
©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

P4-LISP: A P4-Based High-Performance Router for
the Locator/Identifier Separation Protocol
Benjamin Steinert∗†, Marco Häberle∗, Jan-Oliver Nick∗, Dino Farinacci‡, Michael Menth∗

∗ University of Tuebingen, Chair of Communication Networks, Tuebingen, Germany
† University of Tuebingen, Zentrum für Datenverarbeitung, Tuebingen, Germany

‡ lispers.net, California, USA
Email: {benjamin.steinert,marco.haeberle,menth}@uni-tuebingen.de,

jan-oliver.nick@student.uni-tuebingen.de, farinacci@gmail.com

Abstract—The networking paradigm locator/identifier split
decouples locating and identifying functionality of addresses.
Thereby it improves multi-homing, fail-over, mobility, traffic
engineering over the Internet, and routing scalability.

The Locator/Identifier Separation Protocol (LISP) is a promi-
nent incarnation of that paradigm which recently became an
Internet standard. However, existing LISP implementations are
either proprietary or have limited performance, which makes
their deployment difficult in high-speed networks. Programming
Protocol-independent Packet Processors (P4) is a programming
language that facilitates the implementation of custom data plane
processing on high-performance switches with line rates of up to
400 Gbit/s.

In this work, we present P4-LISP, an open-source P4-based
proof of concept implementation of a high-performance LISP
router. It supports all relevant features such as ITR, ETR, RTR,
P-ITR, P-ETR, NAT-traversal, LISP-NAT, and mobile nodes. As
control plane, the open-source implementation lispers.net has
been integrated on the switch. Security features are added to
protect the control plane from being overloaded by the high-
performance data plane. The paper describes the architecture
of P4-LISP in detail and extensively evaluates performance,
functionality, controller performance, and overload protection.

I. INTRODUCTION

In today’s Internet, IP addresses both identify a host and
locate it in the Internet for steering packets to their desti-
nations. The locator/identifier split (Loc/ID split) paradigm
decouples both functions [1], which improves multi-homing,
fail-over, mobility, traffic engineering (TE) over the Internet,
and routing scalability. This is essentially achieved through
overlay networking.

The Locator/Identifier Separation Protocol (LISP) [2] imple-
ments Loc/ID split for use in today’s Internet and has become
IETF standards track in October 2022 [3]. LISP operation
is visualized in Figure 1. LISP defines LISP domains where
domain hosts are addressed with Endpoint Identifiers (EIDs).
These EIDs are public IP addresses which are not routable
in the Internet as their prefix has not been announced through
BGP. This improves global routing scalability as it saves space
in the BGP routing tables. However, IP packets addressed to
an EID can be forwarded within their local LISP domain,
but not via the Internet. For inter-domain communication,
border routers of LISP domains serve as tunnel routers, e.g.,
to other LISP domains. Such a tunnel router has a public IP

RLOC space

Host 1

EID: 10.10.10.1

Mapping system

LISP site 1

EID-prefix: 10.10.10.0/24

LISP site 2

EID-prefix: 20.20.20.0/24

ITR 1

RLOC: 180.220.54.13

ETR 2

RLOC: 134.2.5.43

Host 2

EID: 20.20.20.2

1

2

4

3

Fig. 1. LISP hosts are addressed with EIDs which are not globally routable. In
contrast, xTRs have globally routable addresses, the RLOCs. For inter-domain
communication, packets from within a LISP domain are encapsulated by
ITRs with routable RLOCs, effectively forming an overlay over the Internet.
The destination ETR decapsulates the packets and forwards them into the
destination LISP domain.

address from its Internet service provider which is routable
on the Internet and is called Routing Locator (RLOC). Thus,
IP addresses used for LISP are subdivided into an EID and
RLOC space. A tunnel router encapsulating packets from
within a LISP domain with its RLOC is called Ingress Tunnel
Router (ITR) while a tunnel router decapsulating traffic for a
LISP domain is called Egress Tunnel Router (ETR). A router
implementing both ITR and ETR functionality is called xTR.

Figure 1 illustrates how hosts from different LISP domains
communicate with each other. Host 1 in LISP site 1 sends a
packet to Host 2 in LISP site 2 using its EID as destination
address (1). When the packet is received by ITR 1, it requests
the RLOC of ETR 2 from the LISP mapping system (2). The
LISP mapping system is a distributed database which holds
EID-prefix-to-RLOC mappings for all EID-prefixes. Then,
ITR 1 encapsulates the packet with that RLOC as destination
address (3). Based on this RLOC, the packet is forwarded to
ETR 2 over the Internet. ETR 2 decapsulates the packet and
forwards it to Host 2 in LISP site 2 (4).

This example describes only the very principle of LISP.
EID-prefix-to-RLOC mappings are stored by ITRs in a so-

©2023 IEEE 9th International Conference on Network Softwarization (NetSoft), June 2023, Madrid, Spain

LISP site 1

EID-prefix: 10.10.10.0/24

LISP site 2

EID-prefix: 20.20.20.0/24

RLOC space

xTR 1

PITR 1

Host 3

PETR 1

RTR 1

LISP-MN 1

xTR 2

w/ LISP-NAT

Host 1 Host 2

LISP-MN 2

Non-encapsulated traffic (unidirectional)

Encapsulated traffic (unidirectional)

Encapsulated traffic (bidirectional)

Fig. 2. LISP topology containing all LISP router types, including xTR, RTR, PITR, PETR, and LISP-MN. All relevant LISP functionalities are shown. First,
Tunneling between xTR 1 and xTR 2. Second, interworking between Host 1, Host 2, and Host 3. Third, LISP-MNs, and fourth, the usage of an RTR for
NAT traversal or TE.

called Map-Cache such that lookups are rarely needed. When
an ITR does not have an appropriate mapping for an EID,
the ITR may either store or drop the packet while waiting
for the mapping, which may cause packet loss in rare cases.
In addition, LISP defines mechanisms for interoperability with
hosts in non-LISP domains (LISP-NAT, PITR, and PETR), for
mobile LISP hosts, for communication of LISP hosts behind a
Network Address Translation (NAT) (NAT traversal), and for
traffic engineering (TE) over the Internet (RTR).

Programming Protocol-independent Packet Processors (P4)
[4] is a programming language for programming the data
plane of forwarding devices. Some vendors offer it as an API
to their customers such that they can realize own hardware
innovations. Amongst others, data plane programming with P4
is available for Intel’s high-performance ASIC Tofino which
supports line rates of up to 400 Gb/s [5].

While different implementations of LISP exist, both in
hardware and in software, they are either proprietary or have
limited performance. This makes deployment of LISP difficult
especially in high-speed networks.

In this paper, we present P4-LISP, an open-source P4-based
data plane implementation of LISP that can be deployed on
high-performance hardware like Tofino. P4-LISP supports all
LISP router types (xTR, PxTR, RTR), LISP-NAT, mobile
nodes, and NAT traversal. The data plane of the forwarding
device is controlled by a local controller written in Python
which leverages the open-source implementation lispers.net [6]
as LISP control plane. P4-LISP includes elementary security
measures to protect the local controller and the control plane
against overload from the data plane, which may happen due
to Denial of Service (DoS) attacks. These security measures
include, e.g., filtering of packets based on outer and inner
headers such as IP addresses.

The rest of the paper is structured as follows. Section II
provides more background on LISP and P4 and Section III
presents related work. The architecture and proof of concept

(PoC) implementation of P4-LISP are described in Section IV.
The performance of the PoC is evaluated in detail in Section V.
Finally, we draw conclusions in Section VI.

II. TECHNICAL BACKGROUND

In this section, we explain relevant LISP functionality in
detail, such as tunneling, interworking, NAT traversal, and
mobile nodes. Additionally, we briefly describe lispers.net
which implements the LISP control plane, and give a short
overview of P4.

A. LISP Tunneling

Communication between two LISP sites uses tunneling,
effectively forming an overlay over the Internet, which works
as follows. As presented in Section I, the ITR of a LISP do-
main performs a so-called map&encaps operation for outgoing
traffic while the ETR performs a so-called decaps operation for
incoming traffic. An ITR has a so-called Map-Cache to store
EID-to-RLOC mappings that are retrieved by the mapping
system. LISP encapsulation includes a UDP header, a LISP
header for LISP-specific signaling information, and an outer
IP header. In the UDP header, the source port is chosen by the
ITR while the destination port is 4341. In the outer IP header,
the routable RLOC addresses of the ITR and ETR are set as
source and destination addresses. An example of inter-domain
communication is displayed in Figure 2, between xTR 1 and
xTR 2.

B. LISP Interworking

Interworking between LISP sites and non-LISP sites comes
with two general challenges. First, LISP EIDs are not globally
routable, therefore they cannot be directly reached on the
Internet. Second, it may be the case that a non-routable EID
cannot be used as source address, e.g., because it is blocked by
the access network due to Reverse Path Forwarding (RPF) [7].

To overcome these challenges, RFC 6832 [8] suggests
three different mechanisms to enable inter-networking between

LISP and non-LISP sites, for both IPv4 and IPv6. These
mechanisms include LISP-NAT as well as Proxy Ingress
Tunnel Routers (PITRs) and Proxy Egress Tunnel Routers
(PETRs).

LISP-NAT is implemented on ITRs and treats IP packets
with an EID as source IP address and an external, routable
destination IP address just like a conventional NAT. That
means, it rewrites the EID source address into a routable IP
address using Network Address and Port Translation (NAPT),
and it performs the inverse operation on the destination address
for reverse traffic. Thereby, LISP nodes communicate with
non-LISP nodes without LISP encapsulation. Figure 2 shows
an example for LISP-NAT-enabled communication between
xTR 2 and Host 3. LISP-NAT has two disadvantages: it
requires an internal NAT table and works only for flows
initiated from within LISP domains.

PITRs and PETRs provide an alternative interworking
mechanism that also supports flows originating from a non-
LISP site to a LISP site.

A PITR is an ITR that makes large EID-prefixes routable on
the Internet by announcing them in BGP. As a consequence,
traffic destined for such EIDs is attracted by that PITR
on the Internet. The PITR performs map&encaps on these
packets so that they reach their final destination. Figure 2
shows an example where Host 3 sends packets to xTR 1
via PITR 1. A drawback of this method is that it requires
BGP announcements and leads to path stretch due to triangular
routing.

A PETR is an ETR that helps flows from within a LISP site
to a non-LISP site to leave their domain although the source
EID is not routable on the Internet. To that end, such traffic
is tunneled from the ITR of the LISP site to a configured
PETR which decapsulates the traffic. From there, it reaches
its destination. In Figure 2, communication from xTR 1 to
Host 3 uses PETR 1. Also, a PETR may lead to path stretch.

The proxy mechanism also enables communication via IP
protocols that are not supported by a LISP site. As an example,
a LISP ITR only has IPv4 Internet connectivity but wants
to reach an IPv6-only host on the Internet. By the use of a
dual-stacked PETR, i.e., with IPv4 and IPv6 connectivity, IPv6
packets can be encapsulated by the ITR with an IPv4 header
to be transported over the IPv4-only access network to the
PETR. For the reverse direction, a dual-stacked PITR receives
IPv6 packets and encapsulates them with an IPv4 header. This
mechanism is called mixed-protocol encapsulation.

C. LISP Mobile Node

LISP supports host mobility. The concept of a LISP Mobile
Node (LISP-MN) facilitates that a mobile host communicates
with a stable EID which is independent of its location [9]. A
LISP-MN constitutes its own LISP domain and implements
xTR functionality. When a LISP-MN roams into a non-LISP
site, it obtains a routable IP address which it utilizes as RLOC,
e.g., LISP-MN 1 in Figure 2. When the RLOC set of a LISP-
MN changes, this needs to be signaled via the LISP control
plane.

When the IP address of a mobile non-LISP node changes,
connections like TCP are terminated as they utilize the IP
address as part of the connection identifier. With LISP-MN,
such connections survive roaming events as the EID is used for
connection identification instead of the ephemeral IP address.
For communication with non-local, non-LISP destinations,
LISP-MNs utilize a PETR.

When a LISP-MN roams into a LISP site, i.e., behind
another xTR, it may receive one of the LISP domain’s EIDs as
RLOC, e.g., LISP-MN 2 in Figure 2. The ITR of the LISP site
receives LISP-encapsulated packets by the LISP-MN with an
EID as source address. In this scenario, communication with
the LISP-MN may result in double encapsulation of packets.

D. RTR: TE over the Internet and LISP NAT Traversal

A Re-encapsulating Tunnel Router (RTR) is a special LISP
router type that accepts LISP-encapsulated packets, decap-
sulates, and re-encapsulates them for delivery to another
RLOC. This mechanism enables TE over the Internet and NAT
traversal.

For TE over the Internet, an ITR can relay packets via
one or more RTRs, to enforce a pre-defined path towards a
certain EID. In the mapping system, specific RTR paths can
be stored for EID-prefixes via the so-called Explicit Locator
Path (ELP) encoding defined in RFC 8060 [10]. If such a
mapping is received by an ITR, it encapsulates packets towards
the respective EID-prefix with the first RTR locator in the list.
This RTR then decapsulates the packet and again encapsulates
it with the next RTR locator in the list. This continues until
the packets are received by the destination RLOC.

In many cases, e.g., for LISP-MNs, an xTR is deployed
behind a NAT. Then, the RLOC of the xTR is not globally
routable and only reachable via a NAT’s public address.
Additionally, the RLOC is not reachable until a translation
state has been established by the NAT device. A method of
enabling communication to/from xTRs behind NATs includes
the use of RTRs as anchor points [11]–[13].

E. LISP Control Plane lispers.net

Lispers.net [6] is an open-source Python implementation of
a LISP control plane, data plane, and mapping system [14].
The control plane implementation conforms to RFC 9301 [15]
and allows to use an external data plane. The communication
between the lispers.net control plane and an external data plane
is realized using IPC messages via sockets. IPC messages
are transmitted in JSON format. According to RFC 9301,
different message types are used for signaling the forwarding
information between xTRs and the mapping system. Map-
Request and Map-Reply messages are used for requesting
and delivering mapping information. Map-Register and Map-
Notify messages are used for registering and updating EID-
to-RLOC mappings.

F. P4 Fundamentals

P4 is a domain-specific programming language for the
implementation of data plane logic in a programmable switch

[4]. A P4 program can be compiled for various so-called P4
targets. These P4 targets may be software switches such as
BMv2 [16], or hardware switches, e.g., based on the Intel
Tofino ASIC [5]. P4 also supports the use of target-specific
functionalities that can be called via so-called extern functions,
which makes the code target-specific.

A P4 program typically consists of the following key com-
ponents. A parser includes the definition of headers, a match-
action pipeline consisting of Match-Action Tables (MATs),
and an overall processing logic. The parser is represented
by a finite state machine and can parse all headers that have
been defined in the P4 program, which facilitates processing
of custom headers. The MATs can be applied in a custom
order and are usually provisioned by a P4 controller. The P4
controller communicates with the data plane using a runtime
interface. Stateful packet processing is possible using so-called
registers for storing information beyond the processing of
a single packet. More information on P4 is provided in an
extensive survey by Hauser et al. [17].

III. RELATED WORK

Multiple protocols implement the locator/identifier split,
e.g., the Identifier-Locator Network Protocol (ILNP) [18], the
Host Identity Protocol (HIP) [19], Shim6 [20], or the Loca-
tor/Identifier Separation Protocol (LISP) [3] which we will
focus on in this work. LISP has been used in different use cases
that benefit from multi-homing, mobility, and TE capabilities.
A selection of these works is presented in the following,
together with an overview of existing LISP implementations.

A. LISP Use Cases

LISP has been used in various works to increase resilience
and achieve high availability by leveraging LISP multi-homing
capabilities [21], [22]. By combining LISP with Multipath
TCP (MPTCP), Coudron et al. were able to use different
network paths simultaneously to increase file transfer speeds
[23]. Additionally, this combination allows mobile devices to
use multiple wireless interfaces at the same time.

Since the EID of a host or service does not depend on its
location, LISP allows to identify and reach virtualized services
via the same addresses independently of their deployment
location. This mobility support is especially useful for data
center operations since it allows seamless Virtual Machine
(VM) mobility together with uninterrupted reachability [24].

Similarly, LISP can improve multi-link communication,
e.g, for airplanes with seamless handover between different
connection points [25]–[27], or improve mobility management
in software-defined wireless networks [28].

LISP can also be used for traffic engineering over the
Internet without complex Border Gateway Protocol (BGP)
configurations [29]. Farinacci et al. defined Explicit Locator
Paths to use RTRs for TE in intra-domain and inter-domain
scenarios [30]. Due to its TE capabilities, LISP has been used
for service function chaining [21] or for attack mitigation that
keeps an attacker oblivious of the mitigation effort [31]. LISP
overlays can work on a number of different underlays, e.g.,

over satellite networks [32]. Today, LISP is mostly used for
secure cloud and VPN access, or SD-WAN.

B. LISP Implementations

Several implementations of LISP are available for the data
plane as well as for the control plane. Most of them are either
proprietary or have limited performance.

Software implementations of LISP include OpenLISP,
Pylisp, jLISP, or Open Overlay Router (OOR). OpenLISP [33]
is an early open-source implementation of LISP for FreeBSD.
OpenLISP’s data plane runs in kernel space and includes LISP-
Cache, LISP-Database, and encapsulation and decapsulation
capabilities. PyLISP [34] is a Python implementation of LISP
that provides basic data plane and control plane functions for
an xTR. jLISP [35] is written in Java. It is flexible and can
run on various platforms, but has limited performance. Open
Overlay Router (OOR) [36], which started as the LISPmob.org
project, is a flexible and modular open-source software im-
plementation of an xTR, LISP-MN, mapping system, Dele-
gated Database Tree node, and RTR. Additionally, LISP is
implemented and used in several Software-defined Networking
(SDN) related projects, e.g., ONOS, OpenDaylight, or Open
vSwitch. The SDN controllers Open Network Operating Sys-
tem (ONOS) [37] and OpenDaylight [38] support the use of
LISP as a southbound SDN protocol [39]. Open vSwitch [40]
is an open-source implementation of a distributed virtual soft-
ware switch that supports LISP as layer 3 tunneling protocol
since 2013.

For LISP, multiple mapping systems have been presented
[41]. Among them, FIRMS forwards packets when ITRs have
no appropriate mapping in their map-cache to avoid packet
loss [42].

Proprietary hardware-based implementations are provided
by, e.g., Cisco, AVM, or LANCOM. The implementation from
Cisco is used within a wide range of their router and switch
operating systems (IOS, IOS XR, IOS XE, and NX-OS).
The solution provides functionalities of xTR, mapping sys-
tem, PxTR, and RTR [43]. AVM’s FRITZ!Box home routers
support xTR functionality since Fritz!OS 6.00 [44]. LANCOM
Systems supports xTR functionality in their router operating
system since version 10.20 [45].

IV. ARCHITECTURE AND IMPLEMENTATION OF P4-LISP

In the following, we give an overview of the architecture
of P4-LISP, followed by a description of the data plane
and control plane operation, including details of the PoC
implementation that is published under an open-source license
on GitHub [46].

A. Architecture

The P4-LISP router architecture, visualized in Figure 3,
consists of the P4 data plane implementation, a local P4
controller, and a LISP control plane.

The data plane of the LISP xTR stores EID-to-RLOC
mappings in a LISP Map-Cache, performs encapsulations,
decapsulations, re-encapsulations, filtering, and IP processing.

P4 Controller

P4 Data Plane

gRPC Client

lispers.net-itr

lisp-ipc-data-plane

P
4

-
L
I
S

P
 R

o
u

t
e
r

gRPC Server

LISP Control Plane lispers.net

P4Runtime

Fig. 3. Architecture of the P4-LISP router. The communication between the
local P4 controller and the data plane is established using the gRPC-based
P4Runtime API. Messages between the P4 controller and the control plane
are transmitted via AF_UNIX/SOCK-DGRAM sockets.

For interworking or NAT traversal mechanisms, header fields
like source or destination address, or port numbers are altered.
For the support of mobile nodes, double encapsulation is
supported.

We use a high-performance Intel Tofino ASIC integrated
within an Edgecore Wedge 100BF-32X switch [47] to deploy
the P4 implementation of the data plane.

The P4 controller inserts and deletes Map-Cache entries on
the data plane, and communicates with the LISP control plane.
It is implemented using Python and uses the P4Runtime [48]
for communication with the P4 data plane implementation. The
open-source LISP control plane lispers.net [6] is utilized as
mapping system or for communication with a remote mapping
system that resolves LISP Map-Requests.

B. P4 Data Plane Layout

The data plane of the P4-LISP router is implemented as a P4
match-action pipeline and is shown as a simplified flowchart in
Figure 4. Each packet entering the switch, LISP-encapsulated
or not, is processed by this pipeline in line rate, including stan-
dard IP ingress- and egress-processing. The pipeline consists
of match-action tables that are provisioned by the controller
via the P4Runtime. Depending on the configuration of the
router, the tables will have different entries with varying match
criteria and action sets.

Packets entering the pipeline are first processed by the
decapsulation table. For packets with destination port 4341,
the packet is decapsulated if the destination address matches
one of the router’s RLOCs. In this case, the outer IP header,
the UDP header, and the LISP header are removed, leaving
only the inner IP header. Otherwise, no action is performed.

The following two tables, i.e., the allowed prefix table and
the valid destination table, can be used to filter packets based

on source or destination address of the inner or outer IP header.
The encapsulation table represents the LISP Map-Cache. It
holds the Map-Cache entries whose number may be in an
order of magnitude of around 100 K.

If the router is configured to act as an xTR and is located
behind a NAT, the encapsulation table replaces the UDP source
port with a random static value that is provided by the control
plane. This source port will be translated by the NAT to a
value that is known by the respective RTR.

If the router is configured to act as an RTR, packets will
be subsequently decapsulated and encapsulated in the same
pipeline. In this case, the UDP source port is set to 4342 in
the encapsulation table, and the UDP destination port is set to
a specific UDP port that matches the translation state in the
NAT.

If the router is configured to act as an xTR and if LISP-
NAT is enabled for communication to non-LISP hosts, the
LISP-NAT tables act as NAT translation tables. They are used
to replace the private EID with a translated globally routable
EID that is assigned by the controller. For outbound packets
destined to a non-LISP enabled host, the source address is
adapted in table LISP-NAT (outbound). In the reverse direction,
the globally routable destination address is changed to the
translated private EID in the LISP-NAT (inbound) table. The
P4 controller provisions the respective table entries to realize
the translation between the globally routable EIDs and the
private EIDs.

In case of missing forwarding information, e.g., when a
cache miss happens, packets are sent to the local P4 controller
using the IPv4 table. Subsequently, the P4 controller issues
Map-Requests for the respective destination by leveraging
the lispers.net control plane, and writes requested Map-Cache
entries back to the data plane. Finally, the forwarding table
contains information about the respective next hop and the
packet is forwarded with the respective Ethernet header.

Note that the IP forwarding table is directly implemented
in the same data plane pipeline as LISP router operations.
This allows non-LISP packets to be processed by the router
in the same pipeline with no added latency compared to LISP
packets, different from most existing implementations.

Also, note that an xTR is typically deployed behind a NAT
and therefore has a 0.0.0.0/0 Map-Cache entry towards an RTR
installed. If the destination is not an EID, the packets may
be forwarded without encapsulation on a default route in the
underlay. So only in very few cases the packet is forwarded
to the controller and a Map-Request is sent.

C. P4 Data Plane Security Measures

Attackers can perform a DoS attack against the P4 controller
of P4-LISP and the LISP control plane by sending lots of
traffic with EIDs that are not yet in the Map-Cache. This
triggers a message from the data plane via the P4 controller to
the LISP control plane so that both may be overloaded. This
is a general problem of LISP. However, P4-LISP implements
measures to counteract such attacks and reduce load on the
control planes.

Send to controller

Other

Action run by IPv4

Drop packet
no

Send to controller

yes

Decapsulation Table

Destination address Action

RLOCs of LISP site Decapsulation

No match No action

Allowed Prefix Table

Source address,
Ingress port Action

EID-prefix of LISP
site No action

No match Drop

Valid Destination Table

Destination address Action

Allowed prefixes No action

No match Drop

Encapsulation Table (Map-Cache)

Destination address,
Random number Action

Map-Cache entries Encapsulation

No match No action

Table Conditional

IPv4 Table

Destination address Action

Known destinations Egress port

No match Send to controller

Forwarding Table (ARP Table)

Egress port Action

Port Set MAC addresses

No match No action

Final step

Serialize packet

Last request >1s ago
or new destination

Legend:

Other

Router type
and destination

step

LISP-NAT (inbound)

Destination address Action

Translated EID Replace destination

No match No action

LISP-NAT (outbound)

Source address Action

Translated EID Replace source

No match No action

UDP source port 4342 and
destination port to stored value

UDP source port from control
plane

RTR and destination
behind NAT

xTR behind NAT

Fig. 4. Flowchart for the logic of P4-LISP’s MAT pipeline.

P4-LISP supports white- and blacklisting specific outer or
inner source and destination addresses by allowing or disallow-
ing them with the allowed prefix table and the valid destination
table. Thereby EID-prefixes of known communication partners
may pass and EID-prefixes of known spammers that always
use the same source addresses may be blocked. This is efficient
with P4-LISP as filtering encapsulated packets based on outer
or inner headers is performed at line rate.

Second, packets to the controller are rate-limited to one
packet per second per destination EID. This mechanism is
implemented in P4 using registers that can be used to read and
store information on the data plane, and can be manipulated by
the P4 controller as well. For each packet that is forwarded to
the local controller, a register entry is created on the data plane.
This register entry contains a hash of the destination EID
and represents a pending Map-Request for this EID. Before
forwarding a packet to the controller, the data plane verifies if
a register entry for the hashed destination address exists. If yes,
the packet is dropped instead of forwarded to the controller
since there already is a pending Map-Request for the respective
destination EID.

On arrival of a packet at the controller, it stores the destina-
tion EID together with a timestamp. Once the EID-to-RLOC
mapping has been transmitted to the data plane, the controller
deletes the respective register entry. At latest, after one second,
the register entry on the data plane is deleted by the controller,
independent of the state of the pending Map-Request. This
effectively blocks the triggering of subsequent Map-Requests
for the same destination. This rate-limiting ensures that the
local P4 controller does not receive an unnecessarily high

amount of packets, and the issuing of Map-Requests is also
limited to one per second, as required by RFC 9301 [15].

D. lispers.net Control Plane

We integrate the open-source control plane lispers.net [6]
as LISP control plane with the hardware-based P4-LISP data
plane implementation. lispers.net offers a data plane API that
allows using the control plane with different software or hard-
ware forwarding implementations. For Map-Cache population
and other control plane communication, it specifies an Inter
Process Communication (IPC) interface for which a Unix
socket is created by the control plane. The IPC messages
sent to the socket follow a specific format found on the
respective GitHub page [14] and are encoded in JSON format.
For the socket, an AF_UNIX/SOCK-DGRAM socket called
lisp-ipc-data-plane is used. The path name of the
named socket resides in the lispers.net directory. The data
plane code is responsible for creating the named socket in the
above directory, such that the data plane and the lispers.net
code can communicate.

E. P4 Controller

The P4-LISP data plane is provisioned and controlled by
a local SDN controller that communicates with the data
plane via the gRPC-based P4Runtime [48]. In this work, the
local P4 controller is implemented using Python and runs
directly on the x86_64 management platform of the Edgecore
switch. Apart from controlling the data plane, the local P4
controller also connects to the control plane via a local socket.
Packets can be forwarded from the data plane to the controller
via the local CPU port of the Tofino ASIC. These packets

are translated by the controller into IPC messages that are
sent to the control plane. Additionally, it translates mapping
information of replies from the control plane into MAT entries
that are provisioned to the data plane.

V. EVALUATION

In this section, P4-LISP is evaluated. We start with a
description of the evaluation setup based on the presented
prototype. Then, four different evaluations are performed.
First, a large set of test scenarios is conducted to verify the
functionality of the implementation with different configura-
tions and in different topologies. Second, a bandwidth test is
performed to verify that packets are processed at 100 Gbit/s
line rate. Third, the end-to-end latency is analyzed including
communication with the local P4 controller and the control
plane. Last, a stress test examines the maximum load that the
P4 controller and the control plane can handle.

A. Evaluation Setup

For the evaluations, we use VMs as senders and receivers,
running on two VM hosts. Each VM host runs Proxmox
Virtual Environment 6.4 and is configured with an Intel Xeon
Gold 6134 CPU running at 3.2 GHz, 128 GB RAM, and
two 100G Mellanox ConnectX-5 Network Interface Cards
(NICs). The sender and receiver VMs run Ubuntu 20.04
and are configured with 4 virtual CPU cores, 16 GB RAM,
and 1 ConnectX-5 NIC that is integrated using SR-IOV. No
overbooking is performed on the VM hosts and the virtual
CPUs are pinned to physical cores to minimize the influence
of virtualization on the experimental results. All evaluations
of the P4 program are performed on the Edgecore Wedge
100BF-32X with an Intel Tofino programmable ASIC using
SDE version 9.7.0. The local P4 controller and the lispers.net
control plane run directly on the x86_64 management platform
of the Edgecore switch, equipped with an Intel Pentium D1517
CPU running at 2.2 GHz, and 8 GB RAM. Packets from the
data plane to the controller are sent via the local CPU port of
the Tofino ASIC, while the connection between the controller
and the lispers.net control plane is realized using local sockets.

B. Functional Unit Tests

A large set of scenarios and use cases is evaluated to
verify the functionality of the P4 program with different
configurations and in different scenarios. The testbed setup is
similar to the one in Figure 5. The P4 program was configured
to act as xTR, PITR, PETR, and RTR, respectively. For each
of these router types, numerous test scenarios have been eval-
uated which are listed in Table I. Amongst others, we tested
both interworking mechanisms (PITR-based interworking and
LISP-NAT-based interworking), as well as NAT traversal using
RTR. Each of these unit tests was executed successfully,
verifying the ability of the P4 program to act as LISP router
in different scenarios and deployments.

TABLE I
UNIT TESTS FOR DIFFERENT LISP ROUTER TYPES.

Router No. Test description

xTR

1 Packet encapsulation
2 Packet decapsulation
3 Load balance to multiple ETRs
4 Drop packet with invalid source address
5 Drop packet towards disallowed destination
6 NAT traversal
7 LISP-MN to lisp node
8 LISP-MN to non-LISP endpoint
9 LISP-MN to LISP-MN (EID)

10 LISP-MN to LISP-MN (RLOC)
11 Node to LISP-MN in other LISP domain
12 LISP-MN receives packet
13 Native Forwarding without encapsulation
14 LISP-NAT outbound traffic
15 LISP-NAT inbound traffic

PITR

16 Encapsulate for non-LISP host
17 Encapsulate from LISP-MN (RLOC)
18 Encapsulate from non-LISP host to LISP-MN (EID)
19 Drop packet with invalid source outside

PETR

20 Decapsulate packet with one encapsulation
21 Decapsulate packet with two encapsulations
22 Drop encapsulated packet with non-registered source

address
23 Drop twice encapsulated packet with non-registered

source address

RTR

24 Send packet towards node behind NAT
25 Send packet towards LISP-MN behind NAT
26 Receive packet from node behind NAT for encapsu-

lation
27 Receive packet from node behind NAT for encapsu-

lation to LISP-MN
28 Receive packet from node behind NAT to forward

without encapsulation
29 Drop packet if neither source nor destination is

known

P4 Switch - Edgecore Wedge 100BF-32X

ITR ETRRTR

Sender VM
Receiver VM

Fig. 5. Testbed setup for bandwidth evaluation. The sender VM sends TCP
traffic toward the receiver VM via the P4 switch. The P4 switch acts as ITR,
RTR, and ETR on different ports.

C. Forwarding Performance

For bandwidth evaluation, we use the testbed setup shown
in Figure 5. On the sender VM, ten iperf3 processes are used
to generate and send TCP traffic toward the P4 switch. Linux
buffer sizes are set to 64 MB and TCP window size is set
to 500 KB. On the P4 switch, the P4 program was modified
to perform encapsulation, re-encapsulation, and decapsulation
on incoming packets subsequently. On high-performance data
plane devices, RTR functionality is particularly challenging at
line rate since it requires both decapsulation and encapsulation.
Respective Map-Cache entries have been provisioned to the
data plane in advance. During this evaluation, no packet drops
were observed and the observed TCP goodput was approx.
90 Gbit/s which is close to 100 Gbit/s L1 capacity. Thus,

the setup is able to perform all tested operations at line rate,
demonstrating that it is possible to perform decapsulation and
re-encapsulation of the same packet at line rate on the P4
device.

D. Latency Analysis

We measure the latency that is introduced by the commu-
nication between the data plane, the local P4 controller, and
the lispers.net control plane when a new flow is established.
For this purpose, we consider that a host in a LISP site sends
traffic to another host in a different LISP site.

Initially, we assume that the appropriate EID-to-RLOC
mapping is not available in the Map-Cache of the P4-LISP
router so that a Map-Request has to be issued to retrieve
the mapping. This assumption causes a worst-case latency
which happens only if the destination is an EID that has to
be resolved by an xTR or an RTR. Usually, e.g., for an ITR
behind a NAT that runs NAT-Traversal logic, a default map-
cache is present such that packets will never experience the
latency arising from communication to the controller.

L
I
S

P
 s

it
e
 1

P4 Controller

P4 Data Plane

lispers.net-itr

lisp-ipc-data-plane

LISP Control Plane lispers.net

a h

LISP router

b

c

d e

f

g

i

L
I
S

P
 s

it
e
 2

P
4

-
L
I
S

P
 R

o
u

t
e
r

Mapping system

Host 1 Host 2

Fig. 6. Communication to a destination where no EID-to-RLOC mapping
is present in the Map-Cache of a LISP router requires communication with
the mapping system to retrieve the respective mapping. Involved components
include the P4 data plane, the P4 controller, and the LISP control plane
lispers.net.

Figure 6 illustrates the communication with the control
plane when Host 1 starts sending packets to Host 2 and the
EID-to-RLOC mapping for the EID of Host 2 is looked up
before the xTR can forward the packets using map&encaps.

For the evaluation, 50 packets are sent per second from the
source Host 1 to a local xTR of the LISP site using nping [49]
(a). For each packet that is sent, a timestamp of the sending
time is stored in a packet capture of the sending interface.
There is no EID-to-RLOC mapping in the Map-Cache of the

TABLE II
MEAN AND STANDARD DEVIATION (SD) OF THE LATENCY CAUSED BY A

CACHE-MISS IN THE P4-LISP DATA PLANE.

Steps Mean (ms) SD (ms) Description of the steps
a-i 19.74 0.81 Worst-case latency: First packet

sent by source until received by
destination.

a-c 4.45 0.16 P4 controller delay for issuing dis-
covery message.

d-e 12.61 0.72 Control plane delay.
f 0.80 0.10 P4 controller delay for processing

control plane answer.
g-i 1.78 0.20 P4 controller delay for inserting

table entry, until packet reaches
destination.

xTR, therefore the first packet is forwarded to the P4 controller
(b). The P4 controller parses the packet, and sends a discovery
message to the lispers.net-itr socket of the control plane (c).
A timestamp is stored at the write time to the lispers.net-itr
socket. The control plane receives the packet on the socket (d),
sends a Map-Request to the mapping system, and receives a
Map-Reply. The information in the Map-Reply is then sent to
the lisp-ipc-data-plane socket (e).

The P4 controller receives the mapping information on the
socket, stores a timestamp on reception, processes the answer
(f), and adds a respective table entry to the Map-Cache table
of the data plane (g). Another timestamp is stored when the
gRPC message is sent to the P4 switch. Now, the necessary
EID-to-RLOC mapping is installed on the data plane.

All subsequent packets from Host 1 to this specific EID are
sent to the xTR (h). Using the EID-to-RLOC mapping in the
Map-Cache, packets now get encapsulated and are forwarded
at line rate towards the destination (i). The destination host
stores a timestamp on arrival of a packet.

The experiment is repeated 200 times, each time calculating
the latency introduced by each of the stated components by the
use of the stored timestamps. The mean values and standard
deviations of the results are compiled in Table II. The overall
time from the first packet that was sent by Host 1 to the arrival
of the first packet at Host 2 is 19.74 ms on average. The
mean measured time for steps a-c is 4.45 ms, representing
the controller delay for issuing a discovery message to the
control plane. The mean measured delay introduced by the
control plane (steps d+e) is 12.61 ms. The mean measured
controller delay for processing the mapping information from
the control plane and installing the EID-to-RLOC mapping in
the Map-Cache until the first packet from the source arrives
at the destination is 2.58 ms.

E. Controller Performance

We evaluate the performance of the P4-LISP control plane.
The setup is the same as the one in Figure 6. We use nping
[49] to generate packets destined to different EIDs so that
each of them causes a miss in the Map-Cache and requires
communication with the controller. The maximum rate of
nping is 50,000 packets per second (pps) in our setup. We
measured the packet latency for different rates and observed

that it increases over time when the packet rate exceeds 150
pps. We therefore conclude that the controller can handle a
continuous packet processing rate of 150 pps.

The P4 controller is only a PoC implementation and its
performance may be improved. First, the usage of Python as a
programming language is not ideal. Languages like C or Rust
may increase the packet processing time/rate of the controller
significantly. Second, the P4Runtime interface is still under
development and subject to changes, which may increase the
efficiency of that interface.

VI. CONCLUSION

In this paper, we presented P4-LISP, an architecture and
prototype for a P4-based open-source LISP router that runs
on high-performance hardware targets such as the Intel Tofino
ASIC. We validated the functionality of the P4-LISP imple-
mentation and evaluated the performance of its data plane
and control plane. The different router types of the P4-LISP
implementation are able to process and forward packets at
up to 100 Gbit/s line rate. This holds even in the presence of
decapsulation and encapsulation, or double encapsulation. The
implementation is expected to run also on newer ASIC gener-
ations, such as Intel Tofino II, with a line rate of 400 Gbit/s.
A latency analysis revealed that processing times of Map-
Requests through the P4 and LISP control plane are about 20
ms; this applies only for rare misses in the Map-Cache. The
control plane of the current implementation is able to process
150 Map-Requests per second. As the control plane may be
subject to DoS attacks, P4-LISP provides countermeasures like
black- and white-listing of source EIDs and RLOCs, and it is
able to protect the control plane against overload by limiting
the rate of Map-Requests from the data plane. The code for
the P4-LISP prototype is available on GitHub [46].

REFERENCES

[1] B. Feng et al., “Locator/Identifier Split Networking: A Promising Future
Internet Architecture,” IEEE COMST, vol. 19, no. 4, 2017.

[2] A. Cabellos et al., “An Architectural Introduction to the Locator/ID
Separation Protocol (LISP),” RFC 9299, 2022.

[3] D. Farinacci et al., “The Locator/ID Separation Protocol (LISP),” RFC
9300, 2022.

[4] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors,” ACM CCR, vol. 44, no. 3, 2014.

[5] Intel Corporation, “Intel Tofino 2: P4-programmable Ethernet switch
ASIC,” https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-2-series.html, 2021.

[6] D. Farinacci, “lispers.net,” https://www.lispers.net/, 2021.
[7] F. Baker et al., “Ingress Filtering for Multihomed Networks,” RFC 3704,

2004.
[8] D. Lewis et al., “Interworking between Locator/ID Separation Protocol

(LISP) and Non-LISP Sites,” RFC 6832, 2013.
[9] D. Farinacci et al., “LISP Mobile Node,” https://datatracker.ietf.org/doc/

draft-ietf-lisp-mn/12/, Internet-Draft, 2022.
[10] ——, “LISP Canonical Address Format (LCAF),” RFC 8060, 2017.
[11] D. Klein et al., “NAT Traversal for LISP Mobile Node,” in ACM Re-

Architecting the Internet (ReArch), 2010.
[12] V. Ermagan et al., “NAT Traversal for LISP,” https://datatracker.ietf.org/

doc/draft-ermagan-lisp-nat-traversal/19/, Internet-Draft, 2021.
[13] D. Farinacci, “Simple LISP NAT-Traversal Implementation,”

https://datatracker.ietf.org/doc/draft-farinacci-lisp-simple-nat/05/,
Internet-Draft, 2022.

[14] ——, “Git Repository of lispers.net,” https://github.com/farinacci/
lispers.net, 2021.

[15] D. Farinacci et al., “Locator/ID Separation Protocol (LISP) Control
Plane,” RFC 9301, 2022.

[16] P4 Language Consortium et al., “Behavioural Model Version 2 (BMv2),”
https://github.com/p4lang/behavioral-model, 2022.

[17] F. Hauser et al., “A Survey on Data Plane Programming with P4:
Fundamentals, Advances, and Applied Research,” Journal of Network
and Computer Applications, vol. 212, 2023.

[18] R. Atkinson et al., “Identifier-Locator Network Protocol (ILNP) Archi-
tectural Description,” RFC 6740, 2012.

[19] R. Moskowitz et al., “Host Identity Protocol Version 2 (HIPv2),” RFC
7401, 2015.

[20] E. Nordmark et al., “Shim6: Level 3 Multihoming Shim Protocol for
IPv6,” RFC 5533, 2009.

[21] K. Sun et al., “LISP-based Hierarchical Service Mobility Management
for the Tactical Edge Computing,” in ICTC, 2020.

[22] T. Balan et al., “LISP Optimisation of Mobile Data Streaming in
Connected Societies,” Mobile Information Systems, 2016.

[23] M. Coudron et al., “Cross-layer cooperation to boost multipath TCP
performance in cloud networks,” in IEEE CloudNet, 2013.

[24] V. Moreno et al., “The LISP Network: Evolution to the Next-Generation
of Data Networks,” Cisco Press, 2019.

[25] C. Caiazza et al., “Simulating LISP-Based Multilink Communications
in Aeronautical Networks,” in OMNeT++ Community Summit, 2018.

[26] B. Haindl et al., “Ground based LISP for multilink operation in ATN/IPS
communication infrastructure,” in IEEE DASC, 2016.

[27] D. K. Luong et al., “Seamless Handover in SDN-Based Future Avionics
Networks with Network Coding and LISP Mobility Protocol,” in IEEE
DASC, 2019.

[28] E. Seo et al., “The Scalable LISP-deployed Software-Defined Wireless
Network (LISP-SDWN) for a Next Generation Wireless Network,” IEEE
Access, vol. 6, 2018.

[29] D. Herrmann et al., “Inbound Interdomain Traffic Engineering with
LISP,” in IEEE LCN, 2014.

[30] D. Farinacci et al., “LISP Traffic Engineering Use-Cases,” https://
datatracker.ietf.org/doc/html/draft-ietf-lisp-te-10, Internet-Draft, 2022.

[31] K. Okada et al., “Oblivious DDoS Mitigation with Locator/ID Separa-
tion Protocol,” in ACM CFI, 2014.

[32] D. Farinacci et al., “LISP for Satellite Networks,” https://datatracker.ietf.
org/doc/draft-farinacci-lisp-satellite-network/01/, 2022.

[33] L. Iannone, “The OpenLISP Project,” http:/http://www.openlisp.org,
2011.

[34] S. Steffann, “Git Repository of PyLISP,” https://github.com/steffann/
pylisp, 2019.

[35] A. Stockmayer et al., “jLISP: An Open, Modular, and Extensible Java-
Based LISP Implementation,” in ITC, vol. 01, 2016.

[36] A. Rodriguez-Natal et al., “Programmable Overlays via OpenOverlay-
Router,” IEEE Communications Magazine, vol. 55, no. 6, 2017.

[37] Open Networking Foundation, “ONOS,” https://opennetworking.org/
onos/, 2022.

[38] OpenDaylight Project, “OpenDaylight,” https://www.opendaylight.org,
2021.

[39] Y. Han et al., “Design and implementation of LISP controller in ONOS,”
in IEEE NetSoft, 2016.

[40] The Linux Foundation, “Open vSwitch,” http://www.openvswitch.org/,
2022.

[41] M. Hoefling et al., “A Survey on Mapping Systems for Locator/Identifier
Split Internet Routing,” IEEE COMST, vol. 15, no. 4, 2013.

[42] M. Menth et al., “FIRMS: A Mapping System for Future Internet
Routing,” IEEE JSAC, vol. 28, no. 8, 2010.

[43] Cisco Systems, Inc., “IP Routing: LISP Configuration Guide,”
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_lisp/
configuration/15-mt/irl-15-mt-book.html, 2017.

[44] AVM GMbH, “Info for FRITZ!Box 3272,” http://download.avm.de/
fritzbox/fritzbox-3272/deutschland/fritz.os/info_en.txt, 2016.

[45] LANCOM Systems GmbH, “LANCOM Routing and WAN Connec-
tions: LISP,” https://www.lancom-systems.de/docs/LCOS/Refmanual/
DE/topics/LISP.html, 2019.

[46] “P4-LISP Prototype Repository on GitHub,” https://github.com/
uni-tue-kn/P4-LISP.

[47] Edgecore Networks, “Wedge 100BF-32X,” https://www.edge-core.com/
productsInfo.php?cls=1&cls2=5&cls3=181&id=335, 2021.

[48] The P4.org API Working Group, “P4Runtime: Specification and Imple-
mentation,” https://github.com/p4lang/p4runtime, 2021.

[49] Nmap.org, “Nping - Network Packet Generation Tool,” https://nmap.org/
nping/.

