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Abstract

Automated attacks allow adversaries to exploit vulnerabilities in enterprise IT systems at short notice.
To identify such attacks as well as new cyber security threats, defenders use honeypot systems; these
monitored decoy resources mimic legitimate devices to entice adversaries. The domain of enterprise
IT honeypots has been an active area of development and research, especially in the open-source
community. In this work, we survey open-source honeypots, honeypot frameworks, and tools that
help to develop or discover honeypot deployments. In contrast to existing surveys, our work provides
a detailed discussion of the honeypots’ system architecture, software architecture, and cloud-native
deployment options. In addition, we cover the most recent academic research in honeypot detection
and evasion techniques, and discuss how these advances impact current open-source honeypots. This
work helps the reader to make an educated choice when selecting a honeypot for deployment or further
development.
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1. Introduction

Ransomware, malware, and zero-day exploits are the main cyber threats identified by the Euro-
pean Union Agency for Cybersecurity in its latest cyber security report (European Union Agency for
Cybersecurity, 2022). Moreover, the time to act on zero-day exploits and vulnerabilities is getting ever
shorter: automated scanners are reported to find vulnerable devices within 15 minutes of the vulner-
ability disclosure (Palo Alto Networks, 2022) in the Common Vulnerabilities and Exposures (CVE)
database (NIST, 2023). As a result, it is critical to understand emerging threats and actively monitor
the attack landscape. Honeypots are an established tool for this purpose in enterprise IT.

Honeypots are decoy resources; they appear to be genuine systems but are actually dummies used to
gather threat intelligence. To an attacker, a honeypot behaves like a real service or device, in reality,
however, it is monitored by the defenders. Whether used as an early warning system for zero-day
exploits or to collect malware samples from botnets (Bajpai et al., 2020), honeypots help strengthen
defenses against cyber attacks. For example, they are deployed as an additional layer of intrusion
detection, to support efforts against Distributed Denial-of-Service (DDoS) attacks, to research the
approaches of adversaries, or to understand the workings of new malware. For this reason, the Internet
of Things (IoT) and the Industrial Internet of Things (IIoT) also adopted the use of honeypots (Vetterl
and Clayton, 2019; Franco et al., 2021).

In particular, open-source software contributes to the evolution of honeypots and their adoption
in new domains. Community-driven development with many contributors results in honeypots with
different architectures, capabilities, and features. While compiling this work, we encountered a wide
variety of open-source honeypots; some offer an extensive list of network protocols, others specialize in
a single service, some implement simple, scripted behavior, and others emulate entire systems. We not
only highlight the honeypots’ key features, but also provide an in-depth discussion of the underlying
architecture, software, and deployment of each solution. Since we want to help the reader choose a
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honeypot for development or research, we focus on open-source solutions; these allow for free feature
development and a detailed review of the honeypot’s characteristics. Because of advances in honeypot
detection and evasion techniques, we also cover tools that help with honeypot detection as well as the
latest research in these areas. More precisely, our contribution is twofold:

� We provide an overview of existing honeypot solutions, frameworks, and tools that are either
currently maintained or have unique capabilities. We focus on open-source honeypots and related
results from academic research.

� We highlight challenges in honeypot development as well as deployment, and discuss how they
are (partially) solved by open-source solutions and academic work.

Table 1: Comparison of honeypot surveys based on the reviewed honeypot characteristics. Tick marks in brackets
indicate that characteristics were not considered for all honeypots, or only partially.

Survey Focus
Honeypot
services

Honeypot
architecture

Deployment
options

Logging Detection
Proprietary
solutions

Nawrocki et al. (2016) Attack analysis ( ) - - -

Fan et al. (2017) Taxonomy analysis ( ) - - ( )

Dalamagkas et al. (2019) Honeynets in smart grids - - -

Franco et al. (2021) IoT, IIoT, and CPS - ( ) - -

This work (2023) Open-source enterprise IT -

1.1. Comparison with Prior Honeypot Surveys

Honeypots are well known in enterprise IT. The first honeypot was implemented more than 20 years
ago (Spitzner, 2003). Since then, honeypots have evolved from simple Linux installations (Spitzner,
2003) to lightweight cloud resources that mimic all kinds of different services and devices (Jose Nazario,
2022; Deutsche Telekom Security GmbH, 2023; Thinkst Applied Research, 2023).

Several surveys on honeypots have been published in recent years. Table 1 compares past honeypot
surveys with this work. In addition to the focused domain, we also compare the honeypots’ charac-
teristics that were examined in the respective papers. Surveys especially separate in the depth of the
honeypot review. Overviews with a more shallow discussion on honeypot architecture, however, offer a
larger amount of honeypots and academic solutions. Although academic solutions are not proprietary,
in some cases the source code is closed-source.

The two most recently published surveys focus on industrial production networks (Dalamagkas
et al., 2019) and on IoT, IIoT, and Cyber-Physical Systems (CPS) (Franco et al., 2021). This is
an area of growing interest as botnet activity and other automated attacks on these devices have
increased in recent years. While some network protocols are common for enterprise IT and (I)IoT,
devices in IoT, IIoT, and CPS have limited computing resources and run different services specific to
these domains—two focal points that a honeypot must emulate realistically.

The authors in (Nawrocki et al., 2016) and (Fan et al., 2017) present solutions with a focus on
enterprise IT. However, many of the surveyed honeypots are long outdated or have received major
functionality updates since then. Moreover, these surveys include proprietary solutions without the
possibility of a detailed discussion on their architecture and implementation.

In this survey, we take an in-depth look at enterprise IT honeypots. This choice is supported by
multiple motivators. First, enterprise IT honeypots have witnessed strong momentum in research and
development in recent years, especially in the open-source community. Second, the wide adoption of
cloud-native technologies like Docker and Kubernetes now offers new honeypot deployment options.
Finally, research on honeypot detection produced new ways to discover honeypots, which, in turn,
forced honeypot developers and researchers to come up with novel ways of deception.

In contrast to existing surveys, our work covers new aspects regarding a honeypot’s deceptiveness
and, in addition, includes a detailed discussion on system architecture, software architecture, logging
strategy, and deployment options of the surveyed honeypots.

1.2. Structure

The remainder of this work is structured as follows. Section 2 provides preliminaries on honeypots
and honeypot detection. In Section 3, we survey open-source honeypots and honeypot frameworks
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Figure 1: Attacker and defender view of a honeypot setup.

that are either currently maintained or provide unique capabilities. Furthermore, we discuss tools that
assist in testing honeypots during development or deployment. In Section 4, we consider academic
research on the detection and evasion of honeypots. The impact of honeypot detection is then discussed
with regard to the surveyed honeypots in Section 5. Finally, Section 6 concludes the survey.

2. Preliminaries on Honeypots

Honeypots are resources that attempt to mimic a real computer system with the intention of
being compromised by an attacker. These decoy systems are constantly monitored by the defenders
and incoming attacks are recorded and analyzed. Typical applications of honeypots can range from
individual services—many honeypots on the Internet offer only an Secure Shell (SSH) service—to entire
web servers. Figure 1 shows a honeypot system from the attacker’s and the defender’s perspective.
The adversary expects to attack a genuine system with, for example, DDoS attacks, SQL injections, or
brute-force attacks. Meanwhile, defenders use the insights from captured attacks to strengthen their
real deployments. Thus, honeypots are tools to gather intelligence, identify cybersecurity threats, and
understand how adversaries would compromise the mimicked system (Stolfo et al., 2011). This allows
defenders to make data-driven decisions on what security measures to invest in.

Depending on the expected attacks, different types of honeypots are deployed. In the following,
we discuss different types and strategies of honeypots and their findings. Since honeypots rely on
deception to convince an adversary to interact with the system (Sanders, 2020), another focus of this
section is on honeypot detection.

2.1. Honeypot Types

Honeypots are typically characterized by the interaction level a honeypot offers to the adversary.
This interaction level varies from low to medium to high (Vetterl and Clayton, 2018).

Low-interaction Honeypots (LHs) provide the least amount of interaction for an adversary
connecting to the system. They offer no Operating System (OS) to the attacker but rather a small
number of attack paths, e.g., a log-in shell for a given service application. This kind of honeypot is
predominantly used to catch credential brute-force attacks or monitor connection attempts. Figure 2a
illustrates such an LH. The services are only implemented superficially and allow no further access to
the underlying OS. All activity received by the emulated services is logged.

Medium-interaction Honeypots (MHs) still do not provide a real OS but can simulate a
system shell to run commands on. Hence, these honeypots try to present a more attractive target and
catch a greater scope of attacks. Depending on the depth of the simulated system, MHs cannot only run
selected system commands but collect malware samples uploaded by the adversary. As seen in Figure
2b, the honeypot application is still separated from the operating system, making the development of
a profound shell emulation a significant effort. LHs and MHs are useful tools for defenders to collect
data on automated, large-scale attacks (Vetterl and Clayton, 2018). Further, an extensively emulated
system shell can even trap human adversaries for short periods of time.
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High-interaction Honeypots (HHs) have the highest odds of trapping a human adversary.
On this interaction level, the honeypot has a real OS looking vulnerable to the outside world. The
high-interaction possibilities allow for insight into attacker movement and activities on the system.
However, these insights introduce risks; a vulnerable machine can also be used for subsequent attacks.
Thus, an HH also includes the highest level of maintenance effort. As shown in Figure 2c, the OS is
at the disposal of the attacker. There is no longer any separation between the honeypot and the OS.

(a) Emulated network services that are
used as LH.

(b) MH containing an emulated system
to track attacker movement.

(c) HHs deploy a real operating system
for a realistic attack surface.

Figure 2: Different types of honeypots. Dotted lines illustrate a boundary intended to be breached by adversaries.

2.2. Deployment Scenarios

The purpose of deployment can be roughly split into two categories: research and production hon-
eypots (Spitzner and Roesch, 2001). Research honeypots are mainly used to monitor the development
of existing attacks and to get an early grasp on novel attack vectors. Figure 3a shows a honeypot
deployed inside a Demilitarized Zone (DMZ). This gives the attackers access to the honeypot but
prevents penetration into the internal network. Those honeypots can supply defenders with valuable
information about the current attack landscape. In contrast, production honeypots (Figure 3b) are run
to mimic a valuable component in a production setting. They can add an additional layer of intrusion
detection as those honeypots are not part of the production process. In this way, every connection
attempt can be assumed to be a hostile party with access to the internal production network.

Multiple, interconnected honeypots are called a honeynet (Dalamagkas et al., 2019). Honeynets are
helpful to improve the cover of production honeypots. While a single production machine without in-
or out-going communication is not plausible, multiple honeypots can interchange protocol messages.

In addition, we can classify honeypots based on whether they run on a real server or use a virtual
deployment option (Dalamagkas et al., 2019). On one hand, the deployment of honeypots on a server
or production hardware results in the best possible imitation of the represented system. This creates
realistic response times and system environments. On the other hand, virtual deployments on Virtual
Machines (VMs) or inside containers are more flexible. This results in hardware independence and a
light resource fingerprint, and allows for cheaper deployments, e.g., in a cloud environment. Build-
in monitoring of virtual deployment techniques is another advantage, as tools like Virtual Machine
Monitors (VMMs) can trace the attacker’s actions (Asrigo et al., 2006).

2.3. Honeypot Findings

Deploying honeypots on the Internet can yield a lot of information about the threat landscape for
selected protocols. This knowledge can be used to adjust existing security solutions. Honeypots are
effective in collecting information about attacks because they have no value for legitimate clients. For
every connection, it can be assumed that the connecting party has malicious intentions. As a result,
one does not need to differentiate between legitimate and hostile connections. In the following, we
take a look at honeypot findings sorted by interaction level.

Low-interaction honeypots detect scanning attempts as well as brute-force or dictionary at-
tacks (Brown et al., 2012). New variants of vulnerabilities like Shellshock or Log4J can also be revealed
by specialized low-interaction environments. While those low-interaction systems are useful to detect
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(a) A research honeypot accessible from
the Internet and used to monitor the
threat landscape.

(b) Production honeypot placed within
an internal production network to detect
potential intruders.

Figure 3: Deployment scenarios for honeypots.

if there is interest in a target system, higher interaction levels are more suitable to reveal an attacker’s
intention.

Medium-interaction honeypots receive malware samples from different kinds of botnets (Zuzčák
and Zenka, 2020) and command line inputs by automated and human adversaries. While some au-
tomated attacks try to inspect the target system—the CPU’s core count or the kernel architecture
provide valuable information—most botnets disregard the nature of their target and try to infect it.
Malware that is used to harm vulnerable systems can range from simple viruses to rootkits and remote
access trojans (Sethia and Jeyasekar, 2019).

High-interaction environments observe similar results. Malware infection and the installation of
crypto miners are common findings. Moreover, attackers can try to use captured systems for further
attacks; vulnerable devices are commonly turned into relays for spam E-Mail (Alata et al., 2006) or
used for subsequent denial of service attacks.

2.4. Honeypot Detection

Honeypots are only useful if the attacking party is not aware of the real nature of their target sys-
tem. If a honeypot is identified, adversaries simply avoid it. Apart from an unrealistic attack surface,
there are multiple ways to identify a system as a possible honeypot from the outside: default config-
urations (Srinivasa et al., 2021a), timing attacks (Vetterl and Clayton, 2019), and service application
fingerprinting (Vetterl and Clayton, 2018; Srinivasa et al., 2021a).

Default configurations. All honeypots examined in this paper come with a default configuration for
instantaneous deployment. However, default configurations can cause detection. The default content
of HTTP responses and static values in SSL/TLS certificates have led to the detection of honeypot
instances. This unique content in default configurations or templates should be avoided by developers.
As shown in (Srinivasa et al., 2021a), of 21,656 detected honeypot instances, only 351 honeypots did
not run on the default configuration.

Timing attacks. Depending on the represented device and its original hardware, there may be a dif-
ference in response time between the real device and the honeypot. This is particularly the case when
virtual deployment options are used for the honeypot. Protocol processes such as a TLS handshake
or the time until the welcome message appears can be used to compare devices (Vetterl and Clayton,
2019). These attacks are not only dependent on the efficiency of the implementation. Device and
memory virtualization can also contribute to timing discrepancies (Garfinkel et al., 2007). Although
timing margins are getting smaller as hardware performance increases, a honeypot still depends on
similar response times to the device it is representing. In cloud deployments, there are additional
factors that can affect the timing of network packets, such as network nodes between the attacker and
the target.
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Figure 4: Comparison of an OpenSSH server fingerprint and a honeypot fingerprint. The MD5 hash is calculated from
key exchange methods, encryption algorithms, authentication algorithms, and compression algorithms, which differ in
the SSH implementations.

Application fingerprinting. Most current honeypots are not based on the same programming library
as the protocol service they want to mimic. Thus, the developers need to adjust the honeypots’
protocol responses manually to match the real implementation. Fingerprinting is done by searching
for protocol strings that produce different response messages or response content depending on the
protocol implementation in use. Differentiable error messages, padding, or used algorithms can reveal
distinct protocol libraries. An example of successful fingerprinting can be seen in Figure 4. While both
SSH servers (an OpenSSH server and a honeypot) return the same identification string during the
handshake, they reveal differences in implementation through the key exchange methods, encryption
algorithms, authentication algorithms, and compression algorithms which are exchanged at the key
exchange initialization (SSH KEX INIT) stage. Hashes differ even between different versions of the
same implementation (e.g., OpenSSH 7.5 and OpenSSH 8.5) (Reardon et al., 2022). The tool used to
create those hashes is HASSH (Reardon et al., 2022) and is described in Section 3.4.

In (Vetterl and Clayton, 2018) the authors present a breakthrough in fingerprinting, not patchable
for the current generation of honeypots. They showcased a fingerprinting technique regarding state-of-
the-art SSH, Telnet, and HTTP honeypots, identifying a large number of deployments, especially older
versions. For example, they created 11,280,384 different protocol messages to observe the responses
of various implementations of SSH. From these crafted messages, the authors searched for those that
show the most divergence between implementations; these can later be used to test unknown clients.

Passive fingerprinting (observation of protocol header fields) was added by (Srinivasa et al., 2021a)
to the probe-based approach of (Vetterl and Clayton, 2018) to further improve the findings; and we
discuss additional academic publications on honeypot detection in Section 4.2. Not only academic work
is focusing on fingerprinting: the popular scanner Shodan (Shodan, 2023d) offers a honeypot detection
tool (Shodan, 2023a) that is believed to use a similar technique. Once exposed, fingerprinting methods
can also be found as Metasploit (Rapid7, 2023) scripts for simple, automated testing of remote hosts.
Shodan and Metasploit are also explained in more detail in Section 3.4. This shows that fingerprinting
is not only a question of concept in the development phase but also requires constant updates to the
system by developers and users.

3. Overview of Honeypots, Honeypot Frameworks, and Tools

In this section, we give an overview of open-source honeypots and honeypot frameworks that are
actively maintained or have unique capabilities. The overview is clustered based on the interaction
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level of the individual honeypots from low to medium to high. Moreover, we present a selection of
tools that are helpful in testing honeypots.

3.1. Methodology

We have compiled and practically deployed the honeypots from mid-2022 to early 2023. To find
honeypots, we searched for popular protocols (e.g., SSH, HTTP, and FTP) and completed them
with honeypots that cover protocols not addressed by popular solutions. Another emphasis was on
unique functionalities that are not offered by well-known honeypots. Valuable resources to start
are lists like (Jose Nazario, 2022), GitHub repositories of honeypot foundations, and academic work
investigating honeypots, extending them, or analyzing their data.

The insights into the system architecture stem from practical experience with the honeypots, as
well as existing documentation. For practical experience, we have not only installed the honeypots but
have tested their functionality as comprehensively as possible; we have investigated the system through
network and vulnerability scans and investigated the resulting logging entries. For insights into the
software architecture, we also examined the source code for dependencies and structure. The logging
functionality and the deployment options were also drawn from practical experience and complemented
by the honeypot’s documentation. To draw conclusions about honeypot detectability, we looked at
several factors: software libraries, configurability, network scans, and whether honeypots have already
been fingerprinted in academic work.

Furthermore, the tools for honeypot testing were compiled in the same time frame. We included
tools that were either used in academic work to analyze honeypots or that we found helpful for our
experimental work with the honeypots. While libraries or platforms used to build the honeypot are
included in the honeypot survey, we highlight tools for testing and comparing the honeypot’s credibility.

3.2. Honeypots

To collect practical experience and to better understand the honeypots’ features, we experimentally
deployed all honeypots described in this section. Our focus was on the honeypots’ deployment options,
offered protocols, their unique deception capabilities, external libraries these honeypots depend on, and
the programming language they are written in. In addition, we compare the honeypots’ architectures.
A summary of our findings is given in Table 2. This overview of honeypots is clustered based on the
interaction level. Starting with LHs, the higher levels are briefly introduced at the first honeypot of
the level.

3.2.1. Heralding

Heralding (Vestergaard, 2023) is a simple LH distributed under the GNU General Public License

v3.0. Heralding is designed to mimic services typically found in enterprise IT systems, including SSH,
Telnet, File Transfer Protocol (FTP), SMTP, VNC, PostgreSQL, SOCKS5 as well as HTTP, POP3,
and IMAP as well as their secure variants HTTPS, POP3S, and IMAPS.

System architecture. Heralding is configured using a YAML file heralding.yml. It includes settings
for individual services as well as generic settings such as the IP address to listen to and the logging
configuration. Figure 5 shows Heralding’s software architecture. Services mimicked by the honeypot
only allow for log-in interaction and close the connection afterward. Listing 1 shows the result of an
NMAP port scan of a deployed Heralding instance.
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Figure 5: Architecture of a Heralding honeypot.

Nmap scan repor t f o r Herlading=IP
PORT STATE SERVICE
21/ tcp open f tp
23/ tcp open t e l n e t
110/ tcp open pop3
2222/ tcp open ssh
8080/ tcp open http

Listing 1: Port scan of a Heralding honeypot.

Software architecture. Heralding is written in Python. Running Heralding’s latest release 1.0.7 requires
Python version 3.7.0 or higher. Each service that the honeypot can mimic is implemented in its own
Python module, and the modules can be activated in Heralding’s configuration file. As a result, it is
easy to extend Heralding with additional services or adjust the existing services if needed.

Heralding depends on Python libraries AsyncSSH, aiosmtpd, and pyOpenSSL, among others. To
mimic HTTPS, Heralding generates digital certificates using pyOpenSSL, a Python wrapper for the
popular cryptography library OpenSSL. Alternatively, the administrator can supply the certificates
during the honeypot’s deployment.

Logging. Heralding logs the activities performed by an attacker in a CSV or a JSON file. The data
being logged includes the attacker’s login credentials, the duration of the session, the protocol abused,
and the remote IP and port. Alternatively, HPfeeds (Carr et al., 2021), a popular honeypot event
forwarder, can be used to send the log data to a remote location. HPfeeds is a publish-subscribe
protocol that has built-in TLS support. Heralding can be therefore configured to transmit its log data
to a remote location over a secure channel.

Fingerprinting. Since Heralding mimics a rather large number of services, honeypot fingerprinting is a
concern and can be difficult to address given current configuration options. As an example, while the
SSH version that Heralding should mimic can be set in heralding.yml, the actual protocol responses
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implemented in Heralding’s SSH module are static. Consequently, an attacker can easily fingerprint
Heralding’s SSH service as shown in Figure 4.

Deployment options. Heralding can be easily deployed in a container-based environment since its
GitHub repository (Vestergaard, 2023) includes a Dockerfile for creating the corresponding Docker
image. It is based on the python:3.7-slim-stretch base image, with the resulting Docker image
having merely 145 MB.

Popularity. With 344 stars and 77 Forks on GitHub, Heralding is one of the most popular LHs with
nearly 1,400 commits from 19 contributors. However, the code frequency graph in Heralding’s GitHub
repository indicates that the majority of its functionality was implemented in the period 2013-2014,
with smaller additions in 2019 and 2020.

3.2.2. Glutton

The authors of Glutton (MushMush Foundation, 2023) describe it as a generic LH. Glutton sup-
ports a wide range of protocols including Android Debug Bridge (ADB), FTP, HTTP, Extensible
Messaging and Presence Protocol (XMPP/Jabber), SMTP, MQTT, SSH, Telnet, and base TCP. Glut-
ton can even mimic BitTorrent and Ethereum Remote Procedure calls.

System architecture. The honeypot listens to ports defined in a rule set. The same rule set also includes
mappings of incoming requests to specific connection handlers. Figure 6 shows an example of such
mapping for incoming packets on ports 22, 80, and 1883.

In addition, Glutton can proxy the network traffic to another honeypot if a specific, situation-aware
protocol response or an additional interaction with the attacker beyond credential catching is desired.
The proxy feature is implemented for SSH, Telnet, and TCP protocols.

Software architecture. Glutton is written in the Go programming language, with each protocol handler
implemented in a separate file. It is therefore easy to extend Glutton with further protocol handlers.
The mapping between individual ports and protocol handlers is stored in the rules.yml configuration
file and realized using libnetfilter-queue (netfilter.org, 2021b) and iptables (netfilter.org, 2021a).

Logging. If a log file path is provided, Glutton stores the log data locally. Alternatively, it can be
configured to use hpfeeds remote logging protocol. The log data itself is in JSON format and contains
information about the specific honeypot ID and the protocol handler as well as IP, port, and credentials
of the attacker. This allows to maintain a central database where the information is collected from
multiple Glutton instances.

One notable feature is Glutton’s ability to highlight known scanner IPs like those of Censys (Censys,
2023) and ShadowServer (The Shadowserver Foundation, 2023) if they happen to appear in the log
file (Veronica Valeros, 2022). It allows the honeypot operator to distinguish between scanner traffic
and actual attempts to break into the systems mimicked by the honeypot.

Fingerprinting. Glutton provides no dedicated technical means to avoid fingerprinting. However, the
proxy feature described above can be leveraged to implicitly mitigate the risk of fingerprinting by
proxying the traffic to a more sophisticated honeypot that actually implements the relevant protocol.
As an example, Glutton authors point to the Cowrie honeypot we discuss in 3.2.14 as a possible
endpoint.

Deployment options. Glutton Git repository includes a Dockerfile based on a Go language Alpine
Docker image. As a result, Glutton can be easily deployed in cloud environments. In addition, the
honeypot’s repository provides guidance for deploying Glutton to classical hosts and VM targets,
including Debian- and Arch-based systems.

Popularity. Glutton is an actively maintained honeypot with nearly 200 stars and 54 forks on GitHub.
The commit history shows that the main functionality is already implemented but minor changes and
pull requests are still being incorporated.
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Figure 6: Glutton honeypot architecture.

Literature. The Glutton GitHub repository contains short examples of how to set up Glutton as an
HTTP, SSH, TCP, UDP, and Telnet honeypot. Besides that, the documentation is very rudimentary.
There is a compact deployment tutorial and initial results by the cybersecurity group of the University
in Prague (Veronica Valeros, 2022).

3.2.3. Endlessh

Endlessh (Wellons, 2021) is an LH that acts as an SSH tarpit. An SSH tarpit traps the scanning
client in an endless SSH handshake using the feature of SSH protocol that allows the SSH endpoint
to send additional data, e.g., custom settings, before completing the SSH handshake. Based on this
feature, Endlessh sends a random SSH banner to the scanning client and thereby detains automated
attacks on SSH.

System and software architecture. Endlessh is a stand-alone, single-threaded C program. This trans-
lates into a simple architecture illustrated in Figure 7. Because the tarpit banner is sent previously to
any cryptographic exchange, Endlessh does not depend on any cryptographic libraries. The configura-
tion allows standalone IPv4 or IPv6 usage as well as options for banner length and supported number
of clients.
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Figure 7: Architecture of Endlessh.

Logging. If logging is activated, Endlessh log messages are written to the standard output. The option
to write logs to the system log allows integration with any system without overhead.

Endlessh’s configuration allows setting 3 different logging levels ranging from no logging (level 0)
to comprehensive logging including debugging information (level 2).

Fingerprinting. Because Endlessh tarpits an attacker during the SSH handshake, fingerprinting the
honeypot is not possible. The banner exchange is the first step of the SSH protocol initiation. As a
result, Endlessh’s working principle prevents automated fingerprinting attempts by design.

Deployment options. Endlessh GitHub repository provides a very small Docker image based on Alpine
Linux. The Docker image has a size of merely 5.67 MB. The documentation also includes instructions
for compiling Endlessh for Red Hat Enterprise Linux 6, Solaris, and OpenBSD operating systems as
well as instructions for integration into Solaris Service Management Facility.

Popularity. On GitHub, Endlessh has over 5,800 stars and 242 forks. In total, the project has 14
contributors. Version 1.0 was released on April 29, 2019. To date, there were 100 commits made to
the project. However, the last commit dates back to April 30, 2021.

Literature. DigitalOcean has published a detailed tutorial on an Endlessh cloud deployment (Tier,
2022). In the tutorial, the honeypot is deployed on a Ubuntu 22.04 server and also incorporates the
necessary configuration for a firewall like UFW (Wallen, 2015).

3.2.4. Blacknet 2

Blacknet 2 (Mòrian, 2019) is an SSH honeypot system that allows the defenders to spawn an
arbitrary number of SSH honeypots. These honeypots then transmit their log data to a central server.
The individual SSH honeypots can be exposed to the Internet on different IPv4 addresses. Moreover,
Blacknet 2 includes a web interface for live tracking of events—more precisely, SSH login attempts—
reported by the honeypots. The interface can also be used to export basic statistics on honeypot
events.

System architecture. Blacknet’s system architecture is shown in Figure 8. Blacknet 2 is built using the
server-client model where a central server, referred to as master server in Blacknet’s documentation,
receives data from the individual SSH honeypot sensors and persistently stores that data for subsequent
inspection. The default storage option used by Blacknet 2 is a relational database like MySQL or
MariaDB.

Blacknet 2 uses Transport Layer Security (TLS) to enable secure communication between the SSH
honeypot sensors and the master server. Blacknet’s authors recommend using EasyRSA, a command
line tool for creating Certification Authorities (OpenVPN Inc, 2023), to generate digital certificates to
be deployed on the honeypot sensors and the master server.

Software architecture. Blacknet’s honeypot sensors are low-interaction SSH honeypots. The mocked
SSH service is implemented in Python, the Python versions supported by Blacknet 2 are 2.7 and 3.4.
The SSH honeypot sensors use the Paramiko (Forcier and Gaynor, 2022) SSH library to establish the
initial SSH connection and to present the password prompt to the attacker.

The SSH logs are transmitted using the MessagePack binary serialization format (Furuhashi, 2021).
MessagePack allows a very compact representation of the log data so that Blacknet 2 can be de-
ployed in scenarios with limited network bandwidth. The persistent logging functionality utilizes the
PyMySQL (Matsubara, 2023) library.
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Figure 8: Architecture of Blacknet 2.

Logging. Logs can be saved locally or on a dedicated network-connected node. In the latter case, the
master server establishes a connection to a MySQL or MariaDB database through TCP/IP or a Unix
socket.

Fingerprinting. Fingerprinting of the Paramiko library is a concern, but an integration of other hon-
eypots as sensors should be possible with moderate effort. The use of different honeypots as sensors
is another interesting alternative.

Deployment options. Blacknet’s GitHub repository provides no Docker images or instructions on how
to build one. However, since the SSH honeypot sensors and the master server only depend on a handful
of Python libraries, Blacknet can be easily dockerized. Moreover, packaging the honeypot sensors in a
Docker container would further simplify the integration of other honeypots as sensors.

Popularity. Blacknet 2 was initially written in 2010 and rewritten in 2017 based on an LH design.
As of the time of this writing, Blacknet’s GitHub repository has only 10 stars, but the client-server
architecture and the resulting capability of distributed honeypots are noteworthy features.

3.2.5. Masscanned

Masscanned (IVRE, 2023b) is an LH specialized in capturing scanning attempts and bots. It
is published under the GPL-3.0 open source license and implements protocols on different Open
Systems Interconnection (OSI) model layers including HTTP, SSH, SMB, DNS, ARP, ICMP version
6, TCP, and UDP. This, in turn, allows using Masscanned to implement a wide variety of honeypots.

System architecture. Masscanned was originally written for integration into Instrument de Veille sur
les Réseaux Extérieurs (IVRE), an open-source reconnaissance framework composed of tools for passive
and active reconnaissance (IVRE, 2023a). However, Masscanned can also be used independently from
IVRE. The architecture of the honeypot is shown in Figure 9.

Masscanned implements the network stack in the user space. As a result, responses to the incom-
ing network packets require no access to the operating system’s kernel. A major advantage of this
architecture is Masscanned’s ability to customize IP and MAC addresses and generate responses on
the different network layers.

For a stand-alone deployment, a virtual network interface is created, and the honeypot listens on
all ports. Deployment and configuration can be done via the command line.

12



Figure 9: System architecture of masscanned. The honeypot does implement protocols on different network layers.

Software architecture. Masscanned is written in Rust programming language and packaged for Cargo,
Rust’s default package manager. Standard Rust (network) libraries are used to implement the honey-
pot’s network protocols. This is possible since their implementation contains only basic functionality.
As an example, the SSH implementation contains no cryptographic key exchange. Individual modules
are sorted by layer—layers 2,3,4, and the application layer of the OSI model—and all modules are
activated by default.

Logging. Logs are by default displayed on the console, but logfmt format is also supported. All
incoming network packets are saved in Packet Capture (PCAP) files which can be used for subsequent
analysis. In addition, the data from the network packets can be evaluated by integrating masscanned
with IVRE.

Fingerprinting. Because masscanned is tailored to detect simple scanning attempts rather than metic-
ulously disguise itself as a real IT system, the honeypot has no dedicated measures to prevent its
detection. However, since the honeypot implements a custom userland network stack, masscanned
operators can implement their own countermeasures against fingerprinting.

Deployment options. Masscanned authors suggest a deployment on a virtual private server and provide
a build manual for a stand-alone deployment in the project’s README on GitHub. While no Dockerfile
is provided, packaging a Rust application in a Docker container is simple. Since masscanned listens
on all network ports, a Docker container needs to use the host networking and have the capability to
forge network packets.

Popularity. With 61 stars and 11 forks on GitHub, masscanned appears to be less popular in its
standalone version. However, it is commonly used as part of the IVRE framework which, having over
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2,800 stars and over 600 forks on GitHub, receives significant attention in the developer community.
Moreover, masscanned’s commit history shows that it continues to receive regular updates to its code
base.

3.2.6. Glastopf

Glastopf (MushMush Foundation, 2021a) is a low-interaction web application honeypot. By mim-
icking a wide range of web application, database, and cross-site scripting vulnerabilities, Glastopf
mimics a vulnerable web server with a large attack surface.

Glastopf is designed to be indexed by search engines such that, in combination with its large attack
surface, the number of attack attempts that hit the honeypot is maximized.

System architecture. Glastopf is a pure web application honeypot designed to emulate a wide range of
web application, database, and cross-site scripting vulnerabilities. The honeypot’s system architecture
is shown in Figure 10.

Figure 10: Glastopf system architecture.

Technically, Glastopf emulates vulnerability types like Remote File Inclusion (RFI) or HTML in-
jection rather than actual, specific vulnerabilities. To achieve this, the honeypot first determines the
HTTP request type (GET, POST, or HEAD). In the second step, the honeypot tries to determine the
type of the attempted attack by searching for specific, pre-defined patterns in the HTTP request. As
an example, using the pattern =http://, Glastopf would detect an RFI attack in the HTTP request:

GET http://example.com/vulnerable.php?color=http://evil.com/shell.php

Finally, once the attack type is identified, Glastopf calls an attack-specific handler which, in turn,
generates the response simulating a successful attack.

In addition, Glastopf implements a simple parser for injected PHP files. The parser takes the in-
jected PHP file, extracts statements that generate output, and generates a valid response corresponding
to these statements. As an example, if the injected PHP file contains:

$un = @php_uname(); echo "uname -a: $un<br>"
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Glastopf replaces @php_uname() with a valid (but fake) value and generates a response like:

uname -a: GNU/Linux","Linux my.leetserver.com 2.6.18-6-k7<br>

In addition, emulators for a login interface to catch brute-force attack attempts or attempted SQL
injections can be complemented by staged phpinfo or phpmyadmin pages. Those contain hints of
deficiencies such as a vulnerable PHP version. This can range up to the emulation of specific exploits
like PHP remote code execution ( National Vulnerability Database, 2018).

Software architecture. Glastopf is implemented in Python. The honeypot’s code base consists of indi-
vidual Python modules implementing HTTP functionality, event classification, vulnerability emulators,
and data processing and logging.

The vulnerability type emulators can access pre-defined HTML pages to present a web page to the
attacker. In addition, a PHP sandbox is implemented that executes a set of whitelisted PHP functions.
Both the emulators and the sandbox can be easily extended with custom functionality if needed.

Glastopf mostly uses modules from the Python standard library such as urllib and base HTTP

server. Moreover, the well-known gevent (Bilenko, 2019) is used as a networking library.

Logging. Glastopf logs contain the source IP of the attacker as well as the request URL and the attack
pattern, e.g., the string of an SQL injection. The logs can either be written into an SQLite database
or sent to a remote log collector using the HPfeeds protocol.

Fingerprinting. The emulation of different vulnerability types allows for a realistic picture of a vulner-
able web server. While the honeypot can be fingerprinted in principle, this would require an attacker to
craft dedicated HTTP requests to which the honeypot responds differently than an actual web server.

Deployment options. Since Glastopf is not actively maintained, a host deployment is not recommended.
The honeypot’s GitHub repository provides a Dockerfile based on Ubuntu 14.04 and Python 2.7.

Popularity. Glastopf received its last commit in October 2021. Since the last major changes to the
code base happened in 2014, the authors recommend the use of the successor SNARE/TANNER.
Nearly 500 stars and 174 forks on GitHub highlight how Glastopf brought novel approaches to the
realm of web application honeypots.
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3.2.7. SNARE/TANNER

The Super Next generation Advanced Reactive honEypot (SNARE) (MushMush Foundation, 2021b)
and TANNER (MushMush Foundation, 2022b) are the successors of Glastopf. Thus, they build an-
other web application honeypot system but the separate structure provides better camouflage and
performance.

System architecture. The honeypot is divided into SNARE and TANNER. SNARE clones existing web
pages and converts them into attack surfaces. The honeypot then looks like an NGINX web server
presenting the cloned contents. As shown in Figure 11, incoming HTTP requests are forwarded to
TANNER. TANNER analyzes and classifies the request before crafting a response. TANNER also
contains the vulnerability emulators known from Glastopf.

Figure 11: Architecture of a SNARE/TANNER setup.

Software architecture. SNARE and TANNER are developed in Python and mostly tested for Python
3.4+. SNARE uses Beautiful Soup (Richardson, 2020) to pull data from HTML files. For web server
capabilities, asyncio (Python Standard Library, 2023) and AIOHTTP (aiohttp contributors, 2023) (both
HTTP libraries) are utilized.

Tanner provides different vulnerability emulators, e.g., for Cross-Site Scripting (XSS). Patterns
for XSS or SQL injections can be expanded and additional emulators can be implemented. Incoming
SNARE sessions are analyzed similarly to Glastopf; the geoip2 module (MaxMind, 2023) provides
additional information about the attacker’s IP.

Logging. SNARE forwards requests to TANNER where information about an attack is logged locally
in a JSON file. The honeypot, further, implements HPfeeds and MongoDB clients via Python.

Fingerprinting. The web application cloning and the representation of an NGINX web server improve
the cover of the honeypot compared to Glastopf. Fingerprinting the Python HTTP libraries is a
concern, but requires actively probing the honeypot—which means additional overhead for an attacker.
By passively watching the honeypot’s HTTP traffic it looks like an NGINX web server.

Deployment options. The documentation (MushMush Foundation, 2016, 2018) contains instructions
for local deployment. Further, both components have Dockerfiles based on Alpine images. The Docker
images for SNARE (279 MB) and TANNER (330 MB) allow a compact Dockerization of the architec-
ture considering the extensive capabilities.
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Popularity. SNARE (387 stars and 122 forks) and TANNER (181 stars and 87 forks) are developed
under GPL-3.0 license. Although the popularity of the Honeypot is inferior to its predecessor, it
brings expanded capabilities that allow for even more specialized use.

3.2.8. Dionaea

Dionaea, the successor to Nepenthes (Baecher et al., 2006), emulates exploitable vulnerabilities
that are exposed by services connected to the network. The honeypot’s goal is to receive a malware
copy, and it offers a wide range of protocols to get there: HTTP, FTP, TFTP, MySQL, MSSQL, UPnP,
SMB, SIP, PPTP, MQTT, Mirror, Memcache, Blackhole, and epmap build Dionaea’s protocol suite.

System architecture. Dionaea offers a wide range of features that make the system architecture quite
complex. The honeypot consists of different modules that can be activated at wish. Figure 12 shows a
sample architecture with the Python and the Emulation (EMU) module running. The Python module
deploys the services offered by the honeypot. In addition, the EMU module receives all in and outgoing
communication of deployed services to detect and emulate shell code from payloads. This is done to
gain malware copies.

Figure 12: Illustration of the Dionaea architecture.

Software architecture. The core of Dionaea is implemented in C but it embeds Python via Python/C
API (Python Software Foundation, 2023). The possibility to include services via Python is a unique
feature of the honeypot. The connection handling below the application layer, as well as the modules
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are written in C. OpenSSL libraries provide SSL/TLS support, and libemu (Angelo Dell’Aera, 2022)
is used for the shell code detection and emulation.

The Python module allows for the deployment of services that are implemented in Python. Thus,
this module contains all of the honeypot’s Python scripts. Recommended Python versions are 3.8 and
3.9. In this part of the honeypot implementation, regular Python libraries like sqlite3 and Jinja2

are in use.

Logging. Dionaea supports logging as JSON files, in a database, or via HPfeeds. The honeypot has a
filter module to set rules for log filtering and allows the activation of fail2ban via the configuration file.
Fail2ban is an intrusion detection and prevention module, that scans log files for IPs causing malicious
activity and sets firewall rules to prevent these from entering again.

Fingerprinting. Dionaea was successfully fingerprinted in (Srinivasa et al., 2021a) due to two reasons:
static values in the generated SSL/TLS certificates and default configurations of services. Default
configurations like protocol banner strings must be avoided upon deployment and can be changed in
the configuration of each service. The X509 certificate for SSL/TLS is generated at startup and is
self-signed. But parameters can be changed in the source code.

Deployment options. For host deployments, the authors recommend Ubuntu 18.04 or Debian 10.
Ubuntu 20.04 and Debian 11 are not supported since those dropped libemu from the package repository
(DinoTools, 2015).

For Docker deployment, an official Docker image (DinoTools, 2023) is provided, but same can be
built from the GitHub repository. The image is also based on Ubuntu 18.04. With a size of 182 MB,
the image is comparatively small. After the honeypot is built, build packages and source code are
removed from the container which contributes to the small size.

Popularity. While a lot of the code base was written from 2010 to 2012, the honeypot was still
maintained and expanded between 2016 and 2021. With 628 stars and 169 forks, Dionaea has received
sizable attention in the honeypot community. The honeypot is released under GPL-2.0 license.

3.2.9. OpenCanary

OpenCanary (Thinkst Applied Research, 2023) is an LH that is maintained by Thinkst Canary
(Thinkst Canary, 2023b) and published under the BSD-3-Clause license. The honeypot can mimic
typical enterprise IT servers, e.g., a Linux Web server, a Windows server, or a MySQL server. Offered
services are FTP, HTTP, MSSQL, MySQL, NTP, RDP, Redis, SNMP, SSH, Telnet, VNC, TFTP,
Samba, GIT, and TCP. Further, the honeypot has a port scan detection module.

System architecture. OpenCanary uses the configuration file to assemble server configurations from
offered services. The official documentation (Thinkst Canary, 2023a) provides sample configurations
for Linux Web server, Windows server, MySQL server, and MSSQL server. The Linux Web server
configuration, for example, deploys FTP, HTTP, and SSH services looking like an Apache Ubuntu
server running OpenSSH. The architecture of this sample configuration is illustrated in Figure 13.

The Samba module requires a dedicated Samba installation. Then events are triggered as soon as
somebody accesses the file share.

Software architecture. The honeypot is written in Python and supports versions 2.7 or 3.7+. The
structure of the honeypot is modular and all services can be enabled through the configuration file.
OpenCanary mostly uses Twisted (Twisted Matrix Labs, 2023) as a network library. The SNMP
module additionally requires Scapy. A description of Scapy is provided in Section 3.4.

Logging. OpenCanary per default logs events in JSON format but can also write events into syslog.
Further, the honeypot implements HPfeeds to send logs to a remote host.

Fingerprinting. Since there are known fingerprinting probes for Twisted (Vetterl and Clayton, 2018)
active probing is a concern. But fingerprinting methods reported on the GitHub page were already
fixed in the past. Further, a lot of passive fingerprinting depends on realistic system imitations. Those
can be changed via the configuration file.
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Figure 13: OpenCanary honeypot system architecture.

Deployment options. OpenCanary was initially supposed to run as a daemon on a host system. There-
fore, it provides instructions for Ubuntu and OS X deployments. But the developers also made a
Dockerfile available which is based on python:3.7-buster. The resulting Docker image is 964MB in
size. This is quite sizable compared to other honeypots. By using a slimmer Python base image, for
example, a lighter deployment is possible.

Popularity. OpenCanary is a maintained honeypot with over 1.6 thousand stars and over 300 forks
on GitHub. The code history shows constant updates to the code base in the past three years. The
development with the open-source community further allows for comprehensive testing; for example, a
fingerprinting method for the SQL Server honeypot was reported on the GitHub page and subsequently
fixed.

3.2.10. Conpot

Conpot (MushMush Foundation, 2022a) is an LH for Industrial Control Systems (ICS) that em-
ulates multiple industrial control protocols and tasks, including HTTP and Supervisory Control and
Data Acquisition (SCADA). The objective is a honeypot system that looks like an industrial network
(The Honeynet Project, 2018). Supported protocols are HTTP, S7comm, FTP, Modbus, and Ether-
Net/IP. Further, there are templates for different industrial devices and interfaces that include IEC104,
Kamstrup 382, Guardian AST, IPMI, and SNMP.

Although Conpot primarily aims to mimic ICS systems, it has a unique feature in inter-honeypot
communication that can improve a honeypot’s cover. This approach can also be useful in enterprise
IT systems.

System architecture. Conpot wants to allow the user to freely design an industrial complex. Therefore,
the honeypot includes different protocols and provides templates to mimic the industrial devices of
various manufacturers. Those templates are XML files that contain properties of the represented
device or Human-Machine Interface (HMI). As shown in 14, configured HMIs can connect to real
clients to display realistic information to an adversary. Further, pre-configured traffic between devices
and artificial delay to the service response times (The Honeynet Project, 2018) reinforces the illusion
of a real industrial complex.
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Figure 14: Conpot architecture. In addition to services, there is also the possibility of setting up a human-machine
interface connected to a real client.

Software architecture. Conpot was written in Python and has a modular structure. The core contains
basic honeypot functionality like logging, session handling, and protocol handlers. This is comple-
mented by protocol and template modules. This structure allows an extension to specific parts of the
honeypot.

The honeypot supports Python 3.6 or higher. For protocol implementations, the Python modules
socketserver (Python, 2022) and gevent are frequently used. Gevent is a networking library.

Logging. Conpot has extensive logging capabilities. While the base output is JSON, the honeypot
also provides support for syslog, HPfeeds, SQLite, as well as STIX (OASIS Open, 2022a), and TAXII

(OASIS Open, 2022b). STIX and TAXII are open-source formats to serialize and exchange cyber
threat intelligence. The exchanges happen via a RESTful API using HTTPS. Those protocols are
published by OASIS Open (OASIS Open, 2022c).

Fingerprinting. Conpot is a very specialized environment with atypical protocols. While fingerprinting
of HTTP and FTP is possible with the method described in (Vetterl and Clayton, 2018), other protocols
need expert knowledge of industrial environments and protocols.

Deployment options. The latest release (0.6.0) provides a Docker image based on Python 3.8 as well
as instructions for a host deployment of Conpot. The pre-built image comes with a size of 260 MB.
Container deployments enable more possibilities for honeypots like Conpot. Especially, for large deploy-
ments representing an industrial network. Containerization saves hardware resources and deployment
time compared with a server or VM installation.

Popularity. Conpot is published under the GPL-2.0 license. The honeypot provides a unique set of
protocols that has broad appeal. Nearly 1.1 thousand stars and 400 forks on GitHub show a great
interest in the honeypot. The core of the code base was developed between 2013 and 2016. But there
were major updates to the code between 2018 and 2022, thus even after the latest official release (0.6.0)
in 2018.

Literature. Conpot was extensively analyzed in (Gokhale et al., 2020). The authors have focused on
finding interactions that end up in a dead end or in an infinite loop. The authors of (Dowling et al.,
2019) and (Siniosoglou et al., 2020) used machine learning approaches to improve the honeypot’s
concealment.
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3.2.11. Honeyntp

Honeyntp (Fyodor, 2014) is a Network Time Protocol (NTP) honeypot that is based on an open-
source Python NTP server (limifly, 2015). NTP is a protocol to ensure time synchronization between
IT systems. Although it does not provide access to a server, NTP and comparable protocols can still
be targets of exploits that cause a denial of service or worse.

System and Software architecture. As illustrated in Figure 15 Honeyntp is an NTP server listening to
incoming NTP packets. The honeypot collects received information in a Redis database.

The Python-implemented honeypot is a one-script application. The Redis library for Python is
used for database communication and a configuration file provides the database’s location.

Figure 15: System architecture of Honeyntp. The implementation is based on a Python NTP server.

Logging. As mentioned earlier, Honeyntp logs into a redis database. But there are no packets logged,
rather first-seen/last-seen information is stored per IP/port pair.

Fingerprinting. Since the underlying NTP server was last updated in 2015 there is a high probability,
that the implementation is identifiable as a Python NTP server. This is a concern since there are
approaches to OS fingerprinting utilizing the running NTP server implementation as a hint to the OS.

Deployment options. The base server to Honeyntp was only tested on Linux and Windows 7. There
is no Dockerfile available in the GitHub repository. However, Honeyntp is a small Python application
without large dependencies and, thus, can be integrated into a Docker environment.

Popularity. Honeyntp is a comparatively small project with 50 stars and 11 forks on GitHub. De-
spite that, time synchronization protocols are widespread and there is only a very limited number of
honeypots implementing one.

3.2.12. Log4Pot

As soon as a new protocol vulnerability becomes public, many automated scanners start looking
for potential targets. Log4Pot (Patzke, 2023) is a honeypot developed solely to catch attackers trying
to exploit the Log4Shell vulnerability.

System and software architecture. The Log4Pot honeypot listens on different ports to receive payloads
that try to exploit the Log4Shell vulnerability. As illustrated in Figure 16, incoming payloads are
analyzed to detect malicious content.

Log4Pot was written in Python 3 and Poetry is used for dependency management. The server is
implemented with HTTP and SSL modules from the Python standard library. In case traffic must be
redirected to the honeypot, e.g., from port 80 and 433, iptables is needed separately. HTTP server
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responses and HTML content can be individualized, as there is a custom directory to store those in
JSON and HTML format.

Figure 16: Architecture of Log4Pot. Logs can be stored in AWS S3 Buckets or Azure Blob.

Logging. Log4Pot’s default logging option is JSON. The honeypot further implements functionality to
support S3 buckets or Azure blob storage. This allows for seamless integration into a cloud environ-
ment.

Fingerprinting. The honeypot specializes in a vulnerability that is scanned for by a lot of automated
scanners. Fingerprinting the HTTP implementation is not worth the effort, given that these scanners
target a very large number of devices.

Deployment options. Log4Pot’s GitHub repository currently does not contain a Dockerfile. However,
considering that Log4Pot is a rather small Python project, containerization is possible. There are
instructions for a host/VM deployment.

Popularity. Log4Pot was developed under GPL-3.0 license. With 84 stars and 21 forks, it is a
rather small honeypot. But the monitoring of individual vulnerabilities is a concept that is often used,
especially for known CVEs.

3.2.13. Kippo

MHs combine a low-risk environment of LHs with the greater knowledge gains of HHs. While those
honeypots may provide a reasonable return for the moderate risk, the amount of functionality makes
them difficult to develop. SSH is once again the most prominent service offered by the honeypots.

Kippo (Upi Tamminen, 2016) is an SSH honeypot with the purpose of logging brute force attacks
and shell interactions. The honeypot was inspired by Kojoney but is no longer maintained. It is
recommended to use the fork Cowrie.

System architecture. Kippo allows the attacker to gain access to the system via SSH login. After suc-
cessful login, the attacker is presented with a shell and access to a file system. The general architecture
is very similar to the successor Cowrie and comparable with the illustration in Figure 17. The file
system resembles a Debian 5.0 installation and allows the defender to place custom files. The attacker
can execute commands in the shell to modify the file system or to download files with wget.
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Software architecture. The code base consists of the file system contents, the staged output of shell
commands like ifconig, and the Python modules. Kippo requires Python 2.5+; Python modules are
divided into core functionality, command implementations, and log functionality and are modular in
structure. This allows the user to add new command functionality to the shell interaction.

Kippo depends on the Twisted library for networking, especially Twisted.Conch for SSH and Telnet
capability. Further, PyCrypto is used as a cryptography toolkit and MySQLdb for database access.

Logging. Kippo has different logging modes to choose from: text logs and database logging in form
of MySQL or XMPP. Session logs contain every command that is executed by the attacker and all
downloaded files are stored for subsequent review.

Fingerprinting. Fingerprinting will be discussed for Cowrie since it is the most current version.

Deployment options. Kippo was tested on Debian, CentOS, FreeBSD, and Windows 7. Although there
is no Dockerfile in Kippo’s repository, Cowrie provides official Docker images.

Popularity. Although Kippo’s last update ranges back to 2016, the honeypot was quite popular. Over
1.4 thousand stars on GitHub, as well as 274 forks, illustrate the popularity of Kippo’s approach.

3.2.14. Cowrie

The Kippo successor Cowrie (Oosterhof, 2023) is a medium to high interaction honeypot expanding
the capabilities of its predecessor. In addition to Telnet support, the developers added curl, SFTP,
and SCP functionality to allow the attacker to perform file download and upload operations.

System architecture. The general architecture (see Figure 17) remained similar to Kippo. The attacker
can connect to the system by SSH or Telnet and is presented with an emulated shell and file system
structure. The attacker can download files with wget or curl, as well as upload files with SCP or SFTP.

In addition to Kippo features, Cowrie supports a high interaction proxy mode. The honeypot
can function as a proxy to a honeypot system to monitor activity. Further, Cowrie can use QEMU-
emulated servers as honeypot systems. In both modes, Cowrie can be configured to forward SMTP
connections to an SMTP honeypot of choice.

Figure 17: System architecture of the honeypots Cowrie (emulated shell mode) and Kippo.
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Software architecture. The software architecture has not been changed significantly to Kippo’s. How-
ever, the individual parts have increased in scope. For example, the list of command functionalities
has tripled.

The Python version for Cowrie is 3.8+. Network functionality still depends on Twisted libraries,
and Python libraries bcrypt, cryptography, and pyOpenSSL are used for hashes, cryptography, and
SSL/TLS functionality.

A feature that was added after the release of (Vetterl and Clayton, 2018), is the possibility to
adjust ciphers, MAC, and compression methods used by the SSH implementation. Next to the already
existing list of SSH banners, this allows for deeper customization to prevent the honeypot’s detection.

Logging. Logging functionality was improved to the predecessor. Text logs in the form of JSON, and a
database connection are still available. Possibilities to send Cowrie’s output to an ELK stack, Graylog,
or Azure Sentinel were added. Files that are downloaded from or uploaded to Cowrie are still saved
for later review.

Fingerprinting. While Cowrie deployments were fingerprinted in (Vetterl and Clayton, 2018) and
(Srinivasa et al., 2021a), this involves a very high level of effort and time investment, especially for the
up-to-date version. Since the developers adapted the responses of the underlying Twisted library (at
least for SSH), fingerprinting the implementation requires a lot of overhead in SSH messages.

More than half the identified Cowrie instances detected by (Srinivasa et al., 2021a) were only
labeled with a Shodan honeyscore of 0.0 or 0.3. Thus, they are difficult to identify with moderate
effort. Honeyscore is described in Section 3.4.

Deployment options. Cowrie comes with a Dockerfile and an official image. The size of 382 MB as
well as the availability of different architectures allow for versatile application. The image is based on
a slim version of Debian Bullseye and offers options for AMD, ARM, and MIPS, among others.

Popularity. Cowrie is one of the most well-known honeypots for SSH. It is not only mentioned in every
honeypot survey or comparison, but 4.1 thousand stars and 782 forks on GitHub show the open-source
community’s recognition.

3.2.15. Sshd-honeypot

Sshd-honeypot (amv42, 2018) is a modified OpenSSH implementation using Cowrie as back-end
(amv42 and Oosterhof, 2018) for command interpretation and logging. The additional middleman was
implemented to circumvent fingerprinting of the SSH library (Twisted.Conch) used by Cowrie (Vetterl
and Clayton, 2018).

System architecture. Sshd-honeypot has a straightforward system architecture which is illustrated in
Figure 18. A modified OpenSSH 7.3p1 daemon builds the honeypot. To ensure Cowrie functionalities,
a modified Cowrie serves as the back-end. The SSH daemon listens on port 65222 by default. Thus,
it requires an iptables rule to forward incoming SSH traffic from port 22. The port can be changed
in the sshd config file.

Figure 18: Architecture of the sshd-honeypot. The modified OpenSSH server utilizes a Cowrie back-end for command
interpretation.

Software architecture. Since this honeypot depends on a real OpenSSH implementation, sshd-honeypot
was written in C. It depends on libssh as an SSH library. Release 7.3p1 is the version of OpenSSH
that has been modified.

25



Logging. The back-end Cowrie is only modified to interpret commands for sshd-honeypot, logging
capabilities persist.

Fingerprinting. The authors mention that this architecture was created to circumvent fingerprint-
ing presented in (Vetterl and Clayton, 2018). This SSH honeypot cannot be distinguished from an
OpenSSH 7.3p1 server from the outside. Sshd-honeypot nullifies fingerprinting but requires a custom-
modified client for each represented OpenSSH version.

Deployment options. The honeypot runs as a daemon like a real OpenSSH server. Since there are
container environments running OpenSSH servers, a Docker deployment of sshd-honeypot is possible.

Popularity. With 22 stars on GitHub sshd-honeypot is a rather small side project of Cowrie. Since
the authors of (Vetterl and Clayton, 2018) presented a breakthrough in honeypot detection, it is worth
mentioning possibilities to circumvent those attacks. Developed under the BSD-3-Clause license, it
was last updated in 2018.

3.2.16. Sshesame

Sshesame (Jakab, 2023) is another medium-interaction SSH honeypot, that focuses on the attacker’s
behavior once they have access to the system. While the depth of the emulated system shell does not
reach the likes of Cowrie, it has comprehensive configuration capabilities.

System architecture. The honeypot accepts incoming SSH connections and allows the adversary to log
in to the system. As shown in Figure 19, the attacker is then presented with a system shell. The shell
is emulated and executes a limited list of commands, e.g., cat, su, or echo.

A configuration can be passed to modify the offered SSH service; this includes the protocol banner
as well as the welcome message. Sshesame was written with an emphasis on an adjustable attack
surface. For this reason, the honeypot allows adjusting key exchange algorithms, ciphers, and macs
used by SSH.

Figure 19: Architecture of sshesame.
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Software architecture. Sshesame is written in GO and the latest release v0.0.27 depends on GO-lang
1.14.0. Every functionality is implemented in an individual script which allows for an expansion of
functionalities. The implementation depends on standard GO crypto libraries (Golang.org, 2023) like
crypto/ssh or crypto/x509 for certificates, signatures, and SSH. Configurations are passed as YAML
file.

Logging. On default sshesame logs connections and shell commands on the system console. The honey-
pot allows configuring JSON logging as well as a connection to Prometheus. Prometheus (Prometheus,
2023) is an open-source tool for system monitoring.

Fingerprinting. Sshesame is a unique case because the honeypot allows configuring every parameter
used in the SSH handshake. This does not prevent extensive probing of the implementation, but it
does prevent passive fingerprinting by recording only the SSH handshake. Fingerprinting is therefore
a significant overhead for the adversary.

Deployment options. Sshesame provides introductions to run as a daemon or a Docker deployment.
The Docker image is set up in a multi-stage build process: the code is first compiled in a GO-lang base
image and then deployed in a slim Alpine or distroless image. This results in a comparatively very small
image with 33.8MB of size. Furthermore, sshesame provides builds for linux-amd64, linux-arm64,
linux-armv6, and linux-armv7 architectures in its GitHub repository.

Popularity. Sshesame has gained a lot of popularity considering it is a one-person project. The hon-
eypot has received 1.2 thousand stars and has 74 forks on GitHub. It is released and maintained under
the Apache-2.0 license. Most of the code base is from 2021, but sshesame still receives constant
updates.

3.2.17. Wetland

High-interaction environments can be built through every communication protocol granting remote
access to a system. Notable functionalities are different approaches to logging and the usage of Docker
containers as high-interaction environments. These honeypots are associated with the highest main-
tenance effort because a complete system is given to an attacker. While caused damage is minimized
by using Docker environments, the risk of systems being weaponized against other targets is still an
issue.

Wetland (ohmyadd, 2018) is a high-interaction SSH honeypot. It uses Docker containers to
minimize the maintenance effort and the risk of high-interaction deployments. Wetland uses Hon-
SSH’s (Nicholson, 2022) networking to be a transparent proxy. The honeypot combines the low-
maintenance effort of MHs with the insights of high-interaction systems. While containers are a useful
tool for this, they should not be left entirely unsupervised.

System architecture. As shown in the Figure 20, the honeypot utilizes container environments. Wet-
land only acts as a proxy and forwards incoming SSH connections to a Linux container. The container
is not managed by Wetland, rather the address of the container is set in the configuration file. As
the container environment is not part of the Wetland implementation, different distributions can be
chosen as the base image for the honeypot.
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Figure 20: Architecture of the Wetland honeypot.

Software architecture. Wetland depends on Python 2.7, Paramiko for SSH, and IPy for IPv4 and
IPv6 capabilities. The main.py script initializes the Wetland servers and services according to the
configuration file wetland.cfg.default. Python servers for SFTP, SSH, and TCP are included.

Further, a Docker image running an SSH daemon is necessary to provide a high-interaction envi-
ronment.

Logging. Wetland logs shell interaction, SCP and SFTP files, exec-commands, and reverse/direct-forward
interaction of the adversary. Logs are either written to text/JSON files or can be sent via E-Mail,
MQTT, or bearychat. Since logs are stored on the proxy, there is no risk of exposing logs on the
honeypot machine to an adversary.

Fingerprinting. The dedicated high-interaction environment inside a container impedes fingerprinting.
Since the Wetland proxy is transparent, an adversary only receives the container’s SSH fingerprint—the
SSH implementation can be chosen by the defender.

Deployment options. While the honeypot itself does not provide a Docker image, it relies on a Docker
environment to function. As Wetland depends entirely on Python, it is possible to set it up as a
container and deploy the entire honeypot system as containers.

Popularity. Wetland is a rather small project, with 120 stars and 25 forks on GitHub. Although the
project has not received any commits since 2018, its early use of container technology is worth noting.

3.3. Honeypot Frameworks

Honeypot frameworks combine a collection of honeypots to offer a wider range of possibilities. A
central configuration and deployment of honeypots for different protocols and services as well as a joint
data collection are reasons for a framework deployment. This section provides an overview of state-of-
the-art honeypot frameworks or ones with unique capabilities. Rather than focusing on the features
of individual honeypots, we want to highlight data collection, presentation, as well as deployment
possibilities. A comprehensive overview of all surveyed open-source frameworks can be found in Table
3.

Honeyd (Provos, 2004) not only was one of the first honeypot frameworks but implements function-
alities rarely seen in other honeypot implementations. The framework is able to deploy multiple fake
hosts inside the local network and simulate their network stack. TCP, UDP, and ICMP packets as well
as scans of closed ports are answered correctly. The user can add arbitrary latency between hosts into
the configuration to deceive traceroute tools. In addition, the framework supports the use of different
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Table 3: Overview of open-source honeypot frameworks.

Framework Last Maintained Type

Honeyd (Provos, 2004) 2007 Honeynet
T-Pot (Deutsche Telekom Security GmbH, 2023) 2023 Collection of 23 honeypots

Chameleon (QeeqBox, 2022) 2022 Collection of 19 honeypots
OWASP Honeypot Framework (The OWASP Foundation, 2023) 2023 Deployment of modules

HoneyDB (Deception Logic, Inc, 2022a) 2022 Distributed honeypot network

TCP/IP fingerprints—these are used when remotely identifying OSs—for each host to simulate a real
system.

T-Pot (Deutsche Telekom Security GmbH, 2023) is a honeypot framework developed by Deutsche
Telekom Security GmbH looking to be an all-in-one solution for honeypot deployment. The framework
contains more than 20 honeypots that can be deployed via a Docker container; including well-known
implementations for different services, for example, SSH (Cowrie), HTTP (SNARE/TANNER), and
SMTP. To complement a large number of deployable honeypots, the framework also contains a web
interface to analyze the traffic seen by the deployed instances. Tools like p0fv3 (Zalewski, 2014),
fatt (Adel Karimi, 2022) and geoip-attack-map (eddie4 and May, 2020) are used to gather data and
visualize it afterward. T-Pot is designed for deployment on local machines and virtual machines in a
cloud setup.

Chameleon (QeeqBox, 2022) contains customizable honeypots for 19 different protocols and ser-
vices, including SSH, HTTP, E-Mail, and database protocols to analyze network traffic, scanning
attempts, and credentials. The results are presented on a Grafana (Grafana Labs, 2023) web interface.
The individual honeypots are written in Python and deployed into Chameleon via a Docker container.
For most protocol implementations Twisted is used as a protocol library; protocol identification ban-
ners are customizable. Incoming traffic payloads are parsed and compared with typical patterns. The
simple automation process supports cloud (AWS EC2) deployment.

OWASP Python Honeypot (The OWASP Foundation, 2023) is a honeypot framework supporting
Python 3.x. The framework currently implements modules for SSH, FTP, HTTP, ICS, and SMTP
for demonstration purposes. Further, the Docker-based modules come with a weak password ver-
sion—these grant easy access for any adversary to monitor attacker behavior—as well as a strong
password version to monitor brute-force attempts. The SSH module is implemented through the
Paramiko library and reveals that when fingerprinted. Configuration possibilities include port config-
uration as well as a reset feature to automatically reset containers after a given time period in case
of corruption. An API server and Elasticsearch (Elastic NV, 2023) are used to log data collected by
honeypots and a Grafana Web UI for representation. Elasticsearch as well as the API server do not
need to run on the same system as a honeypot instance and can be dockerized.

HoneyDB-Agent (Deception Logic, Inc, 2022a) is a honeypot framework for several different ser-
vices, including SSH, Telnet, FTP, and HTTP. Even though the agent can log attack activity locally
and function as a standalone honeypot, the ultimate goal is to contribute honeypot findings to the
HoneyDB website (Deception Logic, Inc, 2022a). Thus, creating a network of honeypots that covers
large parts of the globe. Incoming data is accumulated and a general overview is provided about the
top attacked hosts and services. All data can be accessed via HoneyDB REST API and there is no
need for local log management (Deception Logic, Inc, 2022b). The interaction level provided by the
individual service honeypots depends on the functionalities of the emulation plugin.

3.4. Tools for Honeypot Testing

In this section, we discuss tools that provide useful functionality for honeypot development. In
particular, these tools help the developer verify that the honeypot is correctly mimicking the target
system. Another subset of these tools supports the implementation of packet inspection and deception
techniques.

3.4.1. Network Scans

Network scans are an important first step when investigating a target system. Identifying running
services can reveal critical information about the target system.
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Nmap (Gordon Lyon, 2022), short for “Network Mapper”, is an open-source tool for network recon-
naissance. While the prevalent use is in port scanning, Nmap has a wide range of other functionalities
to offer. Scans can be used to detect the OS running on a remote host by comparing the TCP/IP
fingerprint to the Nmap OS database. Further, Nmap is able to do version detection of running ser-
vice applications by inspecting IP packets sent by the remote host. This tool can be used for broad
network scans as well as closer reconnaissance of single targets and is an important tool for attackers
and defenders to get a first impression of the device in front of them.

Shodan (Shodan, 2023d) is a search engine for devices connected to the Internet. It allows the
user to search for arbitrary terms and IP addresses to get general information like the autonomous
system number, Internet service provider, and organization. Further, open ports are displayed as well
as basic headers returned by the service. More functionalities include monitoring of owned devices
and visualization of search results on a geo map interface (Shodan, 2023c). Shodan images (Shodan,
2023b) allows you to browse all screenshots collected by Shodan. Known alternatives for Shodan
include Cencys (Censys, 2023) and ZoomEye (Knownsec, 2023).

3.4.2. Fingerprinting Operating Systems

While tools capable of fingerprinting OSs are also network scanners, it is useful to know not only
how these OS scanning features work, but also how to deceive them.

Xprobe2 (binarytrails, 2021) is a tool designed for TCP/IP fingerprinting remote operating systems.
While other OS scanners rely on static database comparisons to identify the remote OS, Xprobe2 values
the results of each probe sent with a statistical approach to find the best match possible. This procedure
is necessary because TCP/IP packets can be manipulated by network devices between the own device
and the remote host (Arkin and Yarochkin, 2002). In this case, exact matches are difficult to obtain,
therefore, a valuation of the individual results can be more accurate.

p0fv3 (Zalewski, 2014) is a passive fingerprinting tool to identify devices that communicate via
TCP/IP without any active probing. In contrast to, for example, Nmap or Xprobe2, p0fv3 does not
send any packets to the remote host. While this method allows one to do reconnaissance without
attracting attention, it relies on being able to receive network traffic from the target device.

OSfooler-ng (Sanchez, 2019) is an open-source project that was developed to prevent the finger-
printing tools described above, from successfully identifying the OS running on the local machine;
this is done without the need to modify the system kernel. For this to work, OSfooler-ng is using
the databases provided by p0fv3 and Nmap to adopt the chosen TCP/IP fingerprint and fool remote
network scanners.

3.4.3. Service Fingerprinting and Vulnerabilities

Once again, specialized network scanners can be used to get a better understanding of the target.
What makes those tools especially useful is the capability to reveal honeypots running on a target
system if those are susceptible to service fingerprinting or use default configurations known to scanners.

Hassh (Reardon et al., 2022) can be used to fingerprint SSH client and server implementations. After
the initial identification message, server and client exchange their supported suites for key exchange,
encryption, and authentication. Those lists are combined and hashed into an MD5 hash which can be
stored and used for comparison. This tool further includes a hasshGen script to automatically generate
Docker containers with a specific SSH implementation version to extract the given fingerprint. Hassh’s
repository includes a list of OpenSSH, Paramiko, and Dropbear SSH clients, for which the Hassh
fingerprint database was already generated.

Shodan honeyscore (Shodan, 2023a) is an API offered by Shodan to evaluate whether a given host
might be a honeypot. The score, ranging from 0 to 1.0, determines the probability of the host being a
honeypot. As the source code is not openly available, we have no certainty about the way it operates;
the authors of (Srinivasa et al., 2021a) believe that there are overlaps with their technique.

Open Vulnerability Assessment Scanner (OpenVAS) (Greenbone, 2023) is a comprehensive vulner-
ability scanner that combines the capabilities of many of the above tools. It creates scan reports for
the entire system including lower levels of the OSI model. Scan operations can be customized and
scheduled, thereby allowing automated testing of the network’s systems and honeypots.

Honeyscanner (Koufakos et al., 2023) is an open-source tool that is developed to identify vulner-
abilities in honeypots. As we discuss in Sections 2.4 and 4.2, attacks on honeypots are an increasing
part of academic research. Honeyscanner is a tool that supports honeypot developers and maintainers
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in keeping their honeypots secure. This ranges from passive attacks to active probing, denial-of-service
attacks, or software library exploitation. To our knowledge, Honeyscanner is one of the first tools that
specifically targets honeypots.

3.4.4. Network Packet Inspection

Network packet inspection is focusing on gathering and analyzing incoming network traffic to find
interesting and new attack patterns and packets. Further, the handling of network-level packets can
be useful to deceive reconnaissance tools.

Wireshark (Gerald Combs, 2022) is an open-source tool and the predominant choice for network
packet inspection that can be used to analyze network traffic from a variety of different protocols. It
supports live captures of traffic as well as offline analysis and decryption support for, among others,
IPsec, TLS, andWPA2. The capture export possibilities allow automated analysis of the entire network
traffic.

Snort (Cisco, 2022), an open-source Intrusion Prevention System (IPS), has many options for
configuration and can also be used for packet sniffing and logging. Furthermore, there are implemented
preprocessors for a range of popular protocols like SSH or HTTP which inspect incoming packets for
known protocol exploits.

Scapy (SecDev, 2022) allows the user to inspect, manipulate, and craft network packets for a
range of protocols. The Python library supports not only the manipulation of incoming and outgoing
packets but also, for example, network scans, tracerouting, and attacks. It enables the specialization
of capabilities of common network tools like arpspoof, tcpdump, and p0fv3 (SecDev, 2022).

4. Honeypot Research

This section provides an overview of academic research regarding honeypots, honeypot detection
strategies, and honeypot evasion techniques. We found that, especially in the realm of honeypot
evasion, academic research provides innovative methods that are yet to be seen in open-source solutions.
To highlight more new approaches to honeypots, we present academic work independent of the target
domain. An overview of honeypot evasion methods from presented publications is shown in Table 4.

4.1. Honeypots from Academic Research

Honware (Vetterl and Clayton, 2019) is a Customer Premise Equipment (CPE) and IoT honeypot
framework allowing the user to upload their own firmware image and deploy it as a honeypot. This
solution, based on a custom kernel is chosen by the authors to circumvent fingerprinting attacks and
to improve existing emulation strategies regarding scalability.

The authors in (López-Morales et al., 2020) present a honeypot for Programmable Logic Con-
trollers (PLCs). HoneyPLC emphasizes the credibility of the system and the automation of honeypot
generation. The included PLC profiler tool scans a specified target to automatically create a PLC
profile. These PLC profiles, afterward, are deployed on the honeypot. To prevent an attacker’s at-
tempt at fingerprinting, Honeyd’s approach of modifying TCP/IP fingerprints is used. HoneyPLC is
intended to track the rapid development of malware in the ICS domain. The honeypot is available on
GitHub (López and Doupe, 2023).

In (Srinivasa et al., 2021b) the authors present RIoTPot; a honeypot for IoT and Operational
Technology. The Honeypot—which is available on GitHub (Network Security Group, Wireless Com-
munication Systems at Aalborg University, 2023)—is modular in design to allow versatility and ex-
pandability. RIoTPot can be deployed in low- and high-interaction mode, however, these modes can
also be combined for different services resulting in a hybrid-interaction level. Low-interaction modules
are integrated as GO-lang packages and, thus, allow the addition of custom packages. The high-
interaction mode depends on container images to provide a seemingly realistic environment to the
adversary. RIoTPot’s currently implemented protocols are SSH, Telnet, HTTP, Modbus, MQTT, and
Constrained Application Protocol (CoAP) but further protocols from the ICS domain are planned.

In (Touch and Colin, 2022) the authors compare the findings of conventional honeypots like Cowrie
to those of their own honeypot Asguard (Touch and Colin, 2021). Asguard is a Reinforcement Learning
(RL) agent that is deployed inside an SSH proxy to monitor attacker behavior on an HH. The RL agent
is trained to prevent the high-interaction environment from being compromised by intercepting and
substituting malicious command line inputs. Besides analyzing gathered honeypot data, the authors
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also highlight the advantage of HHs: as long as an attacker is not able to compromise the system,
high-interaction environments are the best source of attacker data. While Asguard is an approach
capable of deceiving adversaries for a longer period of time compared to conventional solutions, the
risk of fingerprinting attacks is still an ongoing concern discussed in the paper.

4.2. Detecting Honeypots

In addition to the methods that we discuss in Section 2.4, there are other publications on honeypot
detection. In (Huang et al., 2019) the authors present an approach to automatically identify honeypot
deployment. They use a machine learning model to predict a system’s nature based on various input
features: application layer header fields (e.g., HTTP options), network layer header fields, and other
system characteristics (e.g., system fingerprint). Shodan and other scanners for Internet-connected
devices are used to gather these input features. Although the authors limit their approach to HTTP,
FTP, and SMTP, the successful results make this approach interesting for other protocols. In contrast
to (Vetterl and Clayton, 2018) and (Srinivasa et al., 2021a), this work does not disclose which honeypots
were identified.

A fuzzing-based technique to identify honeypots is presented in (Sun et al., 2020). As in traditional
fuzzing, the authors aim to provoke error handling or unintended use cases to distinguish between hon-
eypots and genuine systems. They probe systems on the Internet and evaluate the outputs supported
by machine learning. Since Internet probing cannot be executed as aggressively as regular fuzzing
(e.g., causing system crashes) network packets and mutation strategies are constrained.

Fingerprinting adaptive honeypots—honeypots that try to automatically identify threats—is dis-
cussed in (Obaidat et al., 2021). The authors present a concept to confuse adaptive honeypot solutions.
By repeatedly attacking honeypots with non-malicious network packets or command line inputs, those
adaptive systems learn to identify them as a threat. Those same inputs can subsequently be used to
force a reaction of honeypot instances that deploy the identical threat model.

4.3. Evasion Strategies

The authors in (Albanese et al., 2014) discuss an algorithmic approach to obscure an attacker’s view
of the network. The algorithm assigns each device a changing state primitive. A primitive consists of
the definition of an OS fingerprint and methods for protocol scrubbing—the change of service defined
fields in network protocol headers (Watson et al., 2004)—that a client adopts temporarily. Presenting
a manipulated view of the systems within the network prevents an attacker from reliably identifying
OSs and services running on each device. This information is used to target specific hosts with known
vulnerability exploits. Although the method is developed to further secure real network hosts, the idea
of manipulating service or OS fingerprints to provide a different image of a device is a useful approach
in the context of honeypot evasion.

The authors in (Naik et al., 2018) address fingerprinting of LHs by doing in-depth research about
TCP, UDP, and ICMP probing. Further, they develop an approach to detect fingerprinting of hon-
eypots. The system evaluates incoming TCP options and flags as well as UDP and ICMP packets
to detect an ongoing fingerprinting attempt. It is tested against Nmap OS and service fingerprinting
attacks and is able to classify the majority of attacks with a medium to high attack probability rating.
Understanding the procedure of active fingerprinting attacks is important to prevent honeypots from
being easily identified. Further, the identification of such attacks is helpful when analyzing scanning
attempts in honeypot-acquired data.

Honeypot detection and evasion is an ongoing race between attackers and defenders. For example,
malware infections are accompanied by initial checks to identify honeypots. In (Dowling et al., 2019),
the authors present a honeypot that adapts to honeypot detection methods using RL. The approach
specifically targets automated attacks and attempts to find optimal responses to the attacker’s com-
mand line inputs. Evaluation results show that bots can use a large command sequence to test systems
for authenticity, and that the presented honeypot is able to learn and withstand these sequences in
case of repeated attacks.

The ability to send decoy traffic between honeypots is looked at in (Siniosoglou et al., 2020). But
rather than making use of pre-configured network traffic, a deep neural network is generating realis-
tically looking network traffic in a generative adversarial network architecture. This aims to improve
Conpots’ effectiveness in imitating a production device inside an ICS environment by introducing
authentic network traffic to the honeypot.

32



Another approach to decoy traffic is presented in (Miah et al., 2022). In addition to adversarial
learning, the authors used game theoretic models to optimize the decoy traffic. This supports decisions
on how much traffic of which kind should be deployed. Furthermore, the authors create their models
with software-defined networking in mind: decoy flows are designed to mislead attackers who passively
monitor the network.

In (Asrigo et al., 2006) the authors implement three different monitoring designs on virtualiza-
tion platforms to monitor honeypots. The sensors monitor kernel executes and can interrupt kernel
instructions. This not only allows for event logging but, in theory, can also be used to limit an at-
tacker’s actions. In the evaluation, the authors show that VMMs are capable of efficiently logging
an adversary’s activity on the honeypot. Nevertheless, research has also shown that fully transparent
monitoring is almost impossible (Garfinkel et al., 2007). Due to the increasing performance of hard-
ware and virtualization techniques, however, timing discrepancies are difficult to detect, especially in
a network where latency occurs.

In (Du et al., 2021) the authors present a logging approach based on the record and replay func-
tionalities of VMs. The VMM captures activities on the honeypot and defenders can retrace all the
attacker’s steps in replay afterwards. To not record every trivial brute-force attack, the framework has
an on-demand record functionality that starts the recording only if adversaries take notable actions.
These are defined by static rules, e.g., certain command executions. Replays can also be automatically
scanned for interesting events to provide a useful entry point.

The authors in (Mohammadzad and Karimpour, 2023) present a local monitoring technique that
does not require virtualization. They utilize Direct Kernel Object Manipulation (DKOM), a method
used by modern rootkits to hide their existence on infected systems; DKOM manipulates kernel data
structures to hide data and processes. Usually, adversaries use rootkits to install backdoors, key
loggers, and other monitors onto a victim’s machine. In this case, the same technique is used to
monitor the adversary’s behavior on a honeypot. Within the evaluation, the authors show that their
honeypot implementation leaves no traces in memory and requires only low kernel modifications.

Table 4: Summary of honeypot evasion techniques from academic research.

Evasion mechanism Description References

Manipulate network-facing
attack surface

Honeypots adapt packets and header fields at
the protocol level to prevent detection.

Albanese et al.; Naik et al.; Siniosoglou et al.
López-Morales et al.; Miah et al.

Learn detection mechanisms Honeypot learn and prevent automated detection mechanisms. Dowling et al.

Hide monitoring
Honeypots hide that the system is monitoring
the adversary’s approach.

Asrigo et al.; Du et al.
Mohammadzad and Karimpour

Defuse environment
Honeypots provide seemingly real environments
that are protected from abuse.

Vetterl and Clayton; Srinivasa et al.
Touch and Colin

5. Discussion of Honeypot Detection

During our work with the various honeypots and our research regarding the topic, we encountered
different types of honeypots and frameworks. Whether the honeypot is a generic solution trying to
detain bots or a specialized environment that targets human attackers, it can only operate as intended
whilst not revealed as such. Recent research in fingerprinting has not only posed new challenges to
honeypots but also brought new approaches to deception using container deployments.

In (Vetterl and Clayton, 2018), fingerprinting was entitled as not fixable for current honeypot
architectures. While we agree that the capability to reveal honeypots is severe, we believe that differ-
entiation by use case is necessary. The ease of fingerprinting must match the desired attacker profile.
Crafting various protocol strings to detect different honeypots is an additional expense as well as a
lot of overhead for botnets or automated scans which are targeting millions of devices. Thus, LHs
are probably at a lower risk of being detected, simply because the attack is not worth the additional
cost. This being said, fingerprints taken through the protocol handshake must be considered even
for low-interaction devices. This kind of detection is trivial and done without a lot of overhead in
computing or time investment.

For specialized systems and higher interaction levels, the effort and cost of fingerprinting must
increase. Since high-interaction environments target human attackers, the time invested into individual
attacks rises. Thus, it is expected that the adversary will take the time to investigate the system. The
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same holds true for specialized environments: adversaries that are targeting uncommon systems with
extraordinary services or operating systems are probably familiar with the target environment and will
detect superficial replicas.

Kippo, Cowrie, Glastopf, Dionaea, and Conpot were all fingerprinted in (Vetterl and Clayton,
2018) and (Srinivasa et al., 2021a). While in (Srinivasa et al., 2021a) default configurations were a
major reason for the detection of many deployments, the authors of (Vetterl and Clayton, 2018) used
active probing. Both discovered a particularly large number of deployments of outdated versions. As a
result of the approach in (Vetterl and Clayton, 2018) the developers of Cowrie customized the protocol
responses of the utilized SSH library and developed the proxy sshd-honeypot. Although this reaction is
optimal and desirable, it is very time-consuming, especially as the number of supported protocols and
protocol versions is increasing. For highly customizable environments with a lot of different protocols,
the value of findings does not justify the effort. This has also been observed in our work with the
surveyed honeypots. Versatility in the offered protocols and generic use cases are mostly coupled with
easier fingerprinting. Honeypots which are specialized on one protocol or have a very specific use case,
are way more difficult to detect. An example of such a specialized honeypot is SNARE/TANNER
which is used for web-application cloning. While this allows only HTTP usage, the quality of the
impression is more convincing. Another approach is the use of containers as a proxy, replacing the
fingerprint of the honeypot service with a real service implementation. This technology is rather used
by MHs or HHs like (amv42, 2018) or (ohmyadd, 2018) to justify the additional expense.

Despite the benefits of container environments, they should not be used carelessly. Misconfigu-
rations of the Docker environment can lead to lesser security or even vulnerabilities (The OWASP
Foundation, 2022). For example, exposed docker daemons have already caused the takeover of con-
tainers (Palo Alto Networks, 2021) and honeypots (Sebastian Walla, 2022).

In Sections 3.2.10 and 4, we mention attempts to use machine learning to improve the deception
of honeypots. While those approaches seem promising to improve a honeypot’s cover, we have not yet
seen such approaches in current open-source software.

6. Conclusion

Honeypots are valuable decoy resources that can mimic various types of systems. In this survey,
we covered open-source honeypots with different focuses and levels of detail. Whether one seeks a web
application honeypot, an SSH honeypot, or a honeypot mimicking a mail server, there are solutions
for most use cases. Especially bigger open-source projects offer high quality due to the great number
of contributors.

During the interaction with deployed honeypots, we observed that customization for different use
cases comes with a trade-off in deceptiveness. This is confirmed by recent research in honeypot
discovery: honeypots that specialize in mimicking a single system or service are more difficult to
detect than their customizable counterparts. But depending on the type of attacker that is targeted
by the honeypot, discovery methods do not nullify the honeypot’s value. Especially automated attacks
targeting a large number of devices cannot invest the additional overhead that is needed to detect the
presence of such a decoy system.

Another observation is the widespread utilization of container technology. Almost all honeypots
offer docker images or even rely on containers as a honeypot or proxy. Although we see great oppor-
tunities in container deployments, especially for automation purposes, they certainly introduce new
challenges regarding the security of the honeypot.

During the course of this paper, we worked with open-source solutions for many use cases. These
are ideally not deployed out of the box without preparation. While most are deployment-ready, default
configurations should be changed, and there might be a need to further customize protocol responses
if specialized environments are wanted. However, this is the advantage of open-source solutions, as
they allow both: near-instant deployment and protocol-level customization for experienced users.
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