extend the proxy proposed by Clad et
al. with a tagging mechanism. They use arguments that are
encoded into SRv6 Segment Identifiers as a tag for caching
the headers. This tag is then encoded either into the IPv4 ToS

field, or the IPv6 TC field of the packet before sending it to
the SF. Similar to the previous proxies, this does not enable
mapping on a per-packet level.

srext [27]–[29] is a Linux kernel module that implements
the SRv6 network programming model. It can be used as a
proxy for SRv6-based SFC. However, each VNF may only be
part of a single SF chain.

SRNK [30] is a proxy for SRv6-based SFC implemented in
the Linux kernel. Here, VNFs are executed in Linux network
namespaces and their network interface identifiers are used
for mapping packets to SF chains. Information about the SF
chain of a VNF is learned automatically. Hence, every VNF
may only be part of one SF chain and caching of SFC and
metadata headers cannot be done on a per-packet level.

Abdelsalam et al. [31] discuss implications of using SR-
unaware applications in SR-based SFC and analyze issues of
deploying SR-uaware applications as VNFs. They describe
the operations performed by proxies as “complex” and “not
efficient”.

IV. CONCEPT AND IMPLEMENTATION

In the following, we give an overview of the design of
the caching proxy, followed by a description of two different
operation modes and their implications on supported protocols.
Furthermore, we give details on a proof-of-concept implemen-
tation.

A. Overview

The fundamental idea of the caching SFC proxy is to strip
the SFC headers of an SFC-encapsulated packet and cache
them together with a unique identifier of the packet. The proxy
is designed to work with Linux-based VNFs and runs on the
same system in the form of two eBPF programs, one for
ingress processing and one for egress processing. It uses an
eBPF map to cache the SFC headers.

VNF VM

Proxy
ingress

Proxy
egress

eBPF map

1
2
3

n
...

VNF application

SFC IP TCP ...

Key
SFC

Key

SFC

IP
TCP

...

Key

IP
TCP

...

Key

SFC IP TCP ...

Fig. 2. Workflow of the caching SFC proxy.

The workflow of the caching SFC proxy is shown in
Figure 2. When a packet containing SFC headers arrives at
the VNF host, it is handed to the ingress proxy program.
The ingress program computes a unique key that identifies
the packet. How this key is computed depends on the type
of VNF and is described in Section IV-B. The SFC headers
are then stripped off the packet and stored in the eBPF map
together with the identifier of the packet. The packet can then
be processed by the VNF without its SFC headers. Afterwards,
the packet is handed to the egress proxy program which
retrieves and deletes the cached headers from the eBPF map
using the previously generated unique identifier. In a final step,
the egress proxy program adds the retrieved headers again to
the packet.

B. Operation Modes

The caching SFC proxy supports two operation modes that
differ in how cached headers are mapped to packets: one for
kernel mode VNFs and one for user mode VNFs.

1) Operation for Kernel Mode VNFs: Once a packet arrives
at the VNF machine, the ingress proxy program removes the
SFC headers from packets and stores them in a hash table.
It uses a sequence number as key and also attaches the same
key to the packet as metadata. The metadata is stored in the
sk_buff data structure in the Linux kernel which contains
the control information for the packet [32]. The packet is
then processed by the VNF program that is running in kernel
mode. After processing of the packet by the VNF program
is finished, an egress proxy program is executed. The egress
proxy program uses the key that is stored in the packet’s
metadata to fetch the corresponding SFC headers from the
eBPF map. The SFC headers are then added to the packet
again and the entry in the hash table is deleted.

2) Operation for User Mode VNFs: When packets leave
the kernel space, their metadata in the sk_buff data structure
are lost. Therefore, adding a sequence number to a packet’s
metadata does not work so that the first operation mode is not
feasible. Therefore, immutable parts of packet headers that
are not removed by the VNF are used as key for mapping
packets to cached SFC headers. As a consequence, this op-
eration mode supports only protocols that use headers with
sufficient information to clearly identify individual packets.
For instance, the use of TCP/IP is already enough. Then, the
source and destination IP addresses, the identification field of
the IP header, the TCP source and destination port, and TCP
sequence and acknowledgment numbers constitute a unique
key to identify a packet. Another example are multimedia
applications using RTP. Here, the combination of source and
destination IP addresses, and timestamps uniquely identifies
packets.

It is possible that hash collisions occur, i.e., two different
keys produce the same hash values. To resolve such situations,
the entire key, i.e., the header fields used to compute the hash
are stored with the SFC headers in the eBPF map. Then the
correct SFC header can be retrieved from the eBPF map.

As mentioned before, the key for this operation mode is
taken from immutable parts of the header fields. If no such
fields exist, this mode cannot be applied. An example is a NAT
VNF running in user mode. For such kind of applications, the
presented caching proxy is not applicable.

C. Other Use Cases

The caching mechanism for headers can be used to enable
new use cases with legacy VNFs. This includes in-band net-
work telemetry (INT), proof of transit (POT), and application-
aware networking (APN).

INT [4] is used to collect telemetry data from the hops on
the path of a packet, e.g., processing delay or queue occupancy.
This information is added to the packet as additional metadata.
If it is added using a header that the VNF cannot process,
the header can be cached by the proxy similarly to SFC
encapsulation headers. In addition, the proxy can be extended
to directly support INT and add telemetry information to the
packet, thus eliminating the need to implement INT in every
VNF.

POT [5] is a mechanism based on Shamir’s secret sharing
scheme. It is used to prove that a packet was processed by
a specific set of nodes. A central controller splits up a secret
key into multiple shares and distributes them to the SFs of a
SF chain. The SFs use their share of the key to update the
POT data in each packet. A verifying node receives the full
key from the controller and is located at the end of the chain.
It uses the key and the POT data in the packet to verify that
it traversed all SFs. Like with INT, implementing POT in the
proxy is less work than adapting every VNF.

Application-aware networking (APN) [33] is a new tech-
nology to inform the network about requirements of specific
applications. It achieves this by adding an attribute that ex-
presses these requirements to packets. This attribute can be
either encoded within headers like MPLS, VXLAN, and SRv6,
or a dedicated APN header can be used [34]. The eBPF-based
proxy can be adapted to cache these headers in order to make
APN compatible with legacy VNFs that do not support the
headers used for APN.

D. Prototypical Implementation

In the following, we give details on a prototypical imple-
mentation of an eBPF-based caching proxy for SFC with SR-
MPLS. We describe the ingress and egress eBPF programs
and how the MPLS headers are cached in an eBPF map.

a) Ingress Processing: Ingress processing starts with
parsing the packet’s IP, TCP, and MPLS headers. If no MPLS
headers are present, ingress processing is stopped and the
packet is forwarded without any alterations. If MPLS headers
are present, the key to store the headers is generated. In case
of a kernel mode VNF, a 64 bit sequence number is used as a
key and added to the packet’s metadata. In case of a user mode
VNF, the IP and TCP headers are concatenated and all non-
immutable fields (IP TTL, IP total length, IP checksum, and
TCP checksum) are set to zero. Then, the MPLS headers are
stored in an eBPF map using the previously generated key. If

an entry with the same IP and TCP headers is already present
in the map, the packet is dropped as it is not distinguishable
from a packet that is already being processed by the VNF. At
the end, the MPLS labels are removed from the packet.

The ingress processing is executed using XDP. Using XDP
can result in a better performance compared to an eBPF-based
TC filter as it is executed at an early step in the NIC driver
and may be offloaded to the NIC itself. The performance of
offloaded eBPF/XDP programs has been extensively evaluated
by Hohlfeld et al. [35].

b) Egress Processing: Egress processing starts with pars-
ing the packet’s IP and TCP header. The key to retrieve the
MPLS headers from the eBPF map is generated in the same
way as in ingress processing. In the absence of a matching
entry in the eBPF map, the packet is either forwarded as is or
dropped depending on the configuration. Otherwise, the MPLS
headers are retrieved from the matching entry and deleted from
the eBPF map. Lastly, all but the topmost MPLS header that
identifies the current VNF are pushed on the packet again.

In contrast to ingress processing, it is not possible to use
XDP for egress processing as XDP is not implemented for
the TX path in the Linux kernel. While experimental patches
exist that implement XDP for the TX path of the Linux
kernel, we chose not to use them as this would require using
a modified kernel as this is not acceptable for production
purposes. Instead, the egress processing is loaded as a TC
filter.

c) Header Caching: Caching MPLS headers is imple-
mented using an eBPF map as hash table. This type of data
structure is not implemented by the eBPF programs itself, but
by the Linux kernel. Hashing of the keys of the entries, in our
case the immutable parts of the IP and TCP headers, is done
by the kernel implementation of the eBPF map. The kernel
implementation also stores the unhashed keys together with
the values so that hash collisions can be resolved. Thus, the
caching SFC proxy does not need custom handling of hash
collisions.

Entries that are matched during egress processing are re-
moved from the eBPF map. The map has a fixed size and
uses LRU as replacement strategy when a new entry is added
to a full data structure. If the map size is too small, entries of
packets that are still in the queue of the VNF may be replaced,
which causes packet drops. Therefore, the size of the map has
to be chosen under consideration of the processing time and
the throughput of the VNF.

V. EVALUATION

In this section we evaluate the performance of the caching
proxy and validate its functionality under various conditions.
We describe the evaluation methodology before we conduct
various experiments. First, we compare the maximum goodput
of the caching proxy with the one of a static SFC proxy based
on the Linux mpls_router module. Then, we show that the
caching proxy copes well with packet loss and delay caused
by a VNF. Finally, we demonstrate that the caching proxy
supports opaque VNFs and multiple SF chains.

Sender VM

NIC

iperf3

mpls_router
encap

Proxy/VNF VM

NIC

pr
ox

y

1

NIC

VN
F

2 ... n1 2 ... n 1 2 ... n

2 ... n2 ... n

Receiver VM

NIC

iperf3

XDP
decap 2 ... n

Server 1 Server 2

Fig. 3. Evaluation setup. Purple boxes represent the MPLS labels.

A. Evaluation Setup and Methodology

We describe the logical setup of the testbed and its hard-
ware implementation. Then, we explain how experiments are
conducted. Finally, we derive the number of parallel TCP
flows needed to maximize the SFC goodput in a system with
minimal complexity.

1) Logical Setup: The evaluation setup is shown in Fig-
ure 3. A sender virtual machine (VM) is connected via
proxy/VNF VM to a receiver VM, setting up a SF chain. The
sender pushes a set of MPLS labels on all outgoing packets
using the mpls_router kernel module. The proxy/VNF VM
runs a VNF application that is accessed either via a proxy
or directly depending on the experiments. Traffic between
sender and receiver is processed in both directions by the VNF
application. The receiver VM removes all MPLS labels of the
traffic. This operation is performed by a simple self-written
XDP program for performance reasons that are explained in
Section V-B2.

Due to the simplicity of the setup, MPLS label stacks in
packets are not needed for traffic steering along the path.
However, their presence is important as label pushing and
popping is performed by ingress and egress processing of SFC
proxies, which causes major effort.

2) Hardware Testbed: The 3 VMs run on 2 servers, each
configured with an Intel(R) Xeon(R) Gold 6134 CPU run-
ning at 3.2 GHz, 128 GB of RAM, and 2 100G Mellanox
ConnectX-5 network interface cards. The sender and receiver
VMs are configured with 4 virtual CPU cores, 16 GB of RAM,
and 1 ConnectX-5 NIC. The proxy/VNF VM is configured
with 8 virtual CPU cores, 16 GB of RAM, and 2 ConnectX-5
NICs. The NICs are passed through to the VMs using SR-IOV.
The NICs are connected to each other as shown in Figure 3.
No overbooking is performed on the VM hosts and the virtual
CPUs are pinned to physical cores to minimize the influence
of virtualization on the experimental results. The VM hosts run
Proxmox Virtual Environment 6.4, the VMs use Ubuntu 20.04.
The parameters of the network stack, e.g., TCP parameters, are
set to the default values of Ubuntu 20.04.

3) Experiment Design: The experiments determine the
maximum goodput of a single SF chain. We call this metric
SFC goodput. The traffic is sent by the sender, forwarded via
the proxy/VNF, and received by the receiver. The experiments
differ by various SFC proxy and VNF configurations.

To measure the SFC goodput, we leverage iperf 3.6 to
determine a maximum TCP goodput. As a single TCP stream
may not suffice to fully utilize the system, we run multiple
TCP streams in parallel. For this purpose, iperf3 is executed
multiple times in parallel instead of using the built-in parallel
stream option to circumvent limited performance as iperf3 is a
single-threaded application. In each run of an experiment, the
overall goodput of the parallel iperf3 instances is computed
over a duration of 10 minutes. We perform at least 10 runs
per experiment and average their goodput values. We further
derive confidence intervals for a confidence level of 95%.

We set the default capacity of the eBPF map to 10000
entries and the entry size to 10 MPLS labels. Likewise, the
SFC encapsulation header contains 10 MPLS labels if not
mentioned differently.

4) Maximizing SFC Goodput: We determine the number of
parallel iperf3 instances needed to maximize the SFC goodput
in a system with minimal complexity. To that end, we connect
the sender via the VNF host to the receiver, but we bypass the
SFC proxy and the VNF. We obtain 20Gb/s for a single TCP
stream and 60Gb/s for 9 or more TCP streams. Therefore,
we utilize 10 parallel iperf3 instances to determine goodput
values in the following experiments.

B. Impact of SFC Proxy Variants

We evaluate the forwarding performance of a static SFC
proxy and the caching SFC proxy, the latter with user and
kernel mode VNFs due to the different operation modes. A ma-
jor task performed by proxies is popping and pushing MPLS
labels. Therefore, we investigate the forwarding performance
depending on the size of the MPLS label stack. We consider
only a single SF chain as the static SFC proxy can support only
a single one. We utilize a forwarding-only VNF to minimize
the delay by the VNF so that reduced forwarding performance
can be mostly attributed to the SFC proxy.

1) Static SFC Proxy: We use the mpls_router module of
the Linux kernel to configure a static SFC proxy on the VNF
VM. It removes all MPLS labels of incoming packets and adds
a static set of MPLS labels to all outgoing packets.

The SFC goodput for the static SFC proxy is given in
Figure 4 for 0 to 10 MPLS labels in the SFC encapsulation
header. It drops from approx. 42Gb/s without any MPLS
labels to approx. 15Gb/s with 10 MPLS labels. This decrease
in performance can be attributed to popping the labels during
ingress processing. This hypothesis will be confirmed by
further experiments in Section V-B2.

2) Caching Proxy with User Mode VNFs: The SFC good-
put for the user mode SFC proxy is also indicated in Figure 4.
It reaches approx. 33Gb/s for 0-5 MPLS labels and decreases
to approx. 29Gb/s with more labels. The maximum size of
the entries in the eBPF map is adapted to the number of MPLS

0 1 2 3 4 5 6 7 8 9 10
of MPLS labels

0

5

10

15

20

25

30

35

40

45
SF

C
go

od
pu

t (
Gb

/s
)

mpls_router
caching proxy w/ user mode VNF

 w/ mpls_router at receiver
caching proxy w/ kernel mode VNF

Fig. 4. SFC goodput for a forwarding-only VNF and different SFC proxies
depending on the size of the MPLS label stack.

labels for each run. As the curve is rather flat, we conclude that
the size of the entries has only little influence on performance.

For 0-2 MPLS labels, the SFC goodput for the mpls_router
kernel module is larger than the one for the caching proxy with
user mode VNFs. For more MPLS labels this is vice-versa.
The performance of the mpls_router kernel module decreases
with every additional MPLS label, while the caching proxy
for user mode VNFs achieves almost equal goodput for any
tested number of MPLS labels.

We show that the mpls_router module is rather inefficient
in popping large label stacks. To that end, we substitute our
self-written XDP decap program on the receiver VM through
the mpls_router module. The curve for eBPF-based proxy with
user mode VNF and mpls_router at receiver in Figure 4 shows
lower SFC goodput than the corresponding curve with the
XDP decap program on the receiver. Moreover, the curve has
a similar shape as the one for the static SFC proxy based on
the mpls_router module. We conclude that label popping in the
mpls_router module is inefficient and significantly impacts the
SFC goodput when used at the receiver or within a static SFC
proxy. To avoid SFC goodput degradation in experiments due
to inefficient popping of the label stack at the receiver, we
utilize the XDP decap program by default. We also studied
label pushing by the mpls_router module in a similar way, but
there was no obvious bottleneck.

3) Caching Proxy with Kernel Mode VNFs: Figure 4 shows
also the SFC goodput of the caching proxy with kernel mode
VNF. It is approx. 10Gb/s less than the goodput of the
caching proxy with user mode VNF. This seems counter-
intuitive at first sight, but can be explained by the different
XDP execution paths used by the caching proxies for user
and kernel mode VNFs.

In Figure 5 the execution paths of the caching proxy are
shown for user mode and kernel mode VNFs. For user mode
VNFs, the caching proxy is executed using the XDP capability
of the Mellanox mlx5 driver in the Linux kernel. This means
that the XDP program is executed at an early point while the

User space

User-Mode
VNF

NIC

Kernel spaceKernel-Mode
VNF

Linux
Network

Stack
XDP Prog.

XDP Prog. NIC Driver

Host VM

1

2

Fig. 5. Execution paths of XDP progams. Path 1 shows the driver path for
user mode VNFs. Path 2 shows the generic path for kernel mode VNFs which
facilitates manipulation of metadata.

packet is being processed by the driver of the NIC (see Figure
5 Path 1). The operation mode for kernel mode VNFs uses a
driver-independent XDP implementation in the Linux kernel
as the mlx5 driver does not support manipulation of metadata.
In this case, the XDP program is not executed in the NIC
driver, but at a later point while the packet is being processed
by the ingress path of the Linux network stack (see Figure 5
Path 2). This enables the necessary manipulation of the packet
metadata, but leads to an inevitable decrease in performance
[36]. Drivers for other NICs, e.g., by Intel, support metadata
but were not at our disposal. The execution path can be chosen
when loading the proxy program. The implementation is the
same in both cases.

C. Impact of Packet Drops by the VNF

We study the impact of packet loss on the operation of the
caching SFC proxy. We set up a user mode VNF that uses
iptables to randomly drop 1% of the packets. We monitor the
SFC proxy and provide statistics in Table I.

Values of the counters RX_IGNORED and TX_IGNORED
correspond to packets that are not handled by the SF chain.
They are ignored by the proxy and forwarded without modi-
fication. ARP packets are an example. The number of packets
that have been handled successfully during egress processing
(TX_SUCCESS) is approx. 1% less than the corresponding
number during ingress processing (RX_SUCCESS). Further-
more, there were no cache misses (TX_NOT_CACHED). Thus,
VNFs that drop packets do not have any effect on the eBPF-
based proxy.

TABLE I
CACHE STATISTICS FOR A USER MODE VNF THAT RANDOMLY DROPS 1%

OF THE PACKETS.

Counter Value

RX_IGNORED 71

RX_SUCCESS 373 494 929

TX_IGNORED 97

TX_NOT_CACHED 0

TX_SUCCESS 369 758 795

D. Impact of VNF Processing Time

The processing time of the VNF d together with the packet
transmission rate r determines the average number of packets
n = d · r that are in flight between ingress and egress
processing of an SFC proxy (Little’s Law). Many packets
in flight are challenging for a caching proxy as it caches
their headers in the hash map. If the hash map overflows,
old entries are deleted due to the LRU cache replacement
policy. When corresponding packets return from the VNF, they
are dropped by egress processing due to missing headers in
the hash map, which causes packet loss. This is not a severe
problem as packet loss may also occur for other reasons, e.g.,
capacity shortage. However, it can reduce the SFC goodput
significantly. We investigate this issue with a caching proxy
and 10 MPLS labels. We use a delaying VNF in user mode
that just delays the traffic for 5 ms. It is implemented with the
TC NetworkEmulator.

We perform experiments with various cache sizes in terms
of number of entries. The results are compiled in Table II. We
test caches with 1000, 2500, 10 K, and 100 K entries. They
lead to cache sizes between 97 kB and 9.7 MB. They all
cause only little cache misses. However, loss rates of 0.04%
are obviously large enough to significantly reduce the SFC
goodput: while it is 4.96 Gb/s for 5000 entries, it is only 0.49
Gb/s for 1000 entries. This is caused by the underlying TCP
protocol and the relatively long round-trip times due to the
delaying VNF. The average occupancy of the hash table is
the average number of packets in flight, which we computed
with Little’s Law. It is significantly lower than the cache sizes.
Thus, a large safety margin is needed when the required cache
size is calculated with Little’s Law, the expected packet rate,
and the VNF delay.

Generally, the SFC goodput here is much lower than in the
experiments of Section V-B (∼5 Gb/s vs. ∼20 Gb/s). This is
again caused by the delaying VNF that increases the round-trip
time, which reduces the goodput of the TCP streams.

We further observe that a cache size of 5000 entries leads to
the largest SFC goodput. Smaller caches cause more packet
loss, which decreases SFC goodput. However, larger caches
also decrease SFC goodput. We attribute this phenomenon to
longer access times to the eBPF map for larger cache sizes.
Thus, the size of the eBPF map should be chosen according to

the expected number of packets in flight plus some generous
safety margin. This value depends on the application and the
maximum traffic load.

TABLE II
CACHE AND TRANSMISSION STATISTICS FOR A USER MODE VNF THAT

DELAYS PACKETS BY 5MS.

Cache size Cache
misses

Transmitted packets

SFC goodput
Avg. number of
packets in flight

1000 entries
97 kB

2.53%
720 716

28 533 119 pkts
0.490Gb/s

238 pkts

2500 entries
243 kB

0.04%
70 027

168 452 033 pkts
2.894Gb/s

1404 pkts

5000 entries
485 kB

0.01%
39 727

284 786 870 pkts
4.959Gb/s

2373 pkts

10000 entries
970 kB

<0.01%
22 466

271 554 601 pkts
4.712Gb/s

2263 pkts

100000 entries
9.7 MB

0.00%
0

261 273 777 pkts
4.599Gb/s

2177 pkts

E. Support for Opaque VNFs in Kernel Mode

We prove that the caching proxy can support opaque VNFs
in kernel mode. Such VNFs change header fields so that
packets cannot be recognized after VNF processing without
additional metadata. However, the caching proxy for kernel
mode VNFs utilizes such metadata for packet recognition.

We configure a source NAT for packets using iptables.
We carry out the experiment, monitor goodput, and collect
statistics for the proxy. Even though the NAT modifies the
IP and TCP headers, no cache misses are recorded. Thus,
the caching of headers using a key stored in the packet
metadata works as intended. The goodput drops to approx.
17Gb/s compared to 20.5Gb/s for a forwarding-only VNF
in Section V-B3.

F. Single VNF for Multiple Service Function Chains

In the previous sections we considered only a single service
function chain. Now we provide two sender VMs and two
receiver VMs. We connect each sender/receiver pair with 5
iperf3 streams each via a single forwarding-only VNF. They
achieve together an overall SFC goodput of about 29.84Gb/s
for a user mode VNF and about 19.71Gb/s for a kernel mode
VNF. This experiment demonstrates that caching proxies can
support a single VNF for multiple service function chains,
which is unlike with static proxies.

VI. CONCLUSION

In this paper, we presented a service function chaining
(SFC) proxy that is capable of caching SFC and metadata
headers while a packet is processed by a virtual network
function (VNF). The proxy uses either parts of the IP and TCP
headers, or a sequence number that is stored as kernel metadata
for the packet as a key for caching. The proposed proxy allows
for caching SFC or metadata headers on a per-packet level

instead of a per-SFC level like other proxies presented in IETF
and by academia. This enhanced functionality enables use
cases that require per-packet metadata like in-band network
telemetry (INT) or proof of transit (POT). The implementation
leverages eBPF and XDP for a high performance and for
supporting VNFs on any Linux-based system.

We showed that the caching proxy outperforms a static
proxy based on the mpls_router module when more than
2 labels are present in the SFC header. It copes well with
VNFs dropping or delaying packets. We demonstrated that
the proxy works with opaque network functions that modify
packet headers, e.g., with network address translation (NAT).
Finally, we showed that the caching proxy helps VNFs to
support different service function chains at a time, which is
unlike most other SFC proxies.

In future work, the caching SFC proxy may be adapted
to IPv6, which is needed due to the lack of an identifiation
field in the IPv6 header. The proxy may be extended to other
protocols like RTP or IPsec. Its performance may be improved
by NICs with XDP drivers supporting kernel metadata. Finally,
applications based on SFC metadata, e.g., proof-of-transit
(POT), in-band network telemetry (INT), or application-aware
networking (APN) may be implemented.

REFERENCES

[1] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header
(NSH),” RFC 8300, January 2018. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc8300

[2] F. Clad, X. Xu, C. Filsfils, D. Bernier, C. Li, B. Decraene, S. Ma,
C. Yadlapalli, W. Henderickx, and S. Salsano, “Service Programming
with Segment Routing,” September 2021. [Online]. Available: https://
www.ietf.org/archive/id/draft-ietf-spring-sr-service-programming-05.txt

[3] J. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” RFC 7665, October 2015. [Online]. Available: https:
//datatracker.ietf.org/doc/html/rfc7665

[4] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu, and N. Li,
“In-band Network Telemetry: A Survey,” Computer Networks, vol. 186,
p. 107763, 2021.

[5] F. Brockners, S. Bhandari, T. Mizrahi, S. Dara, and S. Youell,
“Proof of Transit,” November 2020. [Online]. Available: https:
//www.ietf.org/internet-drafts/draft-ietf-sfc-proof-of-transit-08.txt

[6] M. A. Vieira, M. S. Castanho, R. D. Pacífico, E. R. Santos, E. P. C.
Júnior, and L. F. Vieira, “Fast Packet Processing with eBPF and
XDP: Concepts, Code, Challenges and Applications,” ACM Computing
Surveys, vol. 53, no. 1, pp. 1–36, 2020.

[7] “eBPF SFC proxy repository on GitHub.” [Online]. Available:
https://github.com/uni-tue-kn/sfc-proxy

[8] B. Yi, X. Wang, K. Li, S. k. Das, and M. Huang, “A comprehensive
survey of Network Function Virtualization,” Computer Networks, vol.
133, pp. 212–262, 2018.

[9] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Com-
prehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[10] Y. Liu, “Metadata in SR-MPLS Service Programming,”
September 2021. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-liu-spring-sr-sfc-metadata-01

[11] W. S. LIU, H. Li, O. Huang, M. Boucadair, N. Leymann, F. Qiao, Q. Sun,
C. Pham, C. Huang, J. Zhu, and P. He.

[12] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service Function Chaining Use Cases in Mobile Networks,”
January 2019. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-sfc-use-case-mobility-09

[13] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma,
“Service Function Chaining Use Cases In Data Centers,”
February 2017. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-sfc-dc-use-cases-06

[14] H. Hantouti, N. Benamar, M. Bagaa, and T. Taleb, “Symmetry-aware
sfc framework for 5g networks,” 2022.

[15] A. M. Escolar, J. M. A. Calero, and Q. Wang, “Scalable Software
Switch Based Service Function Chaining for 5G Network Slicing,” IEEE
International Conference on Communicaotions (ICC), pp. 1–6, 2020.

[16] “rbpf - A Rust (user-space) virtual machine for eBPF,” retrieved:
2022-01-14. [Online]. Available: https://github.com/qmonnet/rbpf

[17] “generic-ebpf - A generic eBPF runtime.” retrieved: 2022-01-14.
[Online]. Available: https://github.com/generic-ebpf/generic-ebpf

[18] “uBPF - A Userspace eBPF VM,” retrieved: 2022-01-14. [Online].
Available: https://github.com/iovisor/ubpf/

[19] “tc - show / manipulate traffic control settings.” retrieved: 2022-01-14.
[Online]. Available: https://manpages.debian.org/buster/iproute2/tc.8.en.
html

[20] M. Xhonneux, F. Duchene, and O. Bonaventure, “Leveraging eBPF for
Programmable Network Functions with IPv6 Segment Routing,” ACM
Conference on emerging Networking EXperiments and Technologies
(CoNEXT), pp. 67–72, 2018.

[21] N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “PPTMon: Real-Time and
Fine-Grained Packet Processing Time Monitoring in Virtual Network
Functions,” IEEE Transactions on Network and Service Management
(TNSM), vol. 18, no. 4, pp. 4324–4336, 2021.

[22] ——, “Building Hybrid Virtual Network Functions with eXpress Data
Path,” International Conference on Network and Services Management
(CNSM), pp. 1–9, 2019.

[23] M. S. Castanho, C. K. Dominicini, M. Martinello, and M. A. Vieira,
“Chaining-Box: A Transparent Service Function Chaining Architecture
Leveraging BPF,” IEEE Transactions on Network and Service Manage-
ment (TNSM), 2021.

[24] H. Song, J. You, L. Yong, Y. Jiang, L. Dunbar, N. Bouthors,
and D. Dolson, “SFC Header Mapping for Legacy SF,”
September 2016. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-song-sfc-legacy-sf-mapping-08.txt

[25] A. Cabellos-Aparicio, S. Barkai, B. Perlman, V. Ermagan, F. Maino,
and A. Rodriguez-Natal, “Map-Assisted SFC Proxy using LISP,”
October 2015. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-cabellos-sfc-map-assisted-proxy-00.txt

[26] Y. Ueno, R. Nakamura, and T. Kamata, “SRv6 Tagging proxy,”
October 2019. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-eden-srv6-tagging-proxy-00.txt

[27] A. Abdelsalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and
L. Veltri, “Implementation of virtual network function chaining through
segment routing in a linux-based NFV infrastructure,” in IEEE Confer-
ence on Network Softwarization (NetSoft), 2017, pp. 1–5.

[28] A. Abdelsalam, “Chaining of Segment Routing Aware and Unaware
Service Functions.” IFIP-TC6 Networking Conference (Networking), pp.
A3–A4, 2018.

[29] “SREXT - A Linux Kernel Module Implementing SRv6 Network
Programming Model,” retrieved: 2022-01-04. [Online]. Available:
https://github.com/netgroup/SRv6-net-prog

[30] A. Mayer, S. Salsano, P. L. Ventre, A. Abdelsalam, L. Chiaraviglio,
and C. Filsfils, “An Efficient Linux Kernel Implementation of Service
Function Chaining for Legacy VNFs Based on IPv6 Segment Routing,”
in IEEE Conference on Network Softwarization (NetSoft), 2019.

[31] A. Abdelsalam, S. Salsano, F. Clad, P. Camarillo, and C. Filsfils,
“SERA: Segment Routing Aware Firewall for Service Function Chaining
Scenarios,” IFIP-TC6 Networking Conference (Networking), pp. 46–54,
2018.

[32] “The Linux Foundation Wiki - networking:sk_buff,” retrieved: 2021-
12-15. [Online]. Available: https://wiki.linuxfoundation.org/networking/
sk_buff

[33] Z. Li, S. Peng, D. Voyer, C. Li, P. Liu, C. Cao, G. Mishra, K. Ebisawa,
S. Previdi, and J. Guichard, “Application-aware Networking (APN)
Framework,” October 2021. [Online]. Available: https://www.ietf.org/
archive/id/draft-li-apn-framework-04.txt

[34] Z. Li and S. Peng, “Application-aware Networking (APN) Header,”
October 2021. [Online]. Available: https://www.ietf.org/archive/id/
draft-li-apn-header-00.txt

[35] O. Hohlfeld, J. Krude, J. H. Reelfs, J. Rüth, and K. Wehrle, “Demys-
tifying the Performance of XDP BPF,” IEEE Conference on Network
Softwarization (NetSoft), pp. 208–212, 2019.

[36] “Cilium: BPF and XDP Reference Guide,” retrieved: 2022-01-02.
[Online]. Available: https://docs.cilium.io/en/v1.11/bpf/

