
©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Alternative Best Effort (ABE) for Service
Differentiation: Trading Loss versus Delay

Steffen Lindner, Gabriel Paradzik, Michael Menth
Chair of Communication Networks, University of Tuebingen, Tuebingen, Germany

{steffen.lindner, gabriel.paradzik, menth}@uni-tuebingen.de

Abstract—The idea of an Alternative Best Effort (ABE) per-
hop behaviour (PHB) emerged about 20 years ago. It provides a
low-delay traffic class in the Internet at the expense of more
packet loss than Best Effort (BE). Therefore, ABE is better
suited than BE for loss-tolerant but delay-sensitive applications.
Furthermore, ABE traffic should not degrade the service for
BE traffic in terms of packet loss and delay. Therefore, Internet
service providers may leave the choice of using BE or ABE to
their customers as they achieve service differentiation without
compromising other traffic.

In this work, we revisit ABE and pursue the fundamental
question whether an ABE service is technically feasible, how
its service would look like and interact with existing transport
protocols? We present a novel scheduler called Deadlines, Saved
Credits, and Decay (DSCD) for combined scheduling of BE
and ABE traffic. It allows to control ABE’s delay advantage
over BE and copes with varying bandwidth. We provide an
implementation of DSCD in the Linux network stack and
demonstrate its efficiency. A side product of the implementation
is an efficient approximation of the exponential function in the
kernel and a bandwidth estimation method that even works at
moderate link utilization. We study DSCD in a semi-virtualized
testbed with real networking stacks to understand implications
for transport protocols in a BE/ABE Internet. The study analyzes
ABE’s impact on loss and delay under various conditions and
gives recommendations for configuration.

Index Terms—Internet Protocol, traffic classes, service differ-
entiation, packet scheduling, Alternative Best Effort (ABE), inter-
class fairness

I. INTRODUCTION

Over the last decades, increasing buffer sizes in network
devices have led to temporarily long end-to-end delays. This
phenomenon is known as bufferbloat [1]. Realtime applica-
tions, such as online gaming, video conference systems, or
voice over IP applications, rely on small end-to-end delays.
Table I gives examples.

TABLE I
REALTIME APPLICATIONS WITH REQUIREMENTS REGARDING

END-TO-END DELAY AND PACKET LOSS.

Application E2E delay Packet loss Source

Online gaming (FPS) 20 ms – 80 ms ≤ 5% [2] [3]
Cloud gaming ≤ 50 ms ≤ 5% [4] [5] [6]

Voice over IP (VoIP) ≤ 150 ms 1% – 3% [7]

A common solution to this problem is service differenti-
ation, where delay sensitive traffic is prioritized over other
traffic. The differentiated services framework (DiffServ) [8]

allows for service differentiation in IP networks, offering
various per-hop behaviours (PHBs) which can be considered
as traffic classes. An example is Expedited Forwarding (EF),
where EF traffic is strictly preferred over other traffic classes
[9]. However, Internet service providers (ISPs) generally do
not leave the choice of the PHBs to their customers because
EF traffic may impede BE traffic of other users. If EF traffic
accounts for only a small fraction of a link’s overall traffic, it
is likely to encounter only little loss and delay. In the absence
of financial incentives, users possibly send too much EF traffic
so that loss and delay objectives of EF traffic may not be met.

In this light, we revisit the idea of an Alternative Best Effort
(ABE) service class [10] which has been first proposed in
2000. It causes less packet delay at the expense of increased
packet loss but does not degrade treatment of BE traffic
with respect to loss and delay. ABE constitutes a PHB that
may be particularly attractive for service differentiation in the
Internet where end users may choose ABE for low-delay traffic
without negatively impacting BE traffic. Furthermore, it may
be attractive when strict prioritization, such as the EF PHB,
is discussed controversial in the context of network neutrality
[11] as ABE does not impact the service for BE traffic.

Various scheduling algorithms [12], [13] have been pre-
sented in the past that may be apt to support an ABE PHB,
but they suffer from various shortcomings. They are complex
so that they have been implemented only in simulations.
They require that the link bandwidth is stable and known.
While thoroughly investigated by simulations, they did not
address the inherent problem that very low ABE traffic rates
may lead to unacceptable high packet loss. Supporting a loss
versus delay trade-off has also been discussed in the IETF but
implementation details were not in scope [14].

The contribution of this work is manifold. We address
the fundamental question whether an ABE service class is
technically feasible, how it behaves with up to date transport
protocols, and whether it can be implemented on modern
hardware. To that end, we propose a novel scheduler, named
Deadlines, Saved Credits, and Decay (DSCD), for combined
scheduling of BE and ABE traffic and implement it in the
Linux network stack. It requires the knowledge of the link
bandwidth only for secondary tasks and copes with unknown
or variable transmission capacity through continuous band-
width estimation. DSCD is designed to avoid excessive packet
loss for low ABE traffic rates as this is most detrimental even
to realtime applications.

We investigate the performance of ABE in terms of loss

and delay. We show the impact of configuration parameters,
traffic types, and the ABE traffic rate on these metrics. We
perform experiments with TCP variants and study both inter-
protocol and inter-class fairness when traffic is carried over
BE and ABE. The proposed bandwidth estimation method is
fast, accurate, and efficient so that it also works at moderate
link utilization. For its implementation, we developed a fast
approximation of the exponential function in the kernel which
may be reused for other purposes.

This paper is structured as follows. In Section II, we review
related work. Section III presents the novel DSCD algorithm
for joint scheduling of BE and ABE traffic. Afterwards, we
point out relevant implementation details of DSCD in the
Linux network stack in Section IV. In Section V we investigate
the performance of BE and ABE traffic when scheduled with
the DSCD scheduler in various networking scenarios. Finally,
Section VI summarizes this work and Section VII draws
conclusions.

II. RELATED WORK

We review work in the context of traffic prioritization related
to DSCD. First, we discuss the ABE schedulers Duplicate
Scheduling with Deadlines (DSD) and Delay Segment FIFO
(DSF). Then, we present AQM implementations in the Linux
network stack and further traffic differentiation mechanisms.

A. Alternative Best Effort (ABE)

The authors of [12] present the concept of Alternative Best
Effort (ABE) as a traffic class similar to BE. ABE provides
a bounded-delay service class (green) and a Best Effort (BE)
class (blue). Blue traffic achieves the same throughput as in
a conventional FIFO system. Green traffic receives priority
service whenever possible without harming blue traffic. The
concept has also been presented in the IETF [10].

The authors subsequently present Duplicate Scheduling with
Deadlines (DSD) as a combined scheduler for BE and ABE
traffic. DSD utilizes separate, physical FIFO queues for blue
and green packets. In addition, it leverages a virtual queue
to simulate the queue behaviour of a single FIFO queue that
serves both blue and green packets. Based on the fill state of
the virtual queue the transmission time for blue packets in a
FIFO system is computed, for which the link capacity must be
known and stable. This FIFO system transmission time is taken
as a deadline for the blue packets in the physical queue. The
deadline for green packets in the physical queue is their arrival
time plus a maximum tolerable delay. The basic dequeue
procedure is as follows. If a blue packet needs to be sent
to keep its deadline, it is dequeued and sent. If a green packet
passed its deadline, it is dropped. With DSCD, green packets
are sent whenever blue packets do not need to be sent. This
allows green packets to overtake blue packets when previous
green packets were dropped, which effects a delay advantage.
DSD is similar to DSCD but utilizes an algorithm to share
capacity between both physical queues in a sophisticated way
whenever blue or green packets are eligible for transmission.
However, the objective for this capacity sharing is debatable
as it strives for per-class fairness. As a result, the associated

algorithm is complex. The delay, throughput, and packet loss
must be tracked so that the algorithm is hard to implement
on real forwarding nodes. The performance of DSD has been
evaluated by simulations.

B. Delay Segment FIFO (DSF)

Karsten et al. [13] consider multiple traffic classes i with
class-specific delay targets Di. They suggest Delay Segment
FIFO (DSF) as an algorithm for scheduling packets such that
the queuing delay of the packets is at most their class-specific
delay target and at most the delay experienced in a FIFO
queue. If these constraints cannot be met, packets are dropped.
They use a physical packet queue for each traffic class and a
joint slot queue for storing slots that contain the right to send
a certain amount of bytes. The slot queue is partitioned into
class-specific segments such that the overall capacity of the
segments corresponding to the c most stringent traffic classes
is Dc · C. Thereby C is the link bandwidth which must be
known a priori and stable. When a packet arrives, it is added
with a deadline to the corresponding packet queue. Moreover,
a slot is added to slot queue in a free segment belonging
to the packet class of the packet or better. The algorithm is
complex and uses a minimal throughput interference index to
guarantee some kind of TCP fairness. The authors implement
and evaluate DSF for the network simulator ns-3.

C. AQM Implementations in the Linux Network Stack

FQ-CoDel [15] is a packet scheduler and Active Queue
Management (AQM) algorithm developed to mitigate the
bufferbloat problem. It is based on deficit round robin (DRR)
and CoDel and distinguishes between sparse and non-sparse
flows. FQ-CoDel stochastically enqueues incoming packets
based on their 5-tuple hash into different queues. Each queue
is managed by the CoDel AQM. FQ-CoDel is the default
queueing discipline in many Linux distributions.

Ramakrishnan et al. [16] present an implementation of FQ-
PIE, a flow-based variation of Proportional Integral controller
Enhanced (PIE), for the Linux network stack. They compare
it to PIE and FQ-CoDel and evaluate the fairness among
responsive and unresponsive flows. Further, they evaluate the
fairness between different TCP versions, i.e., TCP Cubic and
TCP BBR.

CAKE [17] is a network queue managment system designed
for the home gateway. It includes bandwidth shaping, queue
management, DiffServ handling and TCP ACK filtering. Fur-
ther, it provides host and flow isolation. CAKE is part of the
mainline Linux kernel and was developed for the OpenWrt
router firmware.

D. Further Traffic Differentiation Mechanisms

RD [18] proposes two service classes: a high-transmission
class and a low queuing delay class. Both classes are imple-
mented by separate FIFO queues on a router. The next trans-
mitted packet is selected according to the intended throughput
ratio between both classes. To guarantee delay differentiation,
the corresponding queue sizes are dynamical calculated. Queue

2

sizes and service rates have to be calculated, which requires
knowledge of the link capacity.

QJump [19] classifies different latency-sensitive levels.
Packets from higher classes are rate-limited but can “jump-
the-queue” over packets from lower classes. To provide rate-
limitations and some kind of throughput fairness, QJump
needs knowledge about the number of network nodes and link
speeds. QJump was designed for datacenter applications. The
authors evaluate QJump with simulations and a small real-
world deployment.

Briscoe et al. [20] give a broad overview of techniques
to reduce Internet latency. They categorize latency sources,
e.g., caused by too large network buffers, and present their
advantages and disadvantages.

Although FQ-CoDel, FQ-PIE, Cake, RD, and other mecha-
nisms provide means for service differentiation, i.e., they en-
able low-delay forwarding for real-time or low-bitrate traffic,
they do so at the expense of BE traffic or large flows. In
contrast, the objective of DSCD is that BE traffic is not treated
worse than in a pure FIFO system. Further, DSCD could be
used in conjunction with existing AQMs such as FQ-CoDel.

III. SCHEDULING WITH DEADLINES, SAVED CREDITS,
AND DECAY (DSCD)

We give an overview of DSCD’s design idea and present
its algorithm in detail.

A. Design Idea

Figure 1 illustrates the data structure of DSCD that we
introduce incrementally. The DSCD scheduler utilizes two
FIFO queues: one to enqueue BE traffic (Q[BE]) and one
to enqueue ABE traffic (Q[ABE]). When a packet arrives, it
is enqueued into the corresponding class-specific queue based
on its DiffServ code point (DSCP). In addition, ABE packets
are equipped with a deadline at enqueue, which is the enqueue
time plus the delay threshold Td. When a non-empty BE queue
is served, a packet is removed and dequeued for forwarding.
When a non-empty ABE queue is served, packets are removed.
They are dequeued if their deadline is met, otherwise they are
dropped. The unused transmission capacity may be used by
subsequent ABE packets, either immediately or later, so that
they can take over BE packets without delaying them.

DSCD achieves this behavior by dequeuing packets from
the BE and ABE packet queue using so-called credits. To that
end, DSCD maintains a FIFO queue Qc for credit elements.
Whenever a packet arrives, a credit element with the packet’s
size and traffic class is inserted into the credit queue 1 .
The credit is needed for dequeuing packets. For that purpose,
two class-specific credit counters are maintained (CC[ABE],
CC[BE]). The first packet of a non-empty queue can be
dequeued only if the corresponding credit counter is at least the
packet’s size. If so, the packet can be removed from its queue.
If the packet belongs to the ABE class and its deadline has
passed, the packet is dropped. Otherwise, the corresponding
credit counter is decremented by the packet’s size and the
packet can be forwarded 2 . If the credit counters of both

P1P2

P3

P4

P5

P

BE Queue

ABE Queue

C1C2C3C4C5C6

Credit Queue

Credit BE Credit ABE

3

Px

21

Fig. 1. The DSCD scheduler stores BE and ABE packets in the class-specific
packet queues Q[BE] and Q[ABE]. For every enqueued packet, a credit
element is inserted into the credit queue Qc. The credit counters CC[BE]
and CC[ABE] store class-specific credits that are needed for packet dequeue.
If these credits do not suffice, new credits are taken from the credit queue.

queues are too low for dequeuing a packet, a credit element
is removed from the credit queue and the credit counter of
the element’s class is incremented by the element’s size 3 .
The credit of dropped ABE packets remains in the system for
some time. With that saved credit, subsequent ABE packets
can be served earlier than comparable BE packets, but without
delaying BE packets longer than in a pure FIFO system.

This sketch misses some details. First, packets may be lost
during enqueue due to limited queue size. Second, low rates
of ABE traffic should not experience high packet loss, which
requires some extra logic. Third, credit should not be stored for
infinite time, even in the presence of congestion. To that end,
the credit is devaluated over time according to an exponential
function (exp(−λ·∆)) where ∆ is the passed time and λ is the
decay rate. We configure it via the half-life time th = ln(2)

λ .
After one half-life time th only half the credit is still available.
Fourth, to simulate the behaviour of a FIFO queue, the credit
should vanish when both packet queues are empty. It is drained
from the system with link bandwidth C, which is continuously
estimated.

B. Algorithm

We formalize the above sketched algorithm using pseu-
docode and address the missing details. We introduce the
data structure of DSCD and describe its algorithms for packet
enqueue, packet dequeue, credit devaluation, and bandwidth
estimation.

1) Data structures: The data structures of DSCD are illus-
trated in Figure 1.

• DSCD maintains separate FIFO queues Q[BE] and
Q[ABE] to store BE and ABE packets

• and a FIFO queue Qc to store credit elements.
• There are global counters for dequeued credit elements

for each traffic class, CC[BE] and CC[ABE], which are
zero at system start.

• The credit counter CCcq counts the stored credit in the
credit queue Qc.

• Furthermore, the global variable C stores the available
bandwidth which is estimated in Algorithm 4 and utilized
in Algorithm 3.

3

• Algorithm 3 also uses the global variable
lastDevaluation to record the last devaluation
instant which is initialized with −∞.

• Algorithm 4 uses global variables as helpers for band-
width estimation. SB , ST , and lastPktSize are initial-
ized with zero, backlogged with false, and lastDequeue
and lastRateUpdate with −∞.

2) DSCD Enqueue: The enqueue operation is given by Al-
gorithm 1. First, saved credit is devaluated, which is described
in Section III-B4. Then, a new packet p is dropped if its size
together with the overall credit in the system exceeds the buffer
size Bmax (line 2-3). Otherwise, the packet is enqueued. Then,
the deadline p.d is set for ABE packets (line 5-6). In the
remainder, an element e with the packet’s length p.len and
class p.class is created. It is added to the credit queue Qc
whose credit counter CCcq is incremented. Finally, the packet
is added to its class-specific queue.

Algorithm 1: DSCD enqueue routine
Input : Packet p

1 DevaluateCredit()
2 if p.len+ CCcq + CC[BE] + CC[ABE] > Bmax

then
3 drop(p)
4 else
5 if p.class == ABE then
6 p.d = tnow + Td

7 e = new CreditElement(p.len, p.class)
8 Qc.add(e)
9 CCcq += p.len

10 Q[p.class].add(p)

3) DSCD Dequeue: We first explain the principle of the
dequeue operation before we go into details.

DSCD has class-specific credit counters CC[X], X ∈
{BE,ABE}. When a packet is dequeued, the corresponding
credit counter is decreased by the packet size, but it cannot
fall below zero. If both credit counters are too low to dequeue
a packet, credit elements are removed from the credit queue
and the elements’ credit it added to the corresponding credit
counters. A packet is dequeued as soon as one credit counter
is large enough. If both counters are large enough, ABE traffic
is preferentially served.

We now look at the pseudocode in Algorithm 2 which
dequeues a packet if possible and returns NULL otherwise.
First, the credit counter CC[ABE] is devaluated, which is
described in Algorithm 3. Afterwards, all ABE packets with
violated deadlines are dropped from the ABE queue if they
are followed by more than Tq other packets (line 2-4). The
second part of the condition avoids packet loss when too few
other packets in the packet queue could use the credit of
dropped packets. Then, the return packet is initialized with
NULL and a dequeue attempt is made only if the system
holds at least one packet (line 6). The packet for dequeue
is determined in the subsequent loop which ends with a
successfully dequeued packet (line 7-16). Within the loop, a

Algorithm 2: DSCD dequeue routine
Output: Next packet to be served

1 DevaluateCredit()
2 while Q[ABE].head.d > tnow and Q[ABE].len > Tq

do
3 drop(Q[ABE].removeHead())
4 end

5 p = NULL

6 if !Q[BE].empty() or !Q[ABE].empty() then
7 while p == NULL do
8 if CC[ABE] ≥ Q[ABE].head.len then
9 p = Q[ABE].removeHead()

10 else if CC[BE] ≥ Q[BE].head.len then
11 p = Q[BE].removeHead()
12 else
13 e = Qc.removeHead()
14 CCcq− = e.credit
15 CC[e.class]+ = e.credit
16 end

17 CC[p.class]− = p.len
18 EstimateBandwidth(p)

19 return p

queue with a sufficiently large credit counter is determined
and its first packet is removed (line 8-11). If neither queue
has a sufficiently large credit counter, a credit element is
removed from the credit queue and the credit counter of the
corresponding traffic class is incremented (line 13-15). After
successful packet dequeue, the credit counter of the respective
class is decremented (line 17). Then, the estimate of the link
bandwidth C is updated using Algorithm 4 (line 18). Finally,
either the dequeued packet or a NULL pointer is returned.

4) Credit Devaluation: Credit devaluation is needed for two
reasons.

First, the overall credit in the system, i.e., the credit in the
credit queue Qc and the counters CC[BE] and CC[ABE],
simulates an upper bound of the fill state of an alternative FIFO
queue. That is a necessary invariant to ensure that BE packets
are not served later than in a comparable FIFO queue. If both
packet queues are empty, remaining credit in the system must
vanish with the current link bandwidth C.

Second, credit from dropped ABE packets is stored by
CC[ABE] and used to send other ABE packets early. Without
additional devaluation, credit from dropped ABE packets re-
mains in the system until the end of a congestion period. This
may incentivize applications to send unnecessary ABE data
to provoke packet loss and leverage resulting credit in order
to gain a delay advantage for later ABE traffic. Therefore,
we believe that credit should vanish over time, even in the
presence of congestion. Further, transport protocols benefit-
ing from lower transmission delay may obtain a throughput
advantage via ABE compared to those transmitting over BE,
despite increased packet loss. Credit devaluation limits that
advantage (see Section V-E) and, thereby, leads to better inter-

4

class fairness for transport protocols.
As pointed out, credit devaluation is needed in two ways:

(1) If the system is empty, ABE’s saved credit CC[ABE] is
reduced over time by the transmission rate C. (2) ABE’s saved
credit CC[ABE] decays over time exponentially with rate λ.
This pursues the previously discussed objectives.

Algorithm 3: DevaluateCredit

1 ∆ = tnow − lastDevaluation
2 lastDevaluation = tnow

3 if Q[BE].empty() and Q[ABE].empty() then
4 while !Qc.empty() do
5 e = Qc.removeHead()
6 CCcq− = e.credit
7 CC[e.class]+ = e.credit

8 CC[ABE] = max(0, CC[ABE]− C ·∆)
9 else

10 CC[ABE] = CC[ABE] · exp(−λ ·∆)

Algorithm 3 performs these operations. First, the passed
time ∆ since the last devaluation is computed and the global
variable lastDevaluation is updated by the current time tnow.
If both queues are empty, the credit queue is emptied and
the credit counters of the corresponding packet queues are
incremented (line 4-7). Then, ABE’s credit counter CC[ABE]
is reduced with the current bandwidth C over time ∆; thereby
the credit counter cannot fall below zero. If at least one queue
is not empty, ABE’s credit counter CC[ABE] is devaluated
exponentially over time ∆ with rate λ (line 10). We call this
mechanism exponential decay.

5) Bandwidth Estimation: Algorithm 3 requires an estimate
C of the link bandwidth to devaluate credit in the presence of
an empty queue. To measure C, an amount of sent bytes is
divided by their transmission time. We capture the transmis-
sion time of a packet from the time it is dequeued until the
next packet is dequeued, provided that there is no idle time
in between. We ensure this by considering only packets that
leave a non-empty queue, i.e., a backlogged queue.

To cope with varying bandwidth, we accumulate both sent
bytes and transmission times by weighted sums SB and ST

and derive an estimate by C = SB

ST
. We utilize the weighted

sum of the moving average UTEMA [21] for that purpose:

SX(t) = S(tlast) · e−µ·(t−tlast) +X (1)
tlast = t. (2)

X is a series of samples at time instants t. SX(t) is the
weighted sum of the sampels at time t. The sum is updated
whenever a new sample is available and tlast indicates the
last update time of the sum. The advantage of UTEMA is that
the contribution of the samples considered in the weighted
sum decreases exponentially over time with rate µ, i.e., newer
samples have a larger impact on the sum than older samples.
We apply this concept to the size of sent packets B and their
mere transmission times T , which yields SB and ST . For
configuration, a memory M is used to set the rate µ = 1

M .

Algorithm 4: EstimateBandwidth
Input : Packet p

1 if backlogged then
2 ∆ = tnow − lastRateUpdate
3 SB = SB · exp(−µ ·∆) + lastPktSize
4 ST = ST · exp(−µ ·∆) + (tnow − lastDequeue)
5 C = SB/ST

6 lastRateUpdate = tnow

7 if Q[ABE].len+Q[BE].len > 0 then
8 backlogged = true
9 else

10 backlogged = false

11 lastDequeue = tnow
12 lastPktSize = p.len

Algorithm 4 translates this concept into pseudocode for
a rate estimation procedure that is called at the end of
each successful packet dequeue. In the first step of the
algorithm (line 1-6), the estimated rate C is updated if the
last dequeued packet was backlogged. The elapsed time ∆
since the last rate update is computed and used to deval-
uate the weighted sums of bytes and transmission times
(SB , ST) which are also increased by the size of the last
dequeued packet (lastPktSize) and its transmission time
(tnow − lastDequeue). Then, the estimated bandwidth C and
the last rate update time lastRateUpdate are updated. The
variable backlogged is set to true if there are more packets
waiting in some queue, otherwise it is set to false (line 7-10).
Finally, the current dequeue time and the size of the dequeued
packet are recorded by lastDequeue and lastPktSize.

IV. IMPLEMENTATION OF DSCD IN THE LINUX NETWORK
STACK

Traffic schedulers and AQMs are often evaluated using
simulation frameworks such as ns-3 or OMNeT++.

Although simulation frameworks offer a lot of freedom
regarding implementation, they are only an approximation of
reality. Therefore, the trustworthiness of simulation results
for complex protocols, such as TCP, heavily depend on the
validity of the simulation model. For this reason, we decided
to implement DSCD in the Linux network stack as proof-
of-concept implementation and perform experiments with ex-
isting protocol implementations, in particular up-to-date TCP
variants. Moreover, this implementation demonstrates the prac-
tical feasibility of DSCD.

We first introduce some background information on queuing
disciplines in the Linux kernel. Afterwards, we present an
efficient approximation of an exponential decay function for
the Linux kernel. Then we explain the implementation of
the exponential decay for the stored ABE credit and the
rate estimation as these implementation aspects are most
challenging. The overall code for DSCD on Linux is available
at Github1.

1https://github.com/uni-tue-kn/dscd-linux-qdisc

5

A. Use of Queuing Disciplines in the Linux Kernel

Queuing disciplines, also called QDiscs, are part of the
Linux network stack and are located in the kernel space. They
perform tasks such as traffic shaping, packet classification,
or packet dropping. A self-implemented QDisc may perform
other, almost arbitrary operations on packets. QDiscs are
implemented in the C programming language.

User space

Local process

Kernel space

Transport layer Routing

Ingress QDisc Routing/Bridging Egress QDisc

Network device

Fig. 2. Packet handling in the Linux network stack.

Figure 2 illustrates the simplified packet handling in the
Linux network stack. Incoming packets from the network card
are passed to the Linux kernel. Initially, packets are handed
to an ingress QDisc. Within an ingress QDisc, packets can
be filtered or rate-limited. Afterwards, a routing or bridging
decision is taken. If the packet is destined for the host itself,
the packet is passed to the transport layer and further to the
application process in the user space. Otherwise, the packet is
passed to the egress QDisc of the outgoing interface. DSCD
is completely implemented as egress QDisc. Both ingress and
egress QDiscs provide a standardized interface to the Linux
kernel. It includes functions for packet enqueue and dequeue
which correspond to the algorithms presented in Section III.

QDiscs also provide the possibility for chaining. This means
that multiple QDiscs are executed one after another. Chaining
is used to separate functionality between different QDiscs, e.g.,
rate-limiting and classification. QDiscs leveraging chaining
are called classful and are organized in a tree structure. The
Kernel enqueues the packet in the so-called root QDisc. The
root QDisc then enqueues the packet into one of its child
QDiscs which may enqueue the packet in one of its own child
QDiscs. When a packet should be dequeued, the Kernel calls
the dequeue routine at the root QDisc which in turn calls the
dequeue routine of its child QDiscs.

We leverage the functionality of classful QDiscs within
our testbed to combine rate-limiting (with the classful QDisc
tbf) and our DSCD QDisc. The use of tbf facilitates the
configuration of a controlled and variable bottleneck capacity
as described in Section V-A1.

B. Efficient Approximation of the Exponential Function

The algorithms presented in Section III require the computa-
tion of an exponential function for credit devaluation and rate

estimation. However, the exponential function is not available
in the kernel and only integer arithmetic can be used2. There-
fore, we present an approximation for the multiplication of an
integer n with exp(x) that can be efficiently implemented in
the Linux kernel. The exponential function can be rewritten
as

exp(−x) = 2−x/ln(2). (3)

We first propose a piecewise linear function as floating point
approximation of 2−x and then we implement n · 2−x with
integer arithmetic. Finally, we consider the application of the
approximation to exponential decay and bandwidth estimation.

1) Floating Point Approximation of 2−x for Positive Argu-
ments: To approximate the power function p(x) = 2−x, we
use the following piecewise linear function for x ≥ 0 which
uses interpolation of integer-based sampling points only:

f(x) =
⌊x⌋ − x+ 2

2⌊x⌋+1
. (4)

We improve the error for small values of x by another
approximation

g(x) = 1− ln(2) · x (5)

which is based on the derivative of 2−x at x = 0. Both approx-
imations are illustrated in Figure 3(a) and the corresponding
error functions in Figure 3(b). We combine them to minimize
the error by

h(x) =

{
g(x) 0 ≤ x ≤ z

f(x) z < x
(6)

with z ≈ 0.4443 being the abscissa of the intersection point
of both error functions.

0.00

0.25

0.50

0.75

1.00

0 z 1 2 3
x

F
un

ct
io

n
va

lu
e

f(x) g(x) p(x)

(a) Approximation of the power function p(x) = 2−x by the piecewise
linear function f(x) and the derivative-based linear function g(x).

0.01

1.00

2.00

4.00

8.00

0 0.25 z 0.5 0.75 1
x

E
rr

or
 (

%
)

ef(x) eg(x)

(b) Error functions ef (x) = f(x) − 2−x for the piecewise linear approxi-
mation and eg = g(x)− 2−x for the derivative-based linear approximation.
Fig. 3. Approximation options for the power function p(x) = 2−x. We
combine them in h(x) to minimize the error.

2https://www.kernel.org/doc/html/v5.0/process/howto.html

6

2) Implementation of n · 2−x with Integer Arithmetic: The
argument for the power function is a fractional number x. As
the Linux kernel supports only integer arithmetic, we represent
the argument by a scaled number y = x · 2s; we denote s the
scaling exponent.

We propose the function a(n, y, s) = n·2(−y/2s) to multiply
an integer n with a power function value where n, y, and s are
non-negative integers. We implement a(n, y, s) using function
h with argument y/2s and utilize the approximations

ln(2) ≈ 212

5909
(7)

z ≈ 212

9219
. (8)

This results in

a(n, y, s) =


n−

y · n
5909 · 2s−12

y · 9219 ≤ 2s+12

n · (y
2s + 2)− n·y

2s

2(
y
2s +1)

2s+12 < y · 9219
. (9)

Here, divisions imply integer divisions. Therefore, we can
substitute ⌊x⌋ in h(x) by y

2s in the formula. We first evaluate
numerator and denominator of any fraction prior to division
to prevent unnecessary loss of accuracy. For efficiency, every
division by 2k is performed as a bit shift by k bits to the right.
Moreover, intermediate results may be stored and reused.

The computation of n ·2−x is achieved by calling a(n, y, s)
with the arguments n, y = x · 2s, and s. For the computation
of n · exp(−x) Equations (3) and (7) need to be taken into
account so that a(n, y, s) is to be called with arguments n,
y = x · 5909 · 2s−12, and s.

If a floating point number m is to be multiplied with an
exponential value, one can scale m to n = m · 2(sm) with
a scaling exponent sm before applying it to a(n, y, s). The
returned number is the result scaled with 2(sm).

3) Application to Exponential Decay and Bandwidth Esti-
mation: We apply a(n, y, s) to implement line 10 in Algo-
rithm 3 (DevaluateCredit) and line 3-4 in Algorithm 4 (Esti-
mateBandwidth). For DevaluateCredit, the rate λ = ln(2)/th
is configured via the half-life time th. Both ∆ and th are
counted in ns. The parameter y = ∆/th is additionally scaled
with 220, i.e., s = 20, to gain precision for small values of
∆. Credits are scaled with 210 to limit loss of accuracy for
small integers, i.e., sm = 10. For EstimateBandwidth, the rate
µ = 1/M is configured via the memory M . Both ∆ and M
are counted in ns. The parameter y = µ · ∆/ ln(2) is again
scaled with 220, i.e., s = 20.

In the following, we derive an upper bound for the relative
error in practise. The transmission time for packets with 1490
bytes is 1.2 ms with 10 Mbit/s and 12 µs for 1 Gbit/s. The
algorithms are mostly called in these intervals. The half-life
time for exponential decay of th = 100 ms and a memory for
bandwidth estimation of M = 50 ms correspond to rates of
λ = ln(2)

th
= 6.9

s and µ = 1
M = 20

s . Therefore, the exponential
function is called under relevant conditions with values smaller
than 1.2 ms · 20s = 0.024 and the approximation h(x) is called
with values smaller than 0.024

ln(2) = 0.034. The relative error
by the approximation for such values is about 0.029% (see

Figure 3(b)), i.e., very low. For higher link speeds, e.g., 10
Gbit/s or 100 Gbit/s, the relative error further decreases.

C. Performance of Linux QDisc Forwarding
Modern NICs support multiple transmit (TX) and receive

(RX) queues to facilitate highspeed packet processing. Pack-
ets are distributed to different queues such that they can
be processed by separate CPU cores without interference,
e.g., caused by lock mechanisms. This mechanism is called
Receive-Side Scaling (RSS). Packets are assigned to a queue
using a hash function, e.g., 4-tuple hash over IP addresses
and TCP ports3. In the following, we investigate the general
performance for traffic forwarding with Linux QDiscs. We
deploy the pfifo QDisc in a similar testbed as presented in
Section V-A1. The bottleneck link has a capacity of 100
Gbit/s. We vary the number of available CPU cores and TX
queues4 and establish 32 TCP flows between the senders and
the receiver. Table II shows the L2 throughput, i.e., Ethernet
throughput, on the bottleneck.

TABLE II

#CPU cores #TX queues L2 throughput (Gbit/s)

1 1 25.86

2 1 34.49
2 48.45

4
1 38.05
2 62.73
4 92.84

8

1 40.29
2 68.42
4 96.72
8 97.07

With a single CPU core (and a single TX queue), only
25.86 Gbit/s can be achieved on L2. The throughput with a
single TX queue can be increased by increasing the number of
CPU cores. However, the throughput does not linearly increase
with the number of CPU cores and converges at 40.29 Gbit/s
for 8 CPU cores. This is caused by communication overhead
between the CPU cores as the TX queue can only be accessed
by a single CPU core at a time. The throughput increases
with an increasing number of TX queues and converges at
97.07 Gbit/s for 8 CPU cores with 8 TX queues. A saturation
below 100 Gbit/s is reasonable as the L2 throughput does not
include preamble and inter-frame gap. The experiment shows
that forwarding with 100 Gbit/s requires multiple CPU cores
and TX queues on Linux systems. Therefore, we use 8 CPU
cores and 8 TX queues when performing experiments at 100
Gbit/s.

As the assignment of packets to TX queues is based on
a hash function, packets of the same flow are placed in the
same TX queue. If only a subset of the TX queues are used
by chance, 100 Gb/s may not be achieved. However, this is
unlikely in a 100 Gb/s environment where the number of flows
is high.

3https://www.kernel.org/doc/Documentation/networking/scaling.txt
4The maximum number of TX queues is limited by the number of available

CPU cores.

7

D. Efficiency of the DSCD Implementation

Now, we assess the efficiency of the DSCD implementation.
At first sight, the DSCD algorithm has some complexity, but
the implementation is efficient. We demonstrate that by the
following experiments.

We deploy DSCD in a similar testbed5 as presented in
Section V-A1. The bottleneck link has a capacity of 100 Gbit/s.
The delay threshold is set to Td = 10 ms and the half-life time
th is set to th = 100 ms. We establish 32 TCP flows between
them. Every 2nd TCP flow is labeled as ABE. We measure
the overall TCP goodput and average CPU load of DSCD and
compare it to existing Linux QDiscs6 such as FQ-CoDel, FQ-
PIE, Stochastic Fair Queuing (SFQ), and pfifo. Table III shows
the results.

TABLE III
TCP GOODPUT AND CPU LOAD OF VARIOUS LINUX QDISCS.

QDisc TCP goodput (Gbit/s) CPU load (%)

DSCD 89.08 36.27
FQ-CoDel 89.02 38.99

FQ-PIE 89.00 44.21
SFQ 89.03 38.72
pfifo 89.06 35.41

All considered QDiscs achieve approximately the same
goodput of ∼ 89 Gbit/s. pfifo and DSCD have the lowest CPU
load with 35.41% and 36.27% and FQ-PIE the highest with
44.21%. The results show that the DSCD implementation in
the Linux kernel is efficient and comparable to other QDiscs.

V. PERFORMANCE EVALUATION

We first explain our performance evaluation methodology.
Then we validate the bandwidth estimation algorithm which
is part of DSCD. Afterwards, we study DSCD scheduling for
non-adaptive traffic, periodic traffic, and TCP traffic, demon-
strating the impact of configuration parameters and ABE traffic
rates on packet loss and delay. Finally, we investigate inter-
protocol and inter-class fairness for different TCP variants in
connection with ABE.

A. Methodology

We introduce the methodology for the performance study.
We present the testbed, explain experiment organization and
performance metrics, and describe how traffic is generated.

1) Testbed: We leverage a semi-virtualized testbed on a
host system with 128 GB RAM. We work with KVM-based
virtual machines (VMs) that are assigned 4 GB RAM and two
cores with 3.2 GHz from an Intel(R) Xeon(R) Gold 6134.
The VMs run with Linux kernel 5.10 and have dedicated
10 Gbit/s network cards. Thus, if not mentioned differently,
links between VMs have a capacity of exactly 10 Gbit/s. No
overbooking is performed on the VM hosts, the NICs are
passed through to the VMs using SR-IOV and the CPUs
are pinned to physical cores to minimize the influence of
virtualization on the experimental results.

5The bottleneck VM has 8 cores in this experiment.
6We use multi-queuing (8 TX queues) to improve performance.

The logical structure of the testbed is illustrated in Figure 4.
Up to five VMs send traffic to a bottleneck VM via dedicated
10 Gbit/s links. The bottleneck VM is connected to a so-
called RTT VM via a throttled link which has a capacity of
C = 1 Gbit/s in most experiments. This is done to perform
experiments with software generated traffic (see Section V-A3)
and to study DSCDs behavior in a controlled environment.
However, as shown in Section IV-D, DSCD supports much
higher bandwidths. The rate limitation is achieved with the
Linux queuing discipline tbf [22] using a rate of 1 Gbit/s and
an tbf bucket size of 10 maximum transfer units (MTUs)7.
This represents the bottleneck of the path and possibly causes
congestion. DSCD is deployed at the bottleneck node with a
buffer size of Bmax = C ·25 ms = 3.125 MB. Thus, packets
are queued by DSCD and sent whenever tbf allows. Further
default DSCD parameters are a delay threshold of Td = 10
ms, a half-life time of th = 100 ms, and a queue threshold of
Tq = 1.

The RTT VM delays packets according to a configured RTT.
The Linux queuing discipline Netem [23] is utilized to delay
the traffic by RTT time for which the default value is RTT =
100 ms.

Table IV summarizes the default configuration for the
experiments. Rate limitation by tbf, DSCD scheduling, and
delay addition are applied only in one direction.

TABLE IV
DEFAULT CONFIGURATION OF TESTBED AND DSCD ALGORITHM.

Parameter C RTT Bmax Td th Tq

Value 1 Gbit/s 100 ms 25 ms 10 ms 100 ms 1

2) Performance Metrics and Experiment Organization: The
performance metrics in the experiments are packet queuing
delay and packet loss on the bottleneck node and end-to-end
goodput of TCP flows.

Every experiment, i.e., a set of studied parameters, is
executed 30 times and runs for 45 s. Data from the first 15 s
of each run are discarded to avoid the impact of a potential
transient phase. Data from the last 2 s are removed as not all
streams may be terminated simultaneously. For the remaining
28 s we calculate performance metrics. We average them over
the 30 runs and calculate 95% confidence intervals. However,
we omit them in the figures for the sake of readability as they
are very small.

3) Traffic Generation: In the experiments, three different
traffic types are utilized. We describe their generation in the
following.

a) Non-adaptive traffic with bursts: To investigate basic
effects of DSCD scheduling without interactions of transport
protocols such as TCP, we apply non-adaptive traffic with
bursts. Poisson traffic is a first candidate but does not cause
substantial queuing at link speeds of 1 Gbit/s. Therefore,
we generate packets with LogNormal-distributed packet inter-
arrival times and send them over UDP.

7We set the bucket size to a low value to avoid substantial impact on DSCD
queuing. We validated that a bandwidth of 1 Gb/s is still achieved with this
setting.

8

VM

DSCD

TBF

VMVMVMVMVM
VM

Netem

VM

5x 10 Gbit/s
1 Gbit/s 10 Gbit/s

Variable RTT

Sender Bottleneck ReceiverRTT

Fig. 4. The performance evaluation is carried out in a semi-virtualiezd testbed. It consists of multiple virtual machines (VMs) on a single server. The VMs
are assigned dedicated 10 Gbit/s network cards. Up to five VMs send traffic to a receiver. The path has a bottleneck of 1 Gbit/s and a configurable RTT that
are imposed by a bottleneck node and an RTT node. DSCD is deployed at the bottleneck node.

We derive mean and standard deviation of the random
variable A, which denotes the inter-arrival time, from the fol-
lowing desired properties. Let C be the capacity of the link and
ρ its target utilization. Given a fixed packet size of B = 1490
bytes including all headers (20 bytes for IP, 8 bytes for UDP,
14 bytes for Ethernet), we can compute the number of packets
N within a 10 ms interval by N = ρ ·C · 10 ms/B. Thus, the
expected packet inter-arrival time is E[A] = 10 ms/N . We
set the standard deviation σ[A] such that the standard deviation
of N inter-arrival times is 5 ms. Thus, the standard deviation
of a single inter-arrival time is σ[A] = 5 ms/

√
N . This traffic

is sufficiently bursty. We generate it on a single machine using
40 threads that send packets in a round-robin manner.

To visualize the effect of the resulting arrival process, we
experimentally count the number of arrived packets within a 10
ms interval. Figure 5 shows the cumulative distribution func-
tion (CDF) of that number for a relative load ρ ∈ {0.95, 1.2}
on a link with a capacity of 1 Gb/s. We observe that the number
of packets arrived within a 10 ms interval vary substantially
around their means (dashed lines). Moreover, there are many
10 ms intervals with clearly less and more traffic arrived
than what could be sent within that time (solid line). As
a consequence, the generated traffic is bursty and leads to
substantial packet queuing. The offered load ρ = 0.95 models
moderate overload and ρ = 1.2 models severe overload. The
discussed arrival processes are utilized in the experiments of
Section V-C1 and Section V-C2.

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500

Number of packets per interval

C
D

F

Mean for ρ = 0.95
Mean for ρ = 1.2
Mean for ρ = 1

Fig. 5. Cumulative distribution function (CDF) of the number of packets
arrived within a 10 ms interval; the LogNormal-distributed inter-arrival times
A are set for a relative load of ρ ∈ {0.95, 1.2} on a link with a capacity
of C = 1 Gbit/s; the vertical lines correspond to mean rates and the link
bandwidth.

b) Constant bit-rate traffic UDP traffic: Realtime traffic
sent over UDP can be often modelled as periodic constant bit-
rate (CBR) traffic. It is a typical candidate to benefit from the
ABE traffic class. We leverage iperf3.9 [24] for the generation
of CBR traffic and send it over UDP. The packet size is

B = 1490 bytes including all headers, and constant inter-
arrival times are set to achieve a desired traffic rate.

c) Elastic TCP traffic: Most traffic on the Internet is
transmitted over TCP which adapts its transmission rate to
the congestion conditions in the network in order to avoid
excessive packet loss. It is also called elastic traffic as it utilizes
the available bandwidth. Various TCP versions exist and have
different properties. Some react primarily to packet loss, e.g.,
TCP Cubic, others react to increased RTT, e.g., TCP BBR.
We leverage iperf3.9 [24] for the generation of TCP traffic. We
utilize both TCP Cubic and TCP BBR by choosing appropriate
Linux implementations in the VMs.

B. Validation of the Bandwidth Estimation Algorithm

In Section III-B5 we presented a new bandwidth estimation
algorithm. For this study, we set its memory to M = 50
ms. We validate the method with the following experiment.
We send non-adaptive traffic with bursts as described in
Section V-A3 with an load of ρ = 0.5 on a link with 1 Gbit/s.
The link bandwidth is set by tbf using a burst size of 10 MTUs
like in all other experiments. After 5 seconds, the bottleneck
decreases to 250 Mbit/s and changes back to 1 Gbit/s after 7
seconds.

0

250

500

750

1000

0 1 2 3 4 5 6 7 8 9
Time (s)

B
an

dw
id

th
 (

M
bi

t/s
)

Configured bandwidth
Estimated bandwidth

Fig. 6. Bandwidth estimation on a link where tbf-controlled bandwidth starts
with 1 Gbit/s, it is 250 Mbit/s after 5 s, and changes back to 1 Gbit/s after 7
s. Non-adaptive traffic with bursts is sent at a rate of 500 Mbit/s.

Figure 6 shows that the estimated bottleneck matches the
configured bandwidth very closely. The challenge is the adap-
tation at 7 s to a larger rate as the utilization is then only
50%. Then, backlogged packets do not occur often, but they
are frequent enough as the algorithm leverages every single
backlogged packet to update its estimate. Thus, the estimation
method is very sensitive in the sense that it recognizes the
correct rate even under moderate load. The algorithm works
equally well with TCP traffic (32 flows) which is shown in

9

Figure 7(a) and Figure 7(b) for a link with 10 Gbit/s and 100
Gbit/s capacity. Again, the bottleneck changes to 25% of its
original capacity after 2 seconds, and changes back after 4
seconds.

0.0

2.5

5.0

7.5

10.0

0 1 2 3 4 5 6 7
Time (s)

B
an

dw
id

th
 (

G
bi

t/s
)

Configured bandwidth
Estimated bandwidth

(a) Link bandwidth 10 Gbit/s.

0

25

50

75

100

0 1 2 3 4 5 6 7
Time (s)

B
an

dw
id

th
 (

G
bi

t/s
)

Configured bandwidth
Estimated bandwidth

(b) Link bandwidth 100 Gbit/s.
Fig. 7. Bandwidth estimation with 32 TCP flows; the link bandwidth is
throttled to 2.5 (25) Gbit/s between 2 s and 4 s.

The bandwidth estimation algorithm works equally well
with 8 and 16 TCP flows8 as shown in Figure 8(a) and
Figure 8(b). With a lower number than 8 TCP flows, there is

0

25

50

75

100

0 1 2 3 4 5 6 7
Time (s)

B
an

dw
id

th
 (

G
bi

t/s
)

Configured bandwidth
Estimated bandwidth

(a) 8 TCP flows.

0

25

50

75

100

0 1 2 3 4 5 6 7
Time (s)

B
an

dw
id

th
 (

G
bi

t/s
)

Configured bandwidth
Estimated bandwidth

(b) 16 TCP flows.
Fig. 8. Bandwidth estimation with 8 and 16 TCP flows; the link bandwidth
is throttled to 25 Gbit/s between 2 s and 4 s.

not sufficient congestion to trigger the bandwidth estimation
algorithm. However, this is not a problem for the follow-
ing reasons. First, less than 8 TCP flows in a 100 Gbit/s
environment is rather unlikely. Second, in the absence of
congestion, DSCD does not require the estimated bandwidth
C. The estimated bandwidth is only used for credit devaluation
after a congestion period.

The experiments show that the bandwidth estimation algo-
rithm precisely measures the available bandwidth with the
same parameterization (M = 50 ms) for a wide range of
bottleneck speeds.

C. Performance of DSCD with Non-Adaptive Traffic with
Bursts

We study packet delay and loss for non-adaptive traffic with
bursts when being carried over BE and ABE. We first study
the impact of DSCD parameters Td, th and then the impact
of ABE traffic rate at different link loads ρ.

1) Impact of DSCD’s Configuration Parameters Td and th:
DSCD is configured with two parameters: the delay threshold
Td for ABE traffic and the half-life time th for credit devalua-
tion. We examine their impact with the following experiment.
We generate non-adaptive traffic with bursts as explained in
Section V-A3 with an offered load of ρ ∈ {0.95, 1.2}. We
randomly label 90% of the traffic as BE and 10% as ABE.

8As long as all TX queues are used.

We experiment with different delay thresholds Td and half-
life times th. Other parameters are set to the default values in
Table IV. We study the experienced queuing delay and packet
loss at the bottleneck node separately for ABE and BE traffic.
Figure 9(a) and Figure 9(b) illustrate the results.

ρ = 0.95 ρ = 1.2
Td = 5 ms Td = 10 ms Td = 5 ms Td = 10 ms

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00
0

5

10

15

20

Half−life time th (s)

Q
ue

ui
ng

 d
el

ay
 (

m
s)

ABE BE

(a) Queuing delay.
ρ = 0.95 ρ = 1.2

Td = 5 ms Td = 10 ms Td = 5 ms Td = 10 ms

0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00 0.01 0.10 1.00 10.00
0

4

8

12

16

20

Half−life time th (s)

P
ac

ke
t l

os
s

(%
)

ABE BE

(b) Packet loss.
Fig. 9. Queuing delay and packet loss of BE and ABE traffic for non-adaptive
traffic with bursts. The relative overall load ρ, the delay threshold Td, and
the half-life time th are varying parameters; other parameters are set as in
Table IV.

We first analyze the delay. Figure 9(a) shows that both BE
and ABE traffic is only little delayed with moderate overload
(ρ = 0.95), but ABE traffic experiences less delay than BE
traffic. A lower delay threshold Td reduces the delay for ABE
traffic. For severe overload (ρ = 1.2), BE traffic is strongly
delayed while ABE traffic sees similarly low delays as for
moderate overload. Larger half-life times slightly reduce the
delay for ABE traffic.

Now, we discuss the packet loss. Figure 9(b) shows that in
the presence of moderate overload hardly any BE packets are
lost while the packet loss probability for ABE traffic is 2%–
4%. The lower the delay threshold Td, the higher the packet
loss. The additional packet loss of ABE is caused by the traffic
model. With an offered load of ρ = 0.95 the traffic model
results in either no congestion (empty queue) or congestion
induced by bursts. In the case of no congestion, the stored
ABE credit is devaluated with the link rate R. As a result,
with ρ = 0.95 it is likely that ABE traffic is not able to "save"
credit between bursts, i.e., each burst arrives at an empty ABE
credit counter.

In case of severe overload, 1
6 of the traffic cannot be carried

due to missing capacity. Therefore, both BE and ABE traffic
experience around 17% packet loss at packet enqueue. ABE
traffic faces 1%–4% more packet loss than BE traffic, which
is mostly due to exceeded deadlines. Larger half-life times
slightly reduce the packet loss for ABE traffic. A half-life
time of th = 100 ms leads to clearly less packet loss than
th = 10 ms for severe overload. Longer half-life times lead
only to minor improvements. Therefore, we recommend to set
the half-life time to th = 100 ms. This will be confirmed in
Section V-E for other reasons.

10

2) Impact of ABE Traffic Rate: DSCD turns dropped ABE
packets into a potential delay advantage for subsequent ABE
packets. If no such packets arrive in time, packet drops cannot
be leveraged by the ABE traffic class. This may happen in the
presence of too little ABE traffic. Therefore, we study the
impact of ABE traffic rate on loss and delay.

The experiments are designed similarly as those in Sec-
tion V-C1. Non-adaptive traffic with bursts is used with the
standard configuration of Table IV. We study again an offered
load of ρ ∈ {0.95, 1.2} and test different ABE traffic rates by
varying the fraction of ABE traffic.

ρ = 0.95 ρ = 1.2

0 0.1 1 10 50 90 99 99.9 100 0 0.1 1 10 50 90 99 99.9 100
0

5

10

15

20

ABE fraction (%)

Q
ue

ui
ng

 d
el

ay
 (

m
s)

ABE BE

(a) Queuing delay
ρ = 0.95 ρ = 1.2

0 0.1 1 10 50 90 99 99.9 100 0 0.1 1 10 50 90 99 99.9 100
0

5

10

15

20

25

ABE fraction (%)

P
ac

ke
t l

os
s

(%
)

ABE BE

(b) Packet loss
Fig. 10. Queuing delay and packet loss of BE and ABE traffic for non-
adaptive traffic with bursts. The relative overall load ρ and the fraction of
ABE traffic are varying parameters; other parameters are set as in Table IV.

We first discuss the packet loss in Figure 10(b). In the
absence of ABE traffic, there is no ABE packet loss and only
the little BE packet loss is visible. A very small fraction of
ABE traffic (0.1% ≈ 1 Mbit/s) results in high packet loss
of almost 7% and 27% for moderate and severe overload.
When the ABE traffic rate is low, packet inter-arrival times
are large. When an ABE packet exceeds the delay threshold
Td and the queue threshold Tq , it is dropped but its credit
is saved. However, the credit is devaluated over time, either
exponentially or linearly. Therefore, saved credit is likely to
be vanished by the arrival of the next packet due to the low
ABE traffic rate. Then, the next packet may also experience
normal queueing delay, exceed the delay threshold, and be lost
again.

For non-responsive bursty traffic, the packet loss is very
high at a rate of 1 Mbit/s (ABE fraction ≈ 0.1%) in spite of
the queue threshold Tq = 1. In Section V-D2 we will show
that this setting is able to prevent excessive packet loss for
periodic traffic of that rate. Luckily, realtime traffic is usually
periodic. Further, ABE packet loss decreases with a larger
fraction of ABE traffic as subsequent packets arrive earlier
and can leverage stored credit more efficiently. An ABE traffic
rate of 10 Mbit/s (ABE fraction ≈ 1%) suffices to achieve
significantly lower packet loss.

The packet loss for BE traffic slightly decreases with a larger
ABE fraction. With a larger ABE fraction, more ABE traffic
is dropped, which reduces load from the system. BE traffic

benefits from that with slightly reduced packet loss. In the
absence of BE traffic, there is no BE packet loss and only the
ABE packet loss is visible.

Figure 10(a) shows that queuing delay for ABE increases
with larger ABE fraction. ABE packets can only overtake
BE packets. Therefore, an increasing amount of ABE leads
to more non-skippable packets and hence to longer queuing
delay. Nevertheless, the delay is below the delay threshold Td.
At the same time, BE queuing delay decreases for increasing
ABE fraction. This is due to reduced traffic load in the system
as more traffic is dropped with larger ABE fraction.

The experiments show that even large fractions of ABE
traffic have no negative impact on the performane of BE traffic,
which was a design goal for ABE. This is unlike Expedited
Forwarding (EF) of the differentiated services framework
(DiffServ) [8] where BE traffic suffers if the fraction of EF
traffic is too large.

D. Performance of DSCD with Periodic Traffic and TCP
Traffic

Now we assume that ABE traffic is periodic UDP traffic and
BE traffic consists of TCP Cubic flows. This is a more realistic
assumption as many realtime applications send periodic traffic.
We first study packet delay and loss for different delay
thresholds Td, ABE traffic rates, and various numbers of TCP
flows. Then we focus on small ABE traffic rates and show
that the queue threshold Tq = 1 is the right means to prevent
excessive packet loss.

1) Coexistence of Realtime and Elastic Traffic: We evaluate
different sending rates RABE for ABE traffic and different
numbers of TCP flows. We vary the delay threshold Td and
use the default settings from Table IV for other parameters.

RABE = 300 kbit s RABE = 1 Mbit s RABE = 3 Mbit s RABE = 10 Mbit s RABE = 30 Mbit s RABE = 100 Mbit s

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
0.1

1

2

4

8

16

#Background TCP flows

Q
ue

ui
ng

 d
el

ay
 (

m
s)

Td = 2 ms Td = 5 ms Td = 10 ms

(a) Queuing delay
RABE = 300 kbit s RABE = 1 Mbit s RABE = 3 Mbit s RABE = 10 Mbit s RABE = 30 Mbit s RABE = 100 Mbit s

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64
0.00

0.25

0.50

0.75

1.00

1.25

1.50

#Background TCP flows

P
ac

ke
t l

os
s

(%
)

Td = 2 ms Td = 5 ms Td = 10 ms

(b) Packet loss
Fig. 11. Queuing delay and packet loss of periodic ABE traffic; ABE traffic
rate RABE , number of TCP flows carried over BE, and delay threshold Td

are varying parameters; other parameters are set as in Table IV.

We first consider the ABE packet loss illustrated in Fig-
ure 11(b). For RABE = 300 kbit/s ABE packet loss is
very low, for RABE = 1 Mbit/s it is large but almost
independent of the delay threshold Td, and for larger ABE
traffic rates the packet loss depends on the delay threshold

11

Td. This can be explained as follows. For a very low ABE
traffic rate RABE = 300 kbit/s, the inter-arrival time of
periodic ABE packets is 1490bytes·8 bits

300 kbit/s = 39.7 ms. Thus, ABE
packets cannot meet previous ABE packets in the queue so
that the queue threshold Tq = 1 saves them from being
dropped due to a passed deadline. Hence, dropping is turned
off for ABE traffic and DSCD behaves like a FIFO queue.
This is different for LogNormal-distributed inter-arrival times
where Tq = 1 cannot prevent excessive packet loss that
effectively (see Section V-C2). For an ABE traffic rate of
RABE = 1 Mbit/s, the inter-arrival time of ABE packets is
1490bytes·8 bits

1 Mbit/s = 11.92 ms. Thus, if an ABE packet arrives
and meets another ABE packet, that packet will be dropped
as it is 11.92 ms old and has exceeded any of the considered
delay thresholds Td ∈ {2, 5, 10} ms. For ABE traffic rates
of RABE = 3 Mbit/s or larger, the inter-arrival time of the
packets is 1490bytes·8 bits

3 Mbit/s = 3.58 ms or smaller. This is short
enough so that delay thresholds Td have an impact on packet
loss and lead to different system behaviour. The number of
TCP flows influences the congestion level which has also an
impact on the packet loss. We observe packet loss values
between 0.5% and 1.4% depending on the specific setting.
While the number of TCP flows has a non-monotonic impact
on packet loss, smaller delay thresholds lead to more packet
loss.

The behaviour of the queuing delay in Figure 11(a) is
roughly inverse to the packet loss. For RABE = 300 kbit/s,
the queuing delay is about 16 ms which is about the same
as for BE traffic. It is lower for RABE = 1 Mbit/s, but it is
the same for the different delay thresholds Td. And for larger
ABE traffic rates, the queuing delay clearly decreases with the
delay threshold. The number of TCP flows has only a minor
impact on the queuing delay of ABE traffic.

2) Impact of the Queue Threshold Tq: Algorithm 2 utilizes
a queue threshold Tq to prevent excessive packet loss for low
ABE traffic rates. We show that Tq = 1 is the appropriate
parameter.

We consider various low rates RABE of periodic ABE traffic
and 64 TCP Cubic background flows. We study different half-
life times th, delay thresholds Td, and queue thresholds Tq .
To obtain reliable results for RABE ∈ {100, 300} kbit/s, we
extend the data collection time to 280 s. Figures 12(a) and
12(b) compile results for packet loss and delay.

In Figure 12(b), we observe for a queue threshold of Tq = 0
very high packet loss which is almost the same for any delay
threshold Td. Only for RABE = 1 Mbit/s and Tq = 0 the
packet loss decreases with increasing half-life time th. In
contrast, a queue threshold of Tq ∈ {1, 2} keeps the packet
loss very low for RABE ∈ {100, 300} kbit/s and to moderate
values for RABE = 1 Mbit/s. Thus, Tq ∈ {1, 2} turns off
traffic differentiation in the presence of small ABE traffic
aggregates, which saves them from excessive packet loss. For
ABE traffic rate RABE = 1 Mbit/s, the packet loss for Tq = 1
is larger than the one for Tq = 2.

We now discuss the queuing delay in Figure 12(a). For Tq =
0, queuing delay is low and scales with the delay threshold
Td. However, that is at the expense of excessive packet loss
in case of RABE ∈ {100, 300} kbit/s. For Tq ∈ {1, 2}, the

RABE = 100 kbit s RABE = 300 kbit s RABE = 1 Mbit s

th = 0.01 s th = 0.1 s th = 1 s th = 0.01 s th = 0.1 s th = 1 s th = 0.01 s th = 0.1 s th = 1 s

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0.01

1.00
2.00

4.00

8.00

16.00

Tq

Q
ue

ui
ng

 d
el

ay
 (

m
s)

Td = 2 ms Td = 5 ms Td = 10 ms

(a) Queuing delay
RABE = 100 kbit s RABE = 300 kbit s RABE = 1 Mbit s

th = 0.01 s th = 0.1 s th = 1 s th = 0.01 s th = 0.1 s th = 1 s th = 0.01 s th = 0.1 s th = 1 s

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0.1
1.0
2.0
4.0
8.0

16.0

32.0

64.0

Tq

P
ac

ke
t l

os
s

(%
)

Td = 2 ms Td = 5 ms Td = 10 ms

(b) Packet loss
Fig. 12. Queuing delay and packet loss of periodic ABE traffic in the presence
of 64 TCP flows via BE; delay threshold Td, queue threshold Tq , and half-life
time th are varying parameters; other parameters are set as in Table IV.

queuing delay is as large as the one of BE traffic as service
differentiation is turned off. For RABE = 1 Mbit/s, Tq = 1
leads to clearly lower delay than Tq = 2 which still turns off
service differentiation. Thus, Tq = 1 is the appropriate value
to save small ABE traffic aggregates from excessive packet
loss and enable traffic differentiation for ABE traffic rates of
RABE = 1 Mbit/s or larger.

E. The Need for Exponential Decay

Exponential credit decay over time may increase packet
loss. Nevertheless, it is helpful for several reasons. First,
without exponential decay, a selfish user may send a large
burst of redundant ABE data to accumulate credit for later
use. When then relevant ABE data is transmitted, it can be
sent with low delay thanks to stored credit. Exponential decay
of stored credit largely removes the incentive for this selfish
behavior. Second, the sum of credits in the system is limited
(see Section III), which may lead to packet drop at enqueue.
Therefore, stored, unused credit essentially shortens the queue
and can cause packet loss although the physical queue is not
full. Credit decay frees the system from stored credit over time
and thereby extends the queue capacity towards normal. Third,
adaptive protocols such as TCP may benefit from shorter delay
of the ABE class under some conditions. Then, TCP flows over
ABE may achieve a larger goodput than TCP flows over BE
due to shorter perceived RTTs. As a consequence, ABE traffic
may suppress BE traffic. However, a design goal of ABE is to
avoid that. We show that exponential decay helps to achieve
that goal.

We perform the following experiment. A single TCP Cubic
flow via ABE competes against multiple TCP Cubic flows via
BE. We measure the ABE flow’s relative goodput compared
to the average goodput of the BE flows for different half-life
times th and for different RTTs. Table V shows the results. A
relative goodput above 100% indicates that ABE has an unfair
bandwidth share.

12

TABLE V
GOODPUT OF A SINGLE TCP FLOW CARRIED OVER ABE RELATIVE TO

THE AVERAGE GOODPUT OF MULTIPLE TCP FLOWS CARRIED OVER BE.
CUBIC IS USED AS TCP VARIANT; THE HALF-LIFE TIME th , THE NUMBER

OF BE FLOWS, AND THE RTT ARE PARAMETERS.

RTT #BE flows th
10 ms 100 ms 1 s ∞

10 ms

16 2% 99% 167% 201%
32 2% 129% 198% 226%
64 4% 157% 244% 267%
128 6% 164% 281% 329%

30 ms

16 1% 8% 77% 114%
32 1% 4% 105% 148%
64 2% 5% 115% 187%
128 4% 10% 114% 189%

Without credit decay (th = ∞), the ABE flow takes a
clearly unfair traffic share between 114% and 329%. It is larger
for a RTT of 10 ms than for a RTT of 30 ms, and it increases
with an increasing number of BE flows. For comparison,
th = 1 s causes relative goodputs between 77% and 281%. For
th = 100 ms the relative goodputs are between 99% and 164%
in case of a very low RTT of 10 ms, and between 4% and 10%
for larger RTT. When the half-life time is too short (th = 10
ms), the ABE flow achieves only little goodput (< 6%) as
credit decays so fast that subsequent packets cannot profit from
it sufficiently. Thus, a half-life time of th = 100 ms limits the
unfairness caused by TCP to a moderate degree and leads only
to moderate packet loss for ABE traffic (see Section V-D).
Therefore, th = 100 ms is a preferred configuration value for
the half-life time.

F. Inter-Protocol and Inter-Class Unfairness of TCP Variants

There is a large number of TCP variants which do not nec-
essarily share bandwidth in a fair manner as they implement
different congestion control algorithms. We call this inter-
protocol unfairness. In Section V-E we have already shown
that flows with the same TCP variant can share bandwidth in
an unfair manner when carrying traffic over both ABE and
BE. We call this inter-class unfairness. In the following, we
first quantify the inter-protocol unfairness between TCP Cubic
and TCP BBR. Then we investigate the inter-class unfairness
of both TCP variants separately under various networking
conditions. We use the default parameters of Table IV in all
experiments.

1) Inter-Protocol Unfairness between TCP Cubic and TCP
BBR: Inter-protocol unfairness is a well-known phenomenon
[25], [26]. We illustrate it in the following experiment. An
equal number of TCP Cubic and TCP BBR flows is carried
over a single link and we vary the number of flows and the
RTT. All traffic is carried over BE. We take the relative good-
put of TCP BBR vs. TCP Cubic as a measure of unfairness.
Figure 13 shows the results. For low RTT (10 ms), the goodput
of BBR is about 3 times the goodput of Cubic. The number
of flows has only a secondary impact. For larger RTT (30 ms
and 100 ms), the goodput of BBR is 30–100 times larger than
the one of Cubic. Thus, inter-protocol unfairness of existing
TCP variants can be enormous.

RTT = 10 ms RTT = 30 ms RTT = 100 ms

8 16 32 64 8 16 32 64 8 16 32 64
0.1
3.0

10.0
30.0

100.0
300.0

1000.0
3000.0

10000.0

Number of flows per TCP version

R
el

at
iv

e
go

od
pu

t (
%

)

BBR

Fig. 13. Goodput of TCP BBR flows relative to the goodput of TCP Cubic
flows when being carried over BE; TCP BBR and TCP Cubic have the same
number of flows which is a varying parameter as well as the RTT; other
parameters are set as in Table IV.

2) Inter-Class Unfairness with TCP Cubic: To quantify
inter-class unfairness, we transmit the same number of TCP
Cubic flows via ABE and via BE in the system. Apart from
that, the experiment setup is the same as before 9. Figure 14(a)
shows the relative goodput for TCP Cubic via ABE vs. TCP
Cubic via BE.

RTT = 10 ms RTT = 30 ms RTT = 100 ms

8 16 32 64 8 16 32 64 8 16 32 64
0

50

100

150

TCP flows per traffic class

R
el

at
iv

e
go

od
pu

t (
%

)

th = 0.01 s th = 0.1 s th = 1 s

(a) Cubic vs. Cubic
RTT = 10 ms RTT = 30 ms RTT = 100 ms

8 16 32 64 8 16 32 64 8 16 32 64

100

500

1000

TCP flows per traffic class

R
el

at
iv

e
go

od
pu

t (
%

)

th = 0.01 s th = 0.1 s th = 1 s

(b) BBR vs. BBR
Fig. 14. Goodput of TCP flows via ABE relative to goodput of TCP flows
via BE. The experiment is carried out for TCP Cubic and TCP BBR; BE and
ABE carry the the same number of flows which is a varying parameter as
well as the RTT; other parameters are set as in Table IV.

For an RTT of 10 ms, the relative goodput of ABE vs. BE
is between 100% and 185%. The unfairness increases with
the number of flows in the system and with increasing half-
life time th. It is significantly lower than the inter-protocol
unfairness between TCP Cubic and TCP BBR for the same
RTT. For an RTT of 30 ms, the relative goodput decreases
and is clearly below 100% if the number of competing flows is
low. For large RTT of 100 ms, the relative goodput is generally
below 100%, i.e., TCP senders cannot obtain an unfair traffic
share when transmitting over ABE. This is an interesting result
as inter-class unfairness is a particular issue at short RTTs

9This experiment is slightly different than the similar experiment series in
Section V-D where a single ABE flow competes against multiple BE flows.

13

while inter-protocol unfairness is a particular issue at longer
RTTs (see Section V-F1).

We argue why the inter-class unfairness occurs and why
the behavior depends on the RTT. Cubic adapts its congestion
window based on a cubic function and is mainly influenced
by its experienced packet loss. While the congestion window
growth of Cubic is independent of the RTT, it still relies on
the RTT for timeout calculation. The timeout implicitly affects
a parameter for the congestion window growth function. ABE
flows experience a relatively lower end-to-end delay (RTT +
queuing delay) than BE flows resulting in a higher goodput.
This has also been shown in [27], where a smaller RTT leads to
higher throughput compared to other Cubic flows with higher
RTT. The relative delay advantage vanishes with higher RTTs.

3) Inter-Class Unfairness with TCP BBR: We now look at
the inter-class unfairness with TCP BBR. We conducted sim-
ilar experiments whose results are compiled in Figure 14(b).
For small RTT of 10 ms, the relative goodput for ABE flows is
between 200% and 1400% depending on the number of flows.
The impact of the half-life time th is low. Increasing the RTT
leads to lower relative goodputs for ABE flows between 100%
and 200%. This is a different behaviour than with TCP Cubic.
Thus, in case of a predominant deployment of TCP BBR, ABE
BBR flows could partly suppress BE BBR flows. However, the
problem of BBR suppressing other TCP variants in the current
BE Internet is larger and shows that too aggressive congestion
control algorithms can be problematic.

The reason why BBR benefits so much from ABE, even
at large RTTs, is that its congestion control algorithm does
not react to packet loss, which is unlike TCP Cubic. It rather
reduces its transmission rate when it notices an increase in the
RTT [28]. As, BBR flows via ABE see shorter and more stable
end-to-end RTTs due to less queueing delay, they benefit from
ABE at any RTT and do not suffer too much from experienced
packet loss. The behavior of BBR shows that concepts such
as RTT-fairness and influence of AQMs must be considered
in the design of congestion control algorithms. As ABE is
primarily designed for realtime traffic – and therefore UDP
– ABE may be limited to UDP traffic to prevent ABE BBR
from suppressing other BE BBR flows. However, this will not
work for QUIC-based transport protocols.

VI. SUMMARY AND DISCUSSION

We summarize this work and discuss the findings.

A. Novelties of DSCD

The objectives of DSCD are similar to those of DSD and
DSF but its properties differ in important aspects.

(1) DSCD has only moderate complexity. A Linux kernel
implementation demonstrates its feasibility of 100 Gbit/s links.

(2) DSCD copes with unknown and varying bandwidth
while DSD and DSF require a static link bandwidth C for
deadline computation. DSCD also measures the link band-
width C but needs it only to drain credits in the absence of
congestion, which is a rather uncritical process.

(3) The conception of ABE is problematic for low rates
of ABE traffic. If a packet is dropped due to exceeded delay,

there may be no subsequent packet that could leverage that loss
for an delay advantage when the queue has been flushed by
the next packet arrival. Therefore, ABE traffic aggregates may
experience large packet loss with other scheduling algorithms.
DSCD prevents this by dropping ABE packets only if there
are also other ABE packets in the queue, which essentially
turns off service differentiation at low ABE traffic rates.

(4) With DSCD, stored credit decays exponentially over
time with half-life time th. This avoids that credit can be stored
arbitrarily long during a congestion phase. It avoids incentives
for selfish users to send more traffic than needed.

(5) Existing algorithms spent lots of effort to pursue ap-
proximate fairness for flows sent over BE and ABE. We
intend ABE primarily for realtime traffic and not for bulk
traffic. Therefore, TCP over ABE may obtain a worse service
than TCP over BE. Our objective is even a worse service
for TCP over ABE because TCP over ABE should not be
able to suppress TCP over BE in the same network. DSCD’s
exponential decay for stored credit helps to achieve that goal.

B. Performance

We tested DSCD scheduling for BE and ABE traffic using
non-responsive traffic with bursts, periodic and TCP traffic, as
well as TCP traffic with different variants. We showed that
the delay threshold Td controls the queuing delay for ABE
traffic. We recommend to set it to Td = 10 ms as lower
values lead to larger packet loss. The queue threshold Tq

controls the packet loss and turns of service differentiation
in the presence of low ABE traffic rates that are smaller than
1 Mbit/s. The experimental results show that Tq = 1 is a good
value. The half-life time controls how long credit can be stored
so that packet loss and delay decrease with increasing half-
life time th. If it is too large, then TCP over ABE can obtain
significantly larger goodput than TCP over BE under some
conditions. Setting th = 100 ms leads to moderate packet loss
and only little inter-class unfairness.

Finally, we quantified inter-protocol and inter-class unfair-
ness (see Section V-F) for multiple scenarios. TCP BBR flows
can suppress TCP Cubic flows when being carried over BE,
in particular for long RTTs. TCP Cubic flows via ABE can
suppress TCP Cubic flows via BE, in particular for short RTTs
and the problem vanishes for long RTTs. TCP BBR flows via
ABE can suppress TCP BBR flows via BE, also in particular
for short RTTs. For long RTTs the advantage diminishes but
does not fully disappear. This is mainly the problem of BBR’s
congestion control as it also causes the observed inter-protocol
unfairness.

VII. CONCLUSION

Alternative Best Effort (ABE) is an alternative traffic class
for the Internet. ABE traffic experiences shorter delay than
Best Effort (BE) traffic at the expense of more packet loss. This
must be achieved without delaying and dropping BE traffic
compared to the transmission of the entire traffic with a single
FIFO queue.

In this work, we addressed the fundamental question
whether an ABE service class is technically feasible, how it

14

behaves with up to date transport protocols, and whether it
can be implemented on modern hardware. To that end, we
proposed DSCD as an algorithm for combined scheduling
of BE and ABE traffic. We implemented it in the Linux
network stack and it is fast enough for 100 Gbit/s links. Side
products are an approximation of the exponential function in
the kernel, which is useful for moving average computations,
and a bandwidth estimation method that works well even
at moderate link utilization. We used a virtualized hardware
testbed to study the impact of DSCD on packet loss and delay
for both BE and ABE traffic under various conditions. ABE
traffic faces significantly shorter delay but more packet loss
than BE traffic provided that a critical mass of ABE traffic is
available (≈ 1 Mbit/s). Otherwise we see approximate FIFO
behaviour so that BE and ABE receive a similar service. Under
all conditions, the service for BE traffic is not degraded by
design. We recommended configuration parameters for DSCD
so that packet loss for ABE traffic remains small and that TCP
does not get an unfairly large traffic share when sending over
ABE.

ABE may be useful for Internet service providers to offer
their customers a low-delay traffic class that does not harm
other traffic. It may be attractive for net-neutral service dif-
ferentiation, and it may serve as a bridge towards a low-delay
Internet. In future work, DSCD could be implemented with
network acceleration techniques such as smart NICs or the
Metron platform [29] [30] for higher performance.

ACKNOWLEDGEMENT

The authors acknowledge the funding by the Deutsche
Forschungsgemeinschaft (DFG) under grant ME2727/2-1. The
authors alone are responsible for the content of the paper.

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, no. 11, Nov. 2011.

[2] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Clay-
pool, “The Effects of Packet Loss and Latency on Player Performance
in Unreal Tournament 2003,” in ACM SIGCOMM Workshop on Network
and System Support for Games, 2004.

[3] S. Liu, M. Claypool, A. Kuwahara, J. Scovell, and J. Sherman, “The
Effects of Network Latency on Competitive First-Person Shooter Game
Players,” in International Conference on Quality of Multimedia Experi-
ence (QoMEX), 2021.

[4] A. D. Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano, “A
Network Analysis on Cloud Gaming: Stadia, GeForce Now and PSNow,”
MDPI Network, vol. 1, no. 3, 2021.

[5] X. Zhang, H. Chen, Y. Zhao, Z. Ma, Y. Xu, H. Huang, H. Yin, and
D. O. Wu, “Improving Cloud Gaming Experience through Mobile Edge
Computing,” IEEE Wireless Communications, vol. 26, no. 4, 2019.

[6] A. Wahab, N. Ahmad, M. G. Martini, and J. Schormans, “Subjective
Quality Assessment for Cloud Gaming,” MDPI J, vol. 4, no. 3, 2021.

[7] “ITU-T Recommendation G.107 : The E-Model, a computational model
for use in transmission planning,” ITU, Tech. Rep., 2015.

[8] S. Blake, D. L. Black, M. A. Carlson, E. Davies, Z. Wang, and W. Weiss,
“RFC2475: An Architecture for Differentiated Services,” Dec. 1998.

[9] B. D. et al., “RFC3246: An Expedited Forwarding PHB (Per-Hop-
Behavior),” Mar. 2002.

[10] P. Hurley and J.-Y. Le Boudec, “The Alternative Best-Effort Service,”
https://tools.ietf.org/html/draft-hurley-alternative-best-effort, Jun. 2000.

[11] V. Stocker, G. Smaragdakis, and W. Lehr, “The State of Network
Neutrality Regulation,” ACM SIGCOMM Computer Communication
Review, vol. 50, no. 1, 2020.

[12] P. Hurley, J.-Y. Le Boudec, P. Thiran, and M. Kara, “ABE: Providing
a Low-Delay Service within Best Effort,” IEEE Network Magazine,
vol. 15, no. 3, May 2001.

[13] M. Karsten, D. S. Berger, and J. Schmitt, “Traffic-Driven Implicit
Buffer Management - Delay Differentiation without Traffic Contracts,”
in International Teletraffic Congress (ITC), Sep. 2016.

[14] J. You, M. Welzl, B. Trammell, M. Kuehlewind, and K. Smith, “Latency
Loss Tradeoff PHB Group,” https://tools.ietf.org/html/draft-you-tsvwg-
latency-loss-tradeoff, Mar. 2016.

[15] T. Høiland-Jørgensen, P. McKenney, D. Taht, J. Gettys, and E. Dumazet,
“The Flow Queue CoDel Packet Scheduler and Active Queue Manage-
ment Algorithm,” RFC 8290, 2018.

[16] G. Ramakrishnan, M. Bhasi, V. Saicharan, L. Monis, S. D. Patil,
and M. P. Tahiliani, “FQ-PIE Queue Discipline in the Linux Kernel:
Design, Implementation and Challenges,” in IEEE Conference on Local
Computer Networks (LCN), 2019.

[17] T. Høiland-Jørgensen, D. Täht, and J. Morton, “Piece of CAKE: A
Comprehensive Queue Management Solution for Home Gateways,”
in IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), 2018.

[18] M. Podlesny and S. Gorinsky, “RD Network Services: Differentiation
through Performance Incentives,” in ACM SIGCOMM, Aug. 2008.

[19] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft, “Queues Don’t Matter When You
Can JUMP Them!” in USENIX Syposium on Networked Systems Design
& Implementation (NSDI), 2015.

[20] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I.-J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing Internet
Latency: A Survey of Techniques and Their Merits,” IEEE Communi-
cations Surveys & Tutorials, vol. 18, no. 3, 2016.

[21] M. Menth and F. Hauser, “On Moving Averages, Histograms and Time-
DependentRates for Online Measurement,” in International Conference
on Performance Engineering (ICPE), 2017.

[22] “QDisc: Token Bucket Filter.” [Online]. Available: https://man7.org/
linux/man-pages/man8/tc-tbf.8.html

[23] S. Hemminger, “Network emulation with NetEm,” Linux Conf Au, vol.
844, 2005.

[24] iperf3 team, “iperf3.” [Online]. Available: http://software.es.net/iperf/
[25] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of BBR

Congestion Control,” in IEEE International Conference on Network
Protocols (ICNP), 2017.

[26] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi,
“When to Use and When Not to Use BBR: An Empirical Analysis
and Evaluation Study,” in Internet Measurement Conference, 2019.

[27] T. Kozu, Y. Akiyama, and S. Yamaguchi, “Improving RTT Fairness on
CUBIC TCP,” in International Symposium on Computing and Network-
ing, 2013.

[28] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
no. 5, Sep. 2016.

[29] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,
“Metron: NFV Service Chains at the True Speed of the Underlying
Hardware,” in USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018.

[30] G. P. Katsikas, T. Barbette, D. Kostić, J. G. Q. Maguire, and R. Steinert,
“Metron: High-Performance NFV Service Chaining Even in the Presence
of Blackboxes,” ACM Transactions on Computer Systems, vol. 38, no.
1–2, 2021.

Steffen Lindner is a Ph.D. student at the chair of
communication networks of Prof. Dr. habil. Michael
Menth at the Eberhard Karls University Tuebingen,
Germany. He obtained his master’s degree in 2019
and afterwards, became part of the communication
networks research group. His research interests in-
clude software-defined networking, P4 and conges-
tion management.

15

Gabriel Paradzik is a Ph.D. student at the Eberhard
Karls University Tuebingen, Germany. He started his
Ph.D. in April 2021 at the communication networks
research group. His research interests include con-
gestion management and data center networking.

Michael Menth, (Senior Member, IEEE) is profes-
sor at the Department of Computer Science at the
University of Tuebingen/Germany and chairholder
of Communication Networks since 2010. He studied,
worked, and obtained diploma (1998), PhD (2004),
and habilitation (2010) degrees at the universities
of Austin/Texas, Ulm/Germany, and Wuerzburg/Ger-
many. His special interests are performance analysis
and optimization of communication networks, re-
silience and routing issues, as well as resource and
congestion management. His recent research focus

is on network softwarization, in particular P4-based data plane programming,
Time-Sensitive Networking (TSN), Internet of Things, and Internet protocols.
Dr. Menth contributes to standardization bodies, notably to the IETF.

16

