
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Secure Service Function Chaining
in the Context of Zero Trust Security

Leonard Bradatsch†*, Marco Haeberle‡*, Benjamin Steinert‡§*, Frank Kargl†, Michael Menth‡
† Ulm University, Institute of Distributed Systems, Ulm, Germany

‡ University of Tuebingen, Chair of Communication Networks, Tuebingen, Germany
§ University of Tuebingen, Zentrum für Datenverarbeitung, Tuebingen, Germany

Email: {leonard.bradatsch,frank.kargl}@uni-ulm.de
{marco.haeberle,benjamin.steinert,menth}@uni-tuebingen.de

* These authors contributed equally

Abstract—Service Function Chaining (SFC) enables dynamic
steering of traffic through a set of service functions based
on classification of packets, allowing network operators fine-
grained and flexible control of packet flows. New paradigms like
Zero Trust (ZT) pose additional requirements to the security
of network architectures. This includes client authentication,
confidentiality, and integrity throughout the whole network, while
also being able to perform operations on the unencrypted pay-
load of packets. However, these requirements are only partially
addressed in existing SFC literature. Therefore, we first present
a comprehensive analysis of the security requirements for SFC
architectures. Based on this analysis, we propose a concept
towards the fulfillment of the requirements while maintaining
the flexibility of SFC. In addition, we provide and evaluate a
proof of concept implementation, and discuss the implications of
the design choices.

I. INTRODUCTION

Service Function Chaining (SFC) is a recent technology
that aims to make packet processing more flexible. With
traditional deployment models, Service Functions (SFs) such
as Firewalls or Deep Packet Inspections (DPIs) are tied to the
actual network topology. This greatly limits the possibility of
applying SFs dynamically to specific packets. RFC 7665 [17]
addresses this limitation by introducing a standardized SFC
architecture. This SFC architecture allows packets to be dy-
namically forwarded through an ordered set of SFs regardless
of the underlying forwarding topology.

However, although many SFs come from the security do-
main, the question of how to make SFC networks themselves
secure remains largely unaddressed, both in the RFCs and in
the literature. To be considered secure, an SFC network must
meet current network security requirements. General security
requirements can be derived from the concept of Zero Trust
(ZT) security [31]. At least since the presidential executive
order of May 12, 2021 [22], ZT has enjoyed pervasive atten-
tion and is the new de-facto standard for network security.
ZT is based on the principle of never trust, always verify.
Always verifying is an ongoing process and leads to special
security requirements for networks and its components, i.e.,

This work was supported by the bwNET2020+ project which is funded by
the Ministry of Science, Research and the Arts Baden-Württemberg (MWK).
The authors alone are responsible for the content of this paper.

authentication, authorization, encryption, and inspection of all
network traffic [25], [31]. Consequently, these requirements
must also be met by an SFC architecture in order to be
considered secure by current standards. In addition, there are
SFC-specific security requirements which we explain in detail
in Section III.

10

mTLS

Internet

C
la

ss
ifi

er

VNF host 1

VNF host 2

SFC Domain (MPLS)

11

Sr
v

2

12 ...

20 ...21 22

MPLS switch

Sr
v

1

Encrypted (IPsec) Plaintext

Intrusive SF Non-intrusive SF

Fig. 1. Overview of the proposed SFC concept. The classifier ensures
confidentiality and integrity for external and internal communication. In
addition, all clients are authenticated, and authorized.

However, there are only few publications that specifically
address how these requirements can be implemented in the
context of SFC [5], [14]–[16].

This lack motivates the main contributions of this paper:
• First, a comprehensive requirements and security analysis

regarding the security of an SFC architecture is con-
ducted.

• Second, we introduce a novel security-driven SFC con-
cept, illustrated in Fig. 1. Here, the classifier serves
as endpoint for mTLS connections from remote clients.

©2022 47th IEEE Conference on Local Computer Networks (LCN), September, Edmonton, Canada

Inside the SFC domain, an IPsec tunnel from the classifier
to the service ensures confidentiality and integrity. The
credentials for this tunnel are distributed to intrusive SFs
that require access to the unencrypted payload. SR-MPLS
is used as SFC encapsulation. This concept is able to
provide all the flexibility benefits of SFC such as multi-
protocol support or support of arbitrary SFs. At the same
time, it meets most of the security requirements such as
traffic confidentiality and integrity. To our knowledge, this
is the first concept to achieve this.

• Third, we offer a publicly accessible Proof of Concept
(PoC). This PoC is evaluated in a first evaluation regard-
ing its performance.

In Section II, we first provide the necessary technical
background. In Section III, we define the exact requirements
to secure SFC architectures. Based on this, existing work is
discussed in Section IV. We then present our concept in detail
in Section V. Section VI then describes the corresponding PoC
implementation. The PoC is evaluated in Section VII, followed
by a detailed security analysis in Section VIII. We finally give
a conclusion and discuss future work in Section IX.

II. TECHNICAL BACKGROUND

Instead of wiring physical middleboxes together as in tradi-
tional networks, SFC enables the creation of dynamic chains of
SFs and the forwarding of packets through these SFs in a spe-
cific order. This allows to dynamically adapt traffic processing
based on network state or security incidents. An SFC reference
architecture has been published by the IETF in RFC 7665 [17].
The main components of SFC are a classifier, Service Function
Forwarders (SFFs), the SFs, and the SFC encapsulation. The
SFC classifier classifies traffic based on packet characteristics
such as header fields, payload information, or client-related
information. The classification outcome is encoded in an
SFC encapsulation, which is added to classified packets. At
a minimum, this encapsulation contains steering information
that is used by SFFs to forward packets to the next SFF or
SF instance. Furthermore, the encapsulation may contain per-
packet metadata. Metadata can be used for mechanisms such
as Proof of Transit (POT). POT is leveraged to prove that
packets actually followed their specified path.

SFC encapsulation may be realized with the Network Ser-
vice Header (NSH) [30] which encodes steering information
using a Service Path Identifier (SPI) and a Service Index (SI).
Alternatively, Segment Routing (SR)-based approaches [26]
may be used, for example by encoding steering information
and metadata within MPLS labels [8]. Hantouti et al. [19]
present an analysis of different traffic steering techniques in
the context of SFC. Depending on the available hardware and
the actual deployment scenario of SFC, only a limited subset
of these methods is practical. For example, the NSH is not
widely supported by current commercial off-the-shelf (COTS)
hardware, whereas an SR-MPLS-based approach can be im-
plemented also with legacy network devices. Certain SFs may
have characteristics that directly influence the implementation
of the SFC solution.

A. SFC-Aware and SFC-Unaware Service Functions

Traffic in an SFC-enabled domain is steered based on the
information in the SFC encapsulation. This means that packets
arriving at SFs are generally SFC-encapsulated. SFs that can
handle the SFC encapsulation are called SFC-aware SFs. For
most legacy functions, this is not the case as they operate
on plain IP packets. These SFs are called SFC-unaware. To
support SFC-unaware SFs in an SFC architecture, an SFC
Proxy is used to strip the SFC encapsulation before handing
the packet to the SF, and to re-encapsulate packets correctly
after being processed by the SF [17]. This allows to use
legacy network functions in a modern SFC system, and enables
incremental deployment in traditional environments, for the
cost of an additional component that adds further complexity.

B. Intrusive and Non-Intrusive Service Functions

We further differentiate between two different types of
SFs that impose different restrictions and implications on
our concept, similar to the distinction made by Cunha et
al. [5]. On the one hand, there are non-intrusive SFs, such
as a simple firewall, that do not need to read data from
the payload of a packet, only access to header fields is
required. On the other hand, there are intrusive SFs, such as
a DPI, that need to inspect the payload of packets. In a ZT
environment, the inspection of unencrypted payload is a hard
requirement that is enabled by the support of intrusive SFs.
In the case of TLS-encrypted traffic, this implies that the end-
to-end TLS connection has to be terminated by the SF, which
may raise privacy issues in certain environments. Additionally,
cryptographic operations may add further delay to the traffic
processing.

III. REQUIREMENTS

Several aspects need to be covered by an SFC architecture to
make it useful and flexible for production use, while comply-
ing with modern security standards such as ZT. This section
provides a detailed analysis of the most important require-
ments in three different categories: A) general requirements for
flexible SFC networks, B) security requirements resulting from
the specifics of SFC, and C) security requirements resulting
from the principles of ZT. All discussed requirements are
listed in the first column of Table I.

A. General SFC Requirements

Regarding the steering method in an SFC-enabled domain,
it is desirable to support a wide range of transport, security,
and application layer protocols that may be present in modern,
heterogeneous networks. This multi-protocol support can be
achieved by implementing the SFC mechanisms at the lowest
possible ISO/OSI layer.

Most legacy SFs that are deployed in today’s production
environments are not able to handle specific SFC encapsu-
lation, therefore it is recommended to support SFC-unaware
SFs to provide the largest possible number of existing network
functionality as SF. This requirement can be fulfilled by the
use of an underlying SFC proxy that is responsible for all

SF relevant actions on behalf of the SFC-unaware SF [17].
To fully utilize the potential of the classifier, the classification
of packets can be extended such that it is not only based on
the packet headers, but also on the payload and user-specific
parameters. To support such intrusive classification, encrypted
connections need to be terminated at the classifier.

B. SFC-Specific Security Requirements

There are some security requirements specific to an SFC-
based architecture [17]. All data such as steering information
and metadata that is present in the SFC-encapsulation must be
protected from leaking to the outside. This can be achieved
by removing the SFC-encapsulation before leaving the SFC-
enabled domain. Likewise, to prevent circumvention of certain
SFs it must not be possible to inject packets that already
contain spoofed steering information into the SFC domain
from outside.

Metadata that is transported within the SFC-encapsulation
may contain sensitive information that should not be accessible
from arbitrary intermediate hops or SFs, therefore it must
be ensured that metadata is transmitted confidentially and
integrity-protected. Similarly, the steering information in the
SFC-encapsulation, which was determined by the classifier,
must also be integrity protected to prevent unauthorized alter-
ation of the packet’s path to circumvent certain SFs [14].

In a secure SFC architecture, it is crucial to verify the
integrity and correctness of packet flows within the SFC-
enabled domain. To achieve such verification and therefore
prevent misconfigured SFCs, a POT scheme can ensure that
SFCs are correctly traversed by respective packets.

C. ZT-Specific Security Requirements

Since ZT is currently considered the most suitable approach
to network security, we consider the ZT principles as general
requirements to a secure network and thus also for an SFC-
based network. The following requirements must be ensured
for network traffic entering and leaving the SFC domain as
well as for all communication within the domain.

All network communication must be authenticated and
authorized following the least privilege principle. Furthermore,
confidentiality and integrity for all network communication
as well as availability of all network services must be en-
sured [31]. In addition, Perfect Forward Secrecy (PFS) is an
important requirement to protect past communications against
possible future leaks of encryption keys.

Another key requirement of ZT is the ability to monitor
all network activities. To achieve such pervasive network
visibility, all communication must be logged and inspected.
Additionally, the network should be logically or physically
micro-segmented to prevent lateral movement of malicious
insiders [25].

IV. RELATED WORK

Many works have been published in the context of SFC,
but few of them consider encryption mechanisms to secure
data within the SFC-encapsulation or information within the

Table I. Requirements towards a secure SFC architecture, and their coverage
in this work and selected related work.

Requirements This Work [15] [5] [3]

Multi-Protocol Support ✓ × × ×
SFC-unaware SFs ✓ × ✓ ×

Intrusive Classification ✓ × (✓) ✓

Leak Protection ✓ ✓ × ✓
Spoof Resistant ✓ × × ✓

Metadata Protection × × × ✓
SFC Integrity × × × ✓

Proof of Transit × × × ×

Authentication ✓ ✓ × ✓
Least-Privilege Authorization ✓ ✓ × ✓

Confidentiality ✓ ✓ (✓) ✓
Integrity ✓ ✓ (✓) ✓

Resilience/Availability × (✓) × ×
Perfect Forward Secrecy × × × ✓

Pervasive Network Visibility ✓ ✓ ✓ ✓
Micro-Segmentation ✓ ✓ ✓ ✓

payload of packets [18]. Several general encryption options
for SFC are presented in [13]. For NSH-based SFC, the IETF
published an RFC that defines new NSH context headers which
allow for authenticated and encrypted SFC [2].

For securing traffic in multi-domain deployments, Huff et
al. [23] present a respective scheme which is based on IPsec
tunnels for the encryption of SFC traffic between domains.

To outsource SFs to the cloud, Wang et al. [37] presented a
scheme where SFC headers are encrypted before transmission
in order not to leak sensitive information to the cloud provider.

For ensuring integrity of the SFC steering data in the SFC-
encapsulation and for verifying the correct order of traversal,
Pattaranantakul et al. [28] present a scheme based on the
enforcement of a sequentially-created multisignature where
each SF has to sign all received packets.

For ensuring encryption between SFs, suitable key exchange
methods must be in place. A scheme for enabling session key
sharing between endpoints and SFs is presented by Lui et
al. [27]. Gunleifsen et al. [16] present an approach including
a Software Defined Security Association (SD-SA) that enables
dynamic setup of hop-by-hop, per-flow, IPsec-based tunnels.
Additionally, a PoC demonstration of isolated and encrypted
SFCs is presented [15]. It is based on a tiered multi-layer
scheme for SFC isolation [13]. The scheme relies on a custom
extension of NSH and requires modification of SFC compo-
nents. It is therefore not suitable for incremental deployment
in a legacy network. In Table I, this work is listed and analyzed
regarding the requirements described earlier.

For inspecting the payload of encrypted packets within
SFs, it is necessary to decrypt traffic at the SF. This means
breaking the end-to-end encryption principle that is present in
most Internet communication today. However, an analysis of
the unencrypted payload increases the overall visibility into
the network flows. This is desirable in certain networks and
use-cases, especially in the context of ZT, but should also
be critically assessed regarding privacy. Cunha et al. [32]
propose an SFC-enabled Man in the Middle (MITM) that

allows intrusive SFs to inspect the payload of packets, re-
enabling functionalities that are not possible on encrypted
traffic such as content optimization, caching, or content-
filters [5]. Furthermore, a distinction between intrusive and
non-intrusive analysis of traffic is made and is reflected in the
proposed architecture. The authors evaluate their architecture
using Open Source MANO (OSM), showing the feasibility
of the concept. A major shortcoming of this approach is
that traffic is not encrypted between SFs. In a ZT-compliant
architecture, traffic should not be transmitted unencrypted
at any point in the network to prevent eavesdropping and
tampering attacks. For comparison, this work is also listed
and analyzed in Table Table I.

Bradatsch et al. [3] introduced a concept called ZTSFC. This
enables fine-grained chaining of traffic based on the calculated
trust score for each resource access. The prototype used for
this purpose implements SFC with HTTPS, achieving an even
better degree of security. However, no protocols apart from
HTTPS are supported, and SFs need to be adapted to be able
to handle custom header extensions. This work is also listed
and analyzed in Table I.

V. CONCEPT

In this section, we present a novel security-driven SFC
concept with associated architecture and prototype implemen-
tation that is described in Section VI. Table I shows which
requirements from Section III are covered by the concept. A
detailed discussion of the covered requirements and how they
are achieved is given in Section VIII. In the following, the
assumptions underlying the concept are discussed. Then, an
overview of the concept is given, the elementary components
are explained, and the workflow is described.

A. Assumptions

Our SFC concept is based on certain assumptions. As ZT
security becomes the de-facto standard for network security,
we consider the ZT attacker model as the threat scenario. Here,
not only compromised communication channels in the network
but also compromised communication partners are assumed.
The former could lead to threats such as passive traffic sniffing
or active man-in-the-middle attacks. As a protective measure
against these threats, all network traffic must be encrypted,
integrity-protected, and authenticated. The latter could lead
for example to unauthorized service accesses. As protection
against it, any communication partner must be sufficiently
authenticated and authorized [12]. In this paper, we present
a basic concept that provides these protections. We do not
cover specific attack vectors. We see further ZT processes
such as determining the trustworthiness of each partner as
out of scope of this paper as it focuses on an SFC network
architecture. This extra functionality must be provided by the
ZT components in the network and is discussed in related
work [6], [31], [35]. We also consider the management of
SFs to be out of scope. Existing work on this can be found
in [1], [24], [36]. We also assume that encryption keys used for
encrypting the communication between the SFs are securely

MPLS Label

Encryption Proxy

+ SFC Classifier

SFC Proxy

SF #1

SFC Proxy

SF #2

Service

SFC Proxy

+ SFC Classifier

Internet

Clients
Backbone

3 2 1

3 2

31
LA

N

SF
C

 D
om

ai
n

Client RequestService Response 1

3

4

5

6

MPLS Label 1

MPLS Label 2

3

Internal communication

Point of Presence Router

Underlying forwarding topology

Clients

Classifier

MPLS
Switch

SF #1

SF #2

Service

mTLS

IPsec 3 2 1 MPLS Label Stack

Client Request

Service Response

27

Fig. 2. Security-driven SFC network architecture.

distributed in advance to all communication partners in the
form of pre-shared keys (PSKs). A method for efficient and
regular distribution of new keys is discussed by Gunleifsen et
al. [16]. Protocols like BRSKI [29] may also be used for key
and certificate distribution.

B. Overview

The concept is based on the reference SFC architecture
described in RFC 7665 [17]. Traffic steering is implemented
with SR-MPLS as described in RFC 8595 [9]. A suitable
underlying forwarding topology is presented in Figure 2 in
the upper right corner. Instead of MPLS, NSH may also be
used to achieve similar functionality. The security-driven SFC
architecture is illustrated in the remainder of Figure 2. The
green boxes represent the execution environments containing
the logical components such as the SFC proxy and the SF. The
execution environment may be realized e.g., by Linux servers,
virtual machines, or containers. Note that virtualization of
the execution environments allows to place multiple SFs with

different characteristics on the same physical host. Depending
on the bandwidth / QoS requirements and to increase avail-
ability, the logical components may be scaled across different
hosts and deployed such that latency or other parameters are
optimized, depending on the use case. Many works, e.g., [34]
or [33], have been published that examine different types of
SF deployment optimizations, therefore this aspect is omitted
in our discussion. For the logical components described below,
we restrict ourselves to an SFC domain localized in a LAN
and do not consider cross-LAN scenarios.

C. Components

The following description of the components is provided in
an abstract manner independent of implementation.

SFC Classifier: At the ingress of the SFC domain, the
SFC classifier classifies incoming traffic based on predefined
rules containing, e.g., IP addresses or port numbers. Resulting
from this classification process, an SFC is selected, such that
traffic has to traverse a specific set of SFs in a specific order.
This decision is encoded in an MPLS label stack, where each
label identifies either an SF, or the target service application.
The classifier can dynamically chain the SFs in any order and
number by placing the corresponding SF labels in this order on
the label stack. As shown in Fig. 2, an SFC is unidirectional.
Thus, the path to the service may differ from the path back
from the service to the classifier.

Encryption Proxy: The encryption proxy works similarly
to a reverse proxy and is part of the SFC classifier. It is
responsible for terminating secure communication channels
with clients as well as for the secure communication with
SFs within the SFC domain. The encryption proxy strictly
separates the encryption of the communication outside and
inside the SFC domain. This makes it possible to choose two
different encryption protocols depending on the use case. For
example, (m)TLS could be supported for communication with
clients while IPsec could be used inside the SFC domain.

SFC Proxy: SFC-unaware SFs are explicitly supported by
our proposed concept. Therefore, an SFC-Proxy that handles
the MPLS encapsulation and forwarding is deployed for each
SF. In addition, it can perform de- and encryption of the
packets. This way, intrusive SFs that need access to a packet’s
payload such as a DPI can be applied as well.

Service Function: Several SFs are instantiated within the
SFC-enabled domain. A unique MPLS label is assigned to
each SF. Each of these SFs can be dynamically inserted into
the path of a packet, e.g., for adding additional service security.
Due to the SFC Proxy, SFC-aware as well as SFC-unaware SFs
can be deployed.

Service: The service is included in the packets’ path via a
dedicated MPLS label. As with the SFs, both SFC-unaware
and SFC-aware services are supported.

D. Workflow

In the following, we describe an exemplary interaction of
the components in case of an incoming client request. The
description follows the numbering as shown in Fig. 2. (1)

When a client request arrives, the encryption proxy establishes
an mTLS connection with the client. According to the Server
Name Indication (SNI) in the HTTPS request, the proxy
knows the intended destination (here: Service #1) of the
packet. Accordingly, it chooses the IPsec tunnel to use for
the connection within the SFC domain. This IPsec tunnel is
a logical tunnel to the service. All intrusive SFs also have
access to the PSK. The encryption proxy then encrypts the
client packet with IPsec. (2) Before forwarding the packet,
the SFC classifier chooses the appropriate SFC depending on
the defined rules. Accordingly, the MPLS labels (here: 3,2,1)
are added to the packet and the packet is sent to SF #1. (3)
Upon arrival at corresponding SF execution environment, the
SFC proxy removes the topmost label from the MPLS label
stack and caches the remaining MPLS labels. Next, it decrypts
the IPsec packet. The unencrypted packet is then passed on
to the service function (here: SF #1). After the packet has
been processed by the SF, the SFC proxy encrypts the packet
again. After that, the proxy retrieves the corresponding cached
MPLS labels, adds them to the packet and sends the packet
on to SF #2. (4) SF #2 processes the packet in a similar
way as at SF #1. In the case that SF #2 is a non-intrusive
SF, the SFC proxy skips de- and encryption. In any case, the
topmost MPLS label is removed before the packet is forwarded
to the service. (5) The behavior of the SFC proxy localized at
the service also includes SFC classifier functionalities. A new
label stack identifying the return path is added to the response
packet. The selection process of the SA and the corresponding
PSK for the IPsec encryption remain the same. (6) On the way
back the packet is treated the same at SF #1 as in step 2. (7)
Once the response packet arrives back at the SFC classifier,
the encryption proxy decrypts the IPsec packet. (8) The service
response is now mTLS encrypted again and sent back to the
client.

VI. PROOF OF CONCEPT

In order to demonstrate feasibility of our concept, we
provide a PoC implementation which is openly available on
GitHub 1. In the following, we describe the implementation
and provide details of the testbed setup used for evaluation.

A. Overview

The PoC consists of two clients, a classifier, two SFs and an
HTTP server. They are connected to each other as shown in
Figure 3. The connections between the clients and the classifier
are secured with mTLS. Traffic from client 1 to the HTTP
server is sent through SF 1, traffic from client 2 via SF 1
and SF 2. SF 1 does forwarding only, SF 2 is a DPI that
filters all packets containing the string ”test”. Depending on the
experiment, several instances of the SFs may be concatenated.

B. SFC Classifier & Encryption Proxy

Classification of HTTPS traffic is performed using a com-
bination of HAProxy 2 and policy-based routing on Linux.

1https://github.com/uni-tue-kn/secure-sfc
2http://www.haproxy.org

https://github.com/uni-tue-kn/secure-sfc
http://www.haproxy.org

SF 2

-

DPI

Client 1

C
la

ss
ifi

er

SF 1

-

Fwd

H
TT

P
Se

rv
er

Client 2

Bridge 1 Bridge 2 Bridge 3

Fig. 3. Setup of the evaluation testbed.

While HAProxy classifies traffic based on the source and
destination IP addresses, destination port, and URL of the
request, policy based routing is used to push the corresponding
MPLS label stack onto the packet. In addition, HAProxy is
used to terminate the TLS connection. IPsec encryption is
then applied to the unencrypted HTTP traffic using the XFRM
module of the Linux kernel.

C. SFC Proxy

The SFC proxy is implemented using Python3 and the
dpkt library 3. Caching of MPLS headers is done by storing
the labels in a dictionary with the IP source and destination
addresses, IP identification field, TCP source and destination
ports, TCP sequence number, and TCP acknowledgement
number as key. IPsec in the form of ESP in transport mode
with AES-GCM encryption is implemented using the Python
cryptography library 4. Packets are received and sent using raw
sockets. Popping the uppermost MPLS label and routing the
packet to the next SF is done using the mpls router module
of the Linux kernel.

D. Testbed

The setup is deployed on a VM running Ubuntu 20.04
and Linux kernel 5.4.0. It is equipped with 8 GB RAM and
16 Intel(R) Xeon(R) E5-2683 v4 CPU cores. Core pinning
for the virtual cores is enabled to minimize the influence of
virtualization. The components of the testbed are executed in
separate network namespaces which are akin to containers.
They are connected to each other using virtual Ethernet devices
and Linux bridges. The HTTP throughput between the clients
and the HTTP server are measured by performing downloads
with aria2 5.

VII. EVALUATION

In this section, we conducted a first performance evaluation
of the PoC and compare it to SFC without the crypto-enabled
SFC proxy. First, we measure the page load times of a website
with and without the proxy. Then, we compare the throughput
in both cases with a varying number of SFs. Lastly, we analyze
the code peformance of the SFC proxy.

We perform 10 runs per experiment and report average
values together with confidence intervals.

3https://dpkt.readthedocs.io/en/latest/
4https://cryptography.io/en/latest/
5https://aria2.github.io

A. Page Load Times

We measure the page load times by loading a local copy of
the starting page of the University of Tuebingen. This website
consists of 9 files with a total size of 1.2 MB.

When using a single forwarding SF only without the proxy,
the page load time is approx. 0.045 s. It increases to approx.
0.25 s when the forwarding SF is replaced by the DPI SF
that is using the crypto-enabled SFC proxy. The increase
can be attributed to the Python-based implementation of the
SFC proxy (see Section VII-C). For comparison: loading the
website via the campus network of the University of Tuebingen
from the testbed VM but without the SFC deployment takes
approx. 0.63 s, via the Internet approx. 2 s.

B. Throughput

We measure the maximum throughput with a varying num-
ber of SFs by downloading a 10 GB large file from one of the
clients. The results including the 95% confidence interval are
shown in Figure 4.

1 2 3 4 5 6
of SFs

0

250

500

750

1000

1250

1500

1750

2000
HT

TP
S

th
ro

ug
hp

ut
 (M

b/
s)

SFC Proxy w/ crypto
Forwarding SF only

Fig. 4. HTTPS throughput with and without the SFC proxy for 1 to 6 SFs.

When one forwarding-only SF without the SFC proxy is
used, the throughput is approx. 2150 Mb/s. It drops to approx.
1550 Mb/s with 6 forwarding-only SF.

When using SFs with the crypto-enabled SFC proxy, the
throughput is significantly lower. For 1 SF it is approx.
660 Mb/s and drops to approx. 330 Mb/s for 6 SFs with
crypto-enabled SFC-proxies. The CPU cores of the evaluation
system were never fully utilized during the evaluation. The
low performance in contrast to the forwarding-only SF can be
attributed to the latency that is induced by the crypto-enabled
SFC proxy that was also observed in Section VII-A.

In a further experiment, the MTU inside the SFC domain is
reduced from 1500 Bytes to 1000 Bytes. The throughput then
decreases by the same scale. This shows that the additional
latency that is induced by the crypto-enabled SFC proxy is
largely independent of the size of the packets.

C. Code Performance

We evaluate the code performance of the crypto-enabled
SFC proxy by using the built-in cProfile Python library that

https://dpkt.readthedocs.io/en/latest/
https://cryptography.io/en/latest/
https://aria2.github.io

generates statistics about the time that is spent in different
parts of the Python program.

While performing a download of a large file, the SFC proxy
spends approx. 46.8% of the time in the recvfrom function
of the socket module of Python. This can be attributed to the
time that the proxy is waiting for packets to arrive because
the function is blocking. Further 21.5% of the time is spent
in functions that are associated with the dpkt library, e.g.,
parsing and assembling packets. Approx. 3.8% of the time
is spent sending packets. Other parts of the proxy, especially
performing cryptographic operations for IPsec, and caching
the MPLS labels takes less then 1% of the time each. This
confirms the observations regarding the impact of the packet
size in Section VII-B.

Thus, the limited throughput when using the proxy can
be attributed to the latency induced by Python and the dpkt
library. A non-prototypical implementation using lower level
technologies, e.g., as a Linux kernel module, would provide a
significantly higher performance.

D. General Implications

For today’s networks with 100G network hardware, a so-
lution close to the hardware should be aimed for in view
of the low performance of the shown software-based PoC.
Furthermore, the evaluation shows that adding all security
features decreases the overall throughput. Modern network
interface cards support hardware-offloading features for cryp-
tographic operations which may be leveraged together with
Single Root I/O Virtualization (SR-IOV), to support higher
bandwidths and generally improve the performance of such a
system. Additionally, the classifier, encryption proxy, or SFs
may introduce single points of failure. Redundancy schemes
with standard load balancers can help to mitigate this risk and
can seamlessly be integrated into the presented architecture.

VIII. SECURITY ANALYSIS

In this section we discuss how the security requirements
from Section III are achieved by the presented concept. With
respect to the PoC, we indicate in parentheses which compo-
nent implements said feature. In addition, we show possible
extensions that can be used to complete the list of fulfilled
security requirements.

A. Authentication and Least Privilege Authorization

Each client request is authenticated via mTLS by the
Encryption Proxy (PoC: HAProxy). Within the SFC domain,
the classifier and service authenticate each other via IPsec.
Currently there is no authentication between the SFs. However,
this can be achieved by hop-by-hop IPsec, e.g., as proposed in
RFC 8994 [7], which provides hop-by-hop authenticated and
encrypted communication channels between nodes.

The least-privilege authorization is implemented by the
SFC classifier (PoC: HAProxy). Only packets that have been
successfully authenticated are forwarded to respective services.
However, more elaborate ZT-specific authorization rules can
also be implemented.

B. Confidentiality and Perfect Forward Secrecy

All network traffic in our concept is encrypted. This
is specifically ensured by the encryption endpoint (PoC:
HAProxy & XFRM module) which enforces TLS with the
client and IPsec within the SFC domain. Note that IPsec
does not protect the MPLS label stack as the labels must
be accessible by intermediate hops for correct forwarding of
packets. For the IPsec implementation PSKs are used. The
PSKs are distributed via a secure channel to the encryption
endpoint, the services, and to intrusive SFs that need to inspect
the unencrypted payload of a packet. Only authenticated and
benign SFs are getting access to the key. Otherwise an attacker
can infiltrate an SF and read unencrypted traffic. Remote at-
testation [10] or authentication of execution environments [21]
are approaches to ensure the integrity and authenticity of SFs.

In the current concept, we considered PFS as out of scope.
To enable this feature, the encryption keys must be renewed
regularly. IKE or a key renewal scheme as described in [15]
or in [20] can be used for this.

C. Integrity

The integrity of all packets is protected either by TLS or by
IPsec. However, this does not apply to the MPLS label stack.
This issue is discussed further below.

D. Availability

We considered availability to be out of scope for our
concept. Nevertheless, it is an essential security objective. In
case of a soft- or hardware failure, mechanisms must be in
place to decrease downtime of an SFC [11]. The SFC classifier
and the encryption endpoint impose a single point of failure,
and should therefore be protected by (D)DoS mitigation mech-
anisms, and should ideally be deployed redundantly [38].

E. Pervasive Network Visibility

Accessing payload of all network traffic in the network is
an important requirement of ZT. Our concept provides this
pervasive network visibility. By using monitoring SFs such as
a packet logger, all packets can be captured and inspected. By
distributing IPsec PSKs to these SFs, access to the payload of
packets is ensured.

F. Micro Segmentation

The SFC classifier and encryption endpoint represent the
entry point to the SFC domain. Both (PoC: HAProxy) segment
logically. Only authenticated packets are forwarded into the
SFC domain. Within the SFC domain, the distribution of PSKs
can be used to decide which services and SFs are given access
to which packets’ payload. Similarly, the SFC classifier (PoC:
HAProxy & policy based routing) can use the MPLS labels
(and thus the SFCs) to make fine-grained decisions about
which packets should be routed through which network paths
and segments. Note that missing integrity of the label stack
may leave manipulation of the MPLS labels unnoticed.

G. General SFC-specific Security Requirements

Some security objectives in SFCs must be met by any SFC
architecture, in order to be safe for an operator to use [17].

Amongst others, it is ensured that no SFC data can be
injected into the SFC domain. This is achieved by adequate
configuration of the classifier since it is the entry point to the
SFC domain. Only packets that are not SFC-encapsulated are
accepted from the outside of the domain (PoC: kernel policies),
others are dropped, preventing the injection of packets that
already carry SFC data.

In the presented concept, the classifier is not only the entry
point but also the exit point of the SFC domain. Adequate
configuration of the classifier ensures that no SFC headers
(PoC: MPLS labels) can leak outside of the domain. All labels
are removed before forwarding the service response to the
client.

Ensuring confidentiality within the SFC domain for steering
information and metadata may be achieved by encrypting the
whole SFC-encapsulated packet. However, this prevents traffic
steering using source routing since the steering information is
not available to intermediate hops anymore [14]. It is possible
to add sensitive metadata to the packet before encryption, in
order to ensure confidentiality. In this case, the SFC proxy
must be made aware of this metadata.

Integrity protection of steering information and metadata
was not implemented for this concept, but is discussed in
RFC9145 [2]. Note that if integrity of steering data is not
given, it is possible for malicious intermediate hops (SFC-
Proxies or SFFs) to change the steering information in the
SFC headers, and therefore change the path of packets, e.g.,
to circumvent certain security SFs.

For verification of the correctness of an SFC, a POT scheme
is necessary to ensure that each SF which is part of the SFC
has been traversed in the correct order. This is especially
important when integrity of steering data cannot be ensured
since it then provides the only way of verification. Proposals
for such a scheme exist [4], [28] and may be integrated in the
presented concept in future work.

IX. CONCLUSION & FUTURE WORK

In this paper, we conducted a detailed analysis of security
requirements that have to be met by an SFC network to be
considered secure under current security approaches such as
Zero Trust. The resulting set of requirements is listed in Ta-
ble I. We classified existing work based on these requirements.
This revealed a lack of flexible solutions that combine the
benefits of SFC, and at the same time meet modern security
requirements.

To fill this gap, we proposed a novel SFC concept that
combines SFC flexibility features such as the support of many
different protocols, the support of SFC-unaware SFs, and the
possibility to inspect the payload of packets for classification.

This is achieved by the choice of SR-MPLS as the steer-
ing method for forwarding, by leveraging SFC proxies and
by terminating encrypted connections at the SFC classifier,
respectively.

Furthermore, the proposed concept complies with ZT secu-
rity principles such as authentication, least privilege authorisa-
tion, confidentiality, integrity, pervasive network visibility and
micro-segmentation. To the best of our knowledge, this is the
first work to combine all of these features in a single concept.

We presented and evaluated a first PoC implementation of
the proposed concept that achieves average website load times
of 0.25 s and an average throughput of 330 Mb/s with 6
intrusive SFs in the path.

Finally, we conducted a security analysis of the presented
concept that shows how the security requirements are met. For
requirements not yet met by the concept, concrete approaches
were given on how to achieve them.

The security analysis revealed open challenges for future
work. The effective protection of SFC components against
(D)DoS attacks is an open research question. There is also a
need for solutions that address SFC-specific security objectives
such as a proof of transit scheme, SFC integrity, as well as
metadata protection on the network layer.

In addition to the security aspects, a comprehensive perfor-
mance evaluation of the PoC is necessary. In addition to the
performed HTTP-based evaluation, it is necessary to examine
other traffic types and flow sizes. The influence of security-
related operations on performance and the resulting limita-
tions, e.g., bandwidth or scalability, must also be investigated
further.

REFERENCES

[1] H. U. Adoga and D. P. Pezaros, “Network Function Virtualization and
Service Function Chaining Frameworks: A Comprehensive Review of
Requirements, Objectives, Implementations, and Open Research Chal-
lenges,” Future Internet, vol. 14, no. 2, p. 59, 2022.

[2] M. Boucadair, T. Reddy.K, and D. Wing, “Integrity Protection for the
Network Service Header (NSH) and Encryption of Sensitive Context
Headers,” Internet Requests for Comments, RFC 9145, Dec. 2021.
[Online]. Available: https://www.rfc-editor.org/info/rfc9145

[3] L. Bradatsch, F. Kargl, and O. Miroshkin, “Zero Trust Service Function
Chaining,” in Conference on Networked Systems 2021 (NetSys 2021),
ser. Electronic Communications of the EASST, vol. 80, 2021.

[4] F. Brockners, S. Bhandari, T. Mizrahi, S. Dara, and S. Youell,
“Proof of Transit,” Internet Engineering Task Force, Internet-
Draft draft-ietf-sfc-proof-of-transit-08, Nov. 2020. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-proof-of-transit-08

[5] V. A. Cunha, M. B. de Carvalho, D. Corujo, J. P. Barraca, D. Gomes,
A. E. Schaeffer-Filho, C. R. P. dos Santos, L. Z. Granville, and R. L.
Aguiar, “An SFC-enabled approach for processing SSL/TLS encrypted
traffic in Future Enterprise Networks,” in 2018 IEEE Symposium on
Computers and Communications (ISCC), 2018, pp. 01 013–01 019.

[6] T. Dimitrakos, T. Dilshener, A. Kravtsov, A. L. Marra, F. Martinelli,
A. Rizos, A. Rosetti, and A. Saracino, “Trust Aware Continuous Au-
thorization for Zero Trust in Consumer Internet of Things,” in 2020
IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), Feb. 2020, pp. 1801–1812.

[7] T. Eckert, M. H. Behringer, and S. Bjarnason, “An Autonomic
Control Plane (ACP),” RFC 8994, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc8994

[8] A. Farrel, S. Bryant, and J. Drake, “An MPLS-Based Forwarding Plane
for Service Function Chaining,” Internet Requests for Comments, IETF,
RFC 8595, Jun. 2019. [Online]. Available: https://www.rfc-editor.org/
rfc/rfc8595.txt

[9] ——, “An MPLS-Based Forwarding Plane for Service Function Chain-
ing,” IETF, RFC 8595, Jun. 2019.

https://www.rfc-editor.org/info/rfc9145
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-proof-of-transit-08
https://www.rfc-editor.org/info/rfc8994
https://www.rfc-editor.org/rfc/rfc8595.txt
https://www.rfc-editor.org/rfc/rfc8595.txt

[10] G. Fedorkow, E. Voit, and J. Fitzgerald-McKay, “TPM-based Network
Device Remote Integrity Verification,” Internet Engineering Task Force,
Internet-Draft draft-ietf-rats-tpm-based-network-device-attest-14, Mar.
2022, work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-ietf-rats-tpm-based-network-device-attest-14

[11] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac, “Don’t
interrupt me when you reconfigure my Service Function Chains,” Com-
puter Communications, vol. 171, pp. 39–53, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0140366421000712

[12] E. Gilman and D. Barth, Zero Trust Networks: Building Secure Systems
in Untrusted Networks. O’Reilly Media, Inc., Jun. 2017.

[13] H. Gunleifsen, V. Gkioulos, and T. Kemmerich, “A tiered control plane
model for service function chaining isolation,” Future Internet, vol. 10,
no. 6, p. 46, 2018.

[14] H. Gunleifsen and T. Kemmerich, “Security requirements for service
function chaining isolation and encryption,” in 2017 IEEE 17th Inter-
national Conference on Communication Technology (ICCT), 2017, pp.
1360–1365.

[15] H. Gunleifsen, T. Kemmerich, and V. Gkioulos, “A Proof-of-
Concept Demonstration of Isolated and Encrypted Service Function
Chains,” Future Internet, vol. 11, no. 9, 2019. [Online]. Available:
https://www.mdpi.com/1999-5903/11/9/183

[16] ——, “Dynamic Setup of IPsec VPNs in Service Function Chaining,”
Computer Networks, vol. 160, pp. 77–91, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128619300969

[17] J. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” Internet Requests for Comments, IETF, RFC 7665, Oct.
2015. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7665.txt

[18] H. Hantouti, N. Benamar, and T. Taleb, “Service Function Chaining in
5G & Beyond Networks: Challenges and Open Research Issues,” IEEE
Network, vol. 34, no. 4, pp. 320–327, 2020.

[19] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for
service function chaining,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 487–507, 2018.

[20] F. Hauser, M. Häberle, M. Schmidt, and M. Menth, “P4-IPsec: site-to-
site and host-to-site VPN with IPsec in P4-based SDN,” IEEE Access,
vol. 8, pp. 139 567–139 586, 2020.

[21] F. Hauser, M. Schmidt, and M. Menth, “xRAC: Execution and Access
Control for Restricted Application Containers on Managed Hosts,” in
NOMS 2020-2020 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2020, pp. 1–9.

[22] T. W. House. (2021, May) Executive Order on
Improving the Nation’s Cybersecurity. [Online]. Avail-
able: https://www.whitehouse.gov/briefing-room/presidential-actions/
2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

[23] A. Huff, G. Venâncio, V. F. Garcia, and E. P. Duarte, “Building multi-
domain service function chains based on multiple NFV orchestrators,” in
2020 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). IEEE, 2020, pp. 19–24.

[24] K. Kaur, V. Mangat, and K. Kumar, “A comprehensive survey of service
function chain provisioning approaches in SDN and NFV architecture,”
Computer Science Review, vol. 38, p. 100298, 2020.

[25] J. Kindervag, S. Balaouras, and L. Coit, “Build Security Into Your
Network’s DNA: The Zero Trust Network Architecture,” Forrester, Tech.
Rep., Nov. 2010.

[26] C. Li, A. E. Sawaf, R. Hu, and Z. Li, “A Framework for Constructing
Service Function Chaining Systems Based on Segment Routing,”
IETF, Internet-Draft draft-li-spring-sr-sfc-control-plane-framework-05,
Oct. 2021, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/html/draft-li-spring-sr-sfc-control-plane-framework-05

[27] C. Liu, Y. Cui, K. Tan, Q. Fan, K. Ren, and J. Wu, “Building
generic scalable middlebox services over encrypted protocols,” in IEEE
INFOCOM 2018-IEEE conference on computer communications. IEEE,
2018, pp. 2195–2203.

[28] M. Pattaranantakul, Q. Song, Y. Tian, L. Wang, Z. Zhang, A. Meddahi,
and C. Vorakulpipat, “On Achieving Trustworthy Service Function
Chaining,” IEEE Transactions on Network and Service Management,
vol. 18, no. 3, pp. 3140–3153, 2021.

[29] M. Pritikin, M. Richardson, T. Eckert, M. H. Behringer, and K. Watsen,
“Bootstrapping Remote Secure Key Infrastructure (BRSKI),” RFC 8995,
May 2021. [Online]. Available: https://www.rfc-editor.org/info/rfc8995

[30] P. Quinn, U. Elzur, and C. Pignataro, “Network Service Header (NSH),”
IETF, RFC 8300, Jan. 2018.

[31] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero Trust Archi-
tecture,” NIST Computer Security Resource center, Aug. 2020.

[32] E. Sousa, V. A. Cunha, M. B. de Carvalho, D. Corujo, J. P. Barraca,
D. Gomes, A. E. Schaeffer-Filho, C. R. dos Santos, L. Z. Granville,
and R. L. Aguiar, “Orchestrating an SFC-enabled SSL/TLS traffic
processing architecture using MANO,” in 2018 IEEE Conference on
Network Function Virtualization and Software Defined Networks (NFV-
SDN). IEEE, 2018, pp. 1–7.

[33] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du, and M. Guizani, “Energy-
efficient and traffic-aware service function chaining orchestration in
multi-domain networks,” Future Generation Computer Systems, vol. 91,
pp. 347–360, 2019.

[34] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari,
“Joint energy efficient and QoS-aware path allocation and VNF place-
ment for service function chaining,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 374–388, 2018.

[35] Y. Tao, Z. Lei, and P. Ruxiang, “Fine-Grained Big Data Security
Method Based on Zero Trust Model,” in 2018 IEEE 24th International
Conference on Parallel and Distributed Systems (ICPADS), Dec. 2018,
pp. 1040–1045, ISSN: 1521-9097.

[36] A. N. Toosi, J. Son, Q. Chi, and R. Buyya, “ElasticSFC: Auto-scaling
techniques for elastic service function chaining in network functions
virtualization-based clouds,” Journal of Systems and Software, vol. 152,
pp. 108–119, 2019.

[37] H. Wang, X. Li, Y. Zhao, Y. Yu, H. Yang, and C. Qian, “SICS: Secure
in-cloud Service Function Chaining,” arXiv preprint arXiv:1606.07079,
2016.

[38] L. Zhang, Y. Wang, X. Qiu, and H. Guo, “Redundancy mechanism of
service function chain with node-ranking algorithm,” in 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management (IM), 2019,
pp. 586–589.

https://datatracker.ietf.org/doc/html/draft-ietf-rats-tpm-based-network-device-attest-14
https://datatracker.ietf.org/doc/html/draft-ietf-rats-tpm-based-network-device-attest-14
https://www.sciencedirect.com/science/article/pii/S0140366421000712
https://www.mdpi.com/1999-5903/11/9/183
https://www.sciencedirect.com/science/article/pii/S1389128619300969
https://www.rfc-editor.org/rfc/rfc7665.txt
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://datatracker.ietf.org/doc/html/draft-li-spring-sr-sfc-control-plane-framework-05
https://datatracker.ietf.org/doc/html/draft-li-spring-sr-sfc-control-plane-framework-05
https://www.rfc-editor.org/info/rfc8995

	Introduction
	Technical Background
	SFC-Aware and SFC-Unaware Service Functions
	Intrusive and Non-Intrusive Service Functions

	Requirements
	General SFC Requirements
	SFC-Specific Security Requirements
	ZT-Specific Security Requirements

	Related Work
	Concept
	Assumptions
	Overview
	Components
	Workflow

	Proof of Concept
	Overview
	SFC Classifier & Encryption Proxy
	SFC Proxy
	Testbed

	Evaluation
	Page Load Times
	Throughput
	Code Performance
	General Implications

	Security Analysis
	Authentication and Least Privilege Authorization
	Confidentiality and Perfect Forward Secrecy
	Integrity
	Availability
	Pervasive Network Visibility
	Micro Segmentation
	General SFC-specific Security Requirements

	Conclusion & Future Work
	References

