
Received XX Month, XXXX; revised XX Month, XXXX; accepted XX Month, XXXX; Date of publication XX Month, XXXX; date of
current version 11 January, 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.011100

Segment-Encoded Explicit
Trees (SEETs) for Stateless Multicast:

P4-Based Implementation and
Performance Study

Steffen Lindner1, Thomas Stüber1, Maximilian Bertsch1, Toerless Eckert 2, and
Michael Menth1 (Senior Member, IEEE)

1University of Tuebingen, Chair of Communication Networks, 72076 Tuebingen, Germany
2Futurewei Technologies, CA 95050, United States

CORRESPONDING AUTHOR: Michael Menth (e-mail: menth@uni-tuebingen.de).

The authors acknowledge the funding by the Deutsche Forschungsgemeinschaft (DFG) under grant ME2727/3-1 and by the Open Access
Publishing Fund of the University of Tübingen, Germany. The authors alone are responsible for the content of the paper.

ABSTRACT IP multicast (IPMC) is used to efficiently distribute one-to-many traffic within networks. It
requires per-group state in core nodes and results in large signaling overhead when multicast groups change.
Bit Index Explicit Replication (BIER) and its tree engineering variant BIER-TE have been introduced as
a stateless transport mechanism for IPMC. To utilize BIER or BIER-TE in a large domain, domains need
to be subdivided into smaller sets of receivers or smaller connected subdomains, respectively. Sending
traffic to receivers in different sets or subdomains necessarily implies sending multiple packets. While
efficient algorithms exist to compute sets for BIER, algorithms for computing BIER-TE subdomains are
still missing. In this paper, we present a novel stateless tree encoding mechanism called Segment-Encoded
Explicit Tree (SEET). It encodes an explicit multicast distribution tree within a packet header so that tree
engineering is supported and sets or subdomains are not needed for large domains. SEET is designed to
be implementable on low-cost switching ASICs which we underline by a prototype for the Intel Tofino™.
If explicit distribution trees are too large to be accommodated within a single header, multiple packets
with different distribution trees are sent. For this purpose, we suggest an effective optimization heuristic.
A comprehensive study compares the number of sent packets and resulting overall traffic for SEET and
BIER in large domains. In our experiments, SEET outperforms BIER even for large multicast groups with
up to 1024 receivers.

INDEX TERMS Segment-Encoded Explicit Trees (SEETs), Bit Index Explicit Replication (BIER),
multicast, IP networks, performance evaluation, optimization

I. Introduction
IP multicast (IPMC) [1] is the default multicast service in
IP networks and is used to reduce the traffic load of one-
to-many traffic. Examples for IPMC services are Multicast
VPN, streaming, content delivery networks, or financial
stock exchange [2]. Receivers of multicast services are
organized in multicast groups that are identified by unique IP
addresses. Traffic is forwarded along a multicast distribution
tree to all receivers of the multicast group. Thereby, only one
packet is sent over each involved link. However, IPMC has

two scalability issues. First, all forwarding nodes of the
distribution tree need to maintain the forwarding state of the
corresponding multicast groups, such as the list of links to
which to copy packets for the group. In networks with large
number of IP multicast groups, this leads to an equal large
number of multicast forwarding states, which are expensive
to ASICs. Second, when receivers of a multicast group
change, or the network topology changes, the forwarding
nodes need to update their forwarding state, which can result
in excessive signaling overhead. Multicast mechanisms that

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 1

rely on this kind of dynamic state are referred to as stateful
multicast mechanisms. The Internet Engineering Task Force
(IETF) is currently standardizing Bit Index Explicit Replica-
tion (BIER) [3] as a stateless multicast transport mechanism
for IPMC traffic. BIER forwards IPMC traffic through a
BIER domain without the need for dynamic forwarding state
in core nodes. They leverage a so-called BIER bitstring that
is added to the packets by ingress nodes of the domain.
Each bit identifies an egress node of the BIER domain, i.e.,
a possible receiver of the multicast group. If a bit is set, the
corresponding egress node requires a packet copy. Based on
this bitstring, core nodes of the BIER domain are able to
forward the traffic to the appropriate egress nodes. However,
when BIER is scaled to networks with more egress nodes
than bits permitted in the BIER bitstring, the receivers need
to be split up into multiple sets of bitstrings. The packet
header needs to carry a bitstring and a set identifier, and
multiple copies of a multicast packet (with different set
identifiers) might be forwarded over the same link, which
mitigates the advantage of BIER over unicast forwarding.
This is especially problematic for sparse multicast trees,
i.e., multicast trees with a small number of receivers, in
large networks. In that case, the ratio between receivers and
redundant packets worsens.

BIER forwards traffic according to a so-called routing
underlay, e.g., an IP network, and is not able to steer traffic
on explicit paths. For that purpose, tree engineering for
BIER (BIER-TE) has been designed [4]. Tree engineering
is the capability of supporting explicit paths for stateless
forwarding trees. The term has been introduced in [4] to
distinguish this capability from traffic engineering. Traf-
fic engineering in contrast also includes mechanisms like
bandwidth reservation or algorithms to calculate the paths
on which traffic will be forwarded. BIER-TE suffers from
similar scaling issues as BIER.

The contributions of this paper are manifold. First, we
show that BIER’s scaling mechanism results in many redun-
dant packet copies in large networks. Second, we present
a novel mechanism for stateless multicast called Segment-
Encoded Explicit Tree (SEET). It combines ideas of Segment
Routing (SR) [5] and BIER [6], and supports tree engineer-
ing. Third, we present a P4-based implementation of SEET
for the Intel Tofino™ ASIC. SEET encodes the complete
distribution tree within a packet header. If the required SEET
header is too large to be processed by high-speed switching
ASICs, multiple packets with a smaller SEET header are
needed. We present a simple, yet effective heuristic that
computes a near-optimal header fragmentation to split a large
SEET header into multiple small headers. We compare the
efficiency of SEET with BIER in different topologies.

The remainder of the paper is structured as follows. In
Section II we describe related work. Then, we introduce
BIER and show that BIER’s scaling mechanism results in
many redundant packet copies in large networks in Sec-
tion III. Section IV introduces SEET and Section V gives

a brief introduction to P4. Afterward, we present a P4-based
implementation of SEET in Section VI. We present a simple,
yet effective heuristic that determines how size-constrained
near-optimal headers for SEET can be constructed in Sec-
tion VII. We evaluate the scalability of BIER and SEET in
different topologies in Section VIII and conclude the paper
in Section IX.

II. Related Work
We first review related work for stateful multicast solutions.
Then we discuss existing approaches for stateless multicast.

A. Stateful Multicast
IPMC is the default multicast service in IP networks. It was
introduced in 1986 [7] and defines the transmission of IP
datagrams to a set of hosts. Hosts dynamically join multicast
groups, and the membership information of multicast groups
is propagated through the network with the help of multicast
routing protocols, e.g., PIM [8]. Islam et al. [9] and Al-Saeed
et al. [10] provide a broad overview of stateful multicast
services. They discuss shortcomings of IPMC regarding
scalability and signaling overhead. Iyer et al. [11] present
the Avalanche Routing Algorithm (AvRA) that leverages
properties of data center topologies to compute optimized
multicast distribution trees. They present an OpenFlow-based
controller module that improves data rate by up to 12%
and reduces packet loss by 51% compared to traditional
IPMC. Dual-Structure Multicast (DuSM) [12] leverages the
SDN paradigm to remove multicast management logic from
switches. An SDN-based controller manages multicast group
state on forwarding devices and balances traffic among mul-
tiple shared forwarding trees to avoid congestion. Further,
the controller applies a multicast-to-unicast translation for
multicast groups with low bandwidth to reduce the required
state on forwarding devices. Voyer et al. [13] propose a new
segment routing type for multi-point service delivery. The
so-called SR replication segment instructs nodes to replicate
packets to a set of downstream nodes in a SR domain.
The mapping between a replication segment and a set of
downstream nodes, called replication state, is held by the
corresponding replication nodes. The replication state may
change over time if the leaf nodes of a multi-point service
change. Therefore, it resembles the dynamic forwarding state
of traditional IPMC.

B. Stateless Multicast
Small Group Multicast (SGM) [14] proposed the idea to ex-
plicitly encode the multicast destinations in an IPMC header
to enable stateless forwarding. Although the concept was not
pursued any further due to the limited processing capabilities
of ASICs at that time, it laid the foundations for subsequent
work. Elmo [15] aims to improve the scalability of IPMC
in data center environments. Multicast group information is
encoded in the packet header, which eliminates the need for
a dynamic state in forwarding devices. They claim to support

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2 VOLUME ,

up to one million different multicast groups in a three-tier
data center topology with 27.000 hosts with an average
packet header size of 114 B (bytes). Several works leverage
Bloom filters to efficiently encode multicast traffic [16] [17]
[18]. However, due to the inherent false-positive nature of
Bloom filters, redundant or wrong forwarding decisions may
be taken, which makes it unsuitable for a reliable multicast
service. BIER [3] is currently standardized by the IETF and
proposes a novel stateless transport mechanism for IPMC.
It is based on the notion of a bit string, in the following
referred to as bitstring, that indicates the recipients of a
multicast group. Forwarding devices within a BIER domain
are able to forward BIER packets according to the bitstring
without the need for dynamic state. Merling et al. [19] [20]
and Lindner et al. [21] present a P4-based implementation
of BIER on high-performance switching hardware. The pre-
sented prototypes are able to forward BIER-based multicast
with 100 Gb/s per egress port. In subsequent work, Merling
et al. [22] investigate the efficiency of BIER multicast in
large networks. They compare the traffic savings of IPMC
and BIER relative to unicast forwarding in a wide range
of network topologies. Further, they present algorithms to
build optimal BIER subdomains for large networks. BIER
with tree engineering (BIER-TE) [4] augments BIER with
tree engineering capabilities. It is based on the same header
format as BIER, i.e., a bitstring that indicates the recipients
of a multicast group. Further, the bitstring contains a bit
for each adjacency in the network. If the corresponding
bit is set, the packet is forwarded over this adjacency.
Flüchter et al. [23] present a P4-based implementation of
BIER-TE. They introduce a novel scalability concept to
scale BIER-TE to large networks. Further, the show how
node and link failures can be tackled within their concept
and present evaluations regarding throughput on the Intel
Tofino™. Hawkeye [24] enhances BIER-TE with a deep
reinforcement learning agent that builds multicast distribu-
tion trees. Hawkeye can proactively compute multicast trees
based on historical traces. MSR6 [25] implements BIER
and BIER-TE based on the SRv6 [26] forwarding plane. It
introduces a so-called RGB segment that contains the BIER
bitstring and leverages unicast IPv6 forwarding between
replication nodes. Eckert et al. [6] proposes Recursive Bit-
String Structure (RBS) for BIER and MSR6 to improve the
scalability for sparse multicast trees in large networks. They
encode the forwarding tree in a hop-by-hop fashion using
local bitstrings. Diab et al. [27] present YETI, a stateless
and generalized multicast forwarding scheme. It is based on
label and bitstring-based forwarding, similar to SEET, and
can be used to encode an arbitrary multicast distribution tree.
They compare it with existing rule-based multicast solutions
as well as BIER-TE. However, they do not consider header
limitations of modern forwarding ASICs and evaluate their
solution only on small ISP backbone topologies with at
most 197 routers and 486 links. In contrast, we consider
realistic header limitations for SEET, propose an effective

optimization heuristic that derives how a SEET header is
fragmented into multiple packets, and evaluate SEET in large
access network topologies with several thousand receivers.

III. Bit Index Explicit Replication (BIER)
We first give an overview of BIER(-TE) and explain its
scaling mechanisms for large networks. Then we explain
performance issues of BIER(-TE) in large networks with
sparse multicast trees.

A. Overview
Bit Index Explicit Replication (BIER) [3] is a stateless trans-
port mechanism for IPMC that has been standardized by the
IETF. It is based on a domain concept and introduces three
different types of BIER devices: Bit-Forwarding Ingress
Routers (BFIRs), Bit-Forwarding Routers (BFRs), and Bit-
Forwarding Egress Routers (BFERs). Figure 1 illustrates the
concept of BIER.

1

2

3

 IPMC011

IPMC

IPMC

IPMC

 IPMC010

 IPMC001

Bit-Forwarding Ingress Router (BFIR) Bit-Forwarding Router (BFR) Bit-Forwarding Egress Router (BFER)

BIER domain
1

2

3

3

4

4

FIGURE 1. A BIER domain is composed of Bit-Forwarding Ingress
Routers (BFIRs), Bit-Forwarding Routers (BFRs), and Bit-Forwarding
Egress Routers (BFERs).

Bit-Forwarding Ingress Routers (BFIRs) are the ingress
nodes of the BIER domain. They receive IPMC packets
1 and encapsulate them with a BIER header 2 . The

BIER header contains a bit string, which we call BIER
bitstring, that indicates the destinations of the packet within
the domain. Each BFER is assigned to a bit position in the
BIER bitstring. For simplicity, BFER n has been assigned
to bit position1 n in Figure 1. A bit is activated in the
bitstring if the corresponding BFER should receive a copy
of the packet. Within the BIER domain, Bit-Forwarding
Routers (BFRs) forward the BIER packet solely according
to the BIER bitstring in the header. To that end, a BFR
sends a packet copy to each next-hop over which at least
one destination is reached. The bitstring is altered in each
packet copy, such that it only contains the activated bits for
BFERs that are reached via this next-hop 3 . This prevents
duplicates at the receiver. Packets are forwarded according
to the forwarding information from the routing underlay.
Finally, Bit-Forwarding Egress Routers (BFERs) remove the
BIER header and forward the IPMC packet as usual 4 .

BIER-TE augments the concept of BIER with tree engi-
neering capabilities. It is based on the same header format

1Bit position 1 corresponds to the lowest-significant bit.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 3

as BIER, i.e., a bitstring that indicates the recipients of a
multicast group. Further, the bitstring contains a bit for each
adjacency in the network. If the corresponding bit is set, the
packet is forwarded over this adjacency.

B. Scaling BIER(-TE) to Large Networks
The number of BFERs is limited by the size of the BIER
bitstring. Common bitstring lengths are 256-, 512-, and
1024-bit. We refer to a BIER domain with bitstring length
x as BIER-x. The bitstring length might be limited due to
different reasons, e.g., technical restrictions in forwarding
ASICs or header overhead tradeoffs. For example, a network
with 10.000 receivers requires a 1250 B bitstring, which is
not feasible in practice. BIER introduces subsets of BFERs
to scale to larger networks. A BIER subset Si is identified
by the so-called Set Identifier (SI) in the BIER header. The
SI remaps a bit position of the BIER bitstring to a different
BFER for each subset, i.e., the first bit position identifies
BFER 1 in S1 and BFER 5600 in S2. With this approach,
a BIER domain can support 10.000 BFERs with a 256-bit
BIER bitstring and 40 subsets. Optimal SI selection, i.e.,
assigning a BFER to a SI in an optimal manner2, is an NP-
hard problem [22].

Scaling BIER-TE also leverages subsets, but these subsets
comprise both BFERs and links, and the elements in the
subset must be connected. Thus, covering a domain with
subsets requires more subsets for BIER-TE than for BIER,
leading to worse scaling properties. Moreover, due to the
connectivity constraint, it is harder to find appropriate subsets
for BIER-TE than for BIER, in particular in the presence
of resilience requirements [23]. Therefore, no algorithm for
finding suitable subsets for BIER-TE has been published,
yet.

C. Performance Issues
Large BIER domains may require multiple subsets to reach
all BFERs. If a BIER packet is destined to BFERs in
several subsets, multiple BIER packets (with different BIER
headers) are sent by the BFIR, one packet for each subset.
Consequently, the same IPMC packet may be sent over a
link multiple times. If the same IPMC packet is sent five
times over the same link, four of these packets are redundant.
This may reduce the advantage of BIER over native IPMC.
Figure 2 shows an example where an IPMC packet is sent
over the same link multiple times.

In the example, a BIER domain with two BFERs is divided
into two subsets, i.e., subset one and subset two. Both subsets
contain a single BFER that is identified within its subset by
the least-significant bit. When an IPMC packet that needs to
be forwarded to both BFERs enters the BIER domain, the
BFIR creates a BIER packet for each subset. Based on the

2An objective function might be to minimize the overall traffic rate or
number of redundant packets.

SI 2

1

2

SI 1

 IPMCSI: 2 | 001

 IPMCSI: 1 | 001IPMC

Bit-Forwarding Ingress Router (BFIR) Bit-Forwarding Router (BFR)

Bit-Forwarding Egress Router (BFER)

BIER Domain

FIGURE 2. The BFIR sends a BIER packet for each subset that contains a
receiver for that packet. This might lead to multiple packets on a link.

topology, both BIER packets are forwarded through the same
link from the BFIR to the BFR. Therefore, the same IPMC
packet is forwarded over the same link two times instead
of a single time as in native IPMC, leading to a redundant
BIER packet on that link.

We quantify the advantage of BIER over native IPMC
with the following experiment. We consider a BIER do-
main with n = 1024 BFERs, an average node degree
of eight, bitstring lengths of b ∈ {64, 128, 256, 512, 1024}
bits, and s ∈ {16, 8, 4, 2, 1} subsets, respectively. Then, we
send BIER packets from a random source to n random
receivers and repeat the experiment 50 times. We count
the number of packets on all links pli for both IPMC and
BIER and report their difference, i.e., #redundant packets =∑

i p
BIER
li

−
∑

i p
IPMC
li

. BFERs are randomly assigned to
a single subset with equal probability. Figure 3 shows the
number of redundant BIER packets that are sent to reach all
receivers.

0

25

50

75

100

125

0 25 50 75 100 125
#Receivers

#R
ed

un
da

nt
 p

ac
ke

ts

BIER−1024
BIER−512
BIER−256
BIER−128
BIER−64

FIGURE 3. Number of redundant BIER packets to reach all receivers.

Native IPMC and BIER-1024, i.e., BIER with a bitstring
length of 1024 bit, send at most one packet over a link and
do not require redundant packets to reach all destinations.
BIER variants with smaller bitstring lengths require more
redundant packets. The number of redundant packets scales
with the number of receivers of an IPMC packet and is more
severe in larger networks.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4 VOLUME ,

IV. Segment-Encoded Explicit Trees (SEETs)
In this section, we introduce a novel stateless tree encoding
mechanism, which we call Segment-Encoded Explicit Trees
(SEETs). It is based on ideas of Segment Routing (SR) and
RBS/BIER but uses its own encoding for better efficiency.
First, we explain the general concept of a generic multicast
tree encoding. Then we give an overview of SEET and ex-
plain its encoding in detail. Finally, we provide pseudocode
for the forwarding logic of SEET-enabled devices.

A. Generic Multicast Tree Encoding
Stateless multicast solutions require the multicast distribution
tree to be encoded within the packet. We propose the
following generic encoding scheme that translates a recursive
tree structure to a linear sequence of instructions that is
agnostic to a specific protocol implementation. Figure 4
illustrates the generic encoding concept.

1

2

3 4

5 6 7

1 2 3 4 5 6 7

Multicast tree Sequential order

FIGURE 4. Concept for stateless multicast source routing. A generic
multicast distribution tree is translated into a sequential list structure.

A generic multicast distribution tree is encoded in a se-
quential list structure. Thereby, the tree structure is serialized
into a list of elements following a depth-first search pre-
order traversal. The forwarding principle of the stateless
multicast source routing is illustrated in Figure 5. When a
node receives an encoded multicast packet, it first partitions
the encoded tree into its subtrees. Then, a packet copy is
created for each next-hop. The packet copy contains only
the relevant subtree, i.e., the subtree that starts with the next-
hop. Thereby, the packet header shrinks along the forwarding
path.

1

2

3 4

5 6 7

1

2

3 4

5 6 7

2

3 3

4

5 6 7

4

5 5

6 6

7 7

FIGURE 5. Forwarding principle of the encoding concept for stateless
multicast source routing. Only the relevant subtree of the packet header is
forwarded to a downstream node in the multicast tree.

B. SEET Overview
SEET is a forwarding scheme to steer a multicast packet
along an explicit or implicit multicast tree. It supports both
shortest-path forwarding as well as tree engineering. SEET’s
encoding scheme has been designed to be implementable

on low-cost switching ASICs, e.g., with P4 [28] on the
Intel Tofino™. A proof of concept implementation of SEET
for the Intel Tofino™ is described in Section VI. Figure 6
illustrates the concept of SEET.

F1
F2

IPMC

IPMC

IPMC

Ingress Nodes Forwarding Nodes Egress Nodes

SEET domain
1

2

3

3

4

4

 IPMCS1 S2 ... S4

 IPMCS4

 IPMCS2

S3

 IPMCS4

FIGURE 6. A SEET domain is composed of ingress nodes, forwarding
nodes, and egress nodes.

SEET is based on a domain concept similar to BIER
and introduces three different types of devices: ingress
nodes, forwarding nodes, and egress nodes. An ingress node
receives an IPMC packet and prepends a list of ordered
segments to the packet 1 . We refer to this list of segments
as forwarding stack (fs) 2 . Each segment encodes a SEET-
specific identifier that is used by nodes to forward the packet
along the distribution tree. Node identifiers can be either
derived through the routing underlay, e.g., exchanged in IGP
messages, or configured by a central configuration unit, e.g.,
a PCE. Figure 6 illustrates how a SEET packet with four
segments is received by the first forwarding node F1. The
initial segment S1 identifies F1 itself and instructs it to
process the forwarding stack while the rest of the forwarding
stack encodes the downstream multicast distribution tree.
The first part of the forwarding stack, i.e., {S2, ..., Si},
encodes the downstream distribution tree for the first next-
hop of F1, and the second part of the forwarding stack,
i.e., {Si+1, ..., Sn}, encodes the downstream distribution
tree for the second next-hop. When F1 forwards the SEET
packet to its neighbors, only the corresponding downstream
forwarding stack is kept on the packet, the other part is
removed. Finally, the egress nodes remove the SEET header
and forward the underlying IPMC packet 4 .

C. SEET Encoding
The multicast distribution tree is recursively encoded in the
forwarding stack. Figure 7 illustrates the encoding.

A SEET header consists of a 16 bit next protocol field
and a list of segments, i.e., a forwarding stack (fs). The next
protocol field is used to identify the protocol of the payload.
A segment consists of a n-bit identifier, a deliver bit (D), a
1-bit bitstring indicator (B), y-bit padding (P), and an 8-bit
length (L) field that indicates how many bytes are left in the
current distribution tree. A byte alignment for segments is
required to facilitate parsing in low-cost forwarding ASICs,
i.e., (n+ 1 + 1 + y) mod 8 = 0 has to hold. The identifier
is used by forwarding nodes to determine the next-hop. For

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 5

Ethernet Next protocol Segment #1 Segment #2 ... Payload

Identifier B L

1 bit 8 bitn bit

Byte aligned

D

1 bit

SEET Header

P

y bit

FIGURE 7. A SEET header consists of a next protocol field and several
segments that form the forwarding stack.

example, in a network with 100 nodes, seven bits suffice
to identify all nodes in the network. The D-bit indicates
whether the node that is identified through the identifier is a
destination of the multicast tree.

Figure 8 shows an example for a SEET forwarding stack
that instructs a node with identifier 1052 to replicate a
packet to two neighbors R1 and R3 that are receivers of
the multicast distribution tree.

1052

R1 R3

1052 0 0 6
Identifier D B L

R1 1 0 0
R3 1 0 0

Segment #1

Segment #2

Segment #3

14 bit 1 bit1 bit 8 bit

R1 1 0 0 R3 1 0 0

FIGURE 8. Example SEET forwarding stack encoding two receivers of
node with node identifier 1052.

The example uses 14-bit global node identifiers. The node
with identifier 1052 receives the forwarding stack and detects
that the identifier in the first segment is its own identifier. As
the D-bit is not set, it simply removes the first segment and
begins to process the second segment. The second segment
instructs node 1052 to create a packet copy with the next
zero bytes (only segment #2) and send the packet copy to
the next-hop identified by the identifier R1. Then the second
segment is removed and the same procedure is applied for
the third segment. When R1 and R3 receive the respective
packets, they detect that the identifier in the first segment is
their own identifier. As the D-bit is set, they pass a packet
copy without the SEET header to their upper layer. As the
length field is zero, processing stops afterward.

D. Efficient Replication at Leaf Nodes
SEET requires for each recipient of the multicast distribution
tree at least one segment3. Therefore, SEET can be effi-
ciently used to encode paths that span multiple hops but
it is less efficient if a node should replicate a packet to
multiple neighbors. The example of Figure 8 requires 6 B (2
segments) to encode the receivers of node 1052. Therefore,
we propose to use an optional BIER-like bitstring to address
multiple neighbors efficiently at the penultimate4 hop in a
multicast distribution tree. The B-bit indicates if a segment
is followed by a BIER-like bitstring. In that case, the length
field (L) is split into two 4-bit fields: bitstring length (BL)
and bitstring set identifier (BSI). The first 4-bit indicate the
length of the bitstring in bytes. The second 4-bit build an
identifier with the same purpose as the SI in BIER. Bitstrings
can only be used at the penultimate hop of a branch in the
distribution tree. Figure 9 illustrates the forwarding stack for
the same example as Figure 8 but with efficient replication at
a leaf node. The example uses 14-bit global node identifiers
and shows a distribution subtree where node #1052 is the
penultimate hop with two receivers R1 and R3.

1052 0 1 17 5
Identifier D B L BS

14 bit 1 bit1 bit 8 bit

1052

R1 R3

BSBSI

FIGURE 9. The penultimate hop is addressed with a SEET identifier and
carries a bitstring that is used to efficiently replicate the packet to
multiple neighbors.

The identifier 1052 in the SEET segment addresses the
penultimate hop. The D-bit is set to 0 as the node is not
a receiver of the distribution tree. The B-bit is set to 1 as
the segment is followed by a bitstring. Therefore, the length
field with value 17 (0b00010001) is split into two 4 bit
values, i.e., BL = 1 and BSI = 1. It is followed by a 1-
byte long bitstring corresponding to the first SI. Finally, the
bitstring5 5 = 0b00000101 has the bits for receiver6 R1

and R3 set. With the efficient replication at leaf nodes, both

3Multiple segments if an explicit path is encoded.
4Penultimate hop refers to the last hop before the actual destination.
5The bitstring has the same semantic as in BIER, i.e., each bit identifies

a potential receiver.
6For simplicity, we assume that the least significant bit corresponds to

R1 and the third least significant bit to R3.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6 VOLUME ,

receivers R1 and R3 in Figure 9 are encoded with a single
byte instead of 6 B as in Figure 8.

Additionally, if BL equals zero, the BSI can encode up
to 16 (24) static multicast groups. For example, BL = 0 and
BSI = 0 may be configured to trigger a local broadcast to a
pre-defined set of neighbors.

E. SEET Forwarding Algorithm
We formalize the above sketched forwarding algorithm using
pseudocode.

Algorithm 1 shows the forwarding logic for SEET in
pseudocode for a packet p that has been received by a node
with forwarding stack p.fs. It uses the following methods
without further formalization:

• p.fs.pop(): Removes the first segment in the forward-
ing stack fs of a packet p.

• node.getNextHop(identifier): Returns the next-hop
for a node identified through the identifier.

• p.fs.pop(l): Removes the first segment and the next lB
in the forwarding stack fs of a packet p.

The first segment in the forwarding stack (p.fs[0]) iden-
tifies the next-hop in the SEET domain. If a node receives
a SEET packet, it first checks if the identifier of the first
segment identifies the node itself (line 1). If the first segment
does not identify the node, the packet is forwarded according
to the identifier to the next-hop (line 33).If the first segment
identifies the node itself, it is first checked if the destination
bit (D-bit) is set (line 2). An activated D-bit indicates that
the node is a destination in the multicast tree. In that case,
the packet is copied and passed to the upper layer without
the SEET header for native IPMC processing (line 3).

If the first segment has the B-bit set (line 5), then the
node is a penultimate hop that uses a bitstring for efficient
replication. In that case, the packet without SEET header is
forwarded to all neighbors7 identified through the bitstring
and the forwarding algorithm stops. If the B-bit is not set,
the first segment is removed as it has been processed (line
10).

The following steps are performed as long as the forward-
ing stack is not empty. First, the next-hop of the packet is
derived through the identifier of the first segment (line 13).
Afterward, a packet copy is created that contains the first
segment and, depending on the B-bit of the first segment,
the next pcp.l or pcp.bs B of the forwarding stack (lines 15-
23). Then, the packet copy is forwarded to the next_hop
(line 25). Finally, the processed segments are removed from
the original packet (line 27). The forwarding algorithm stops
when all segments have been processed.

Tree engineering can be achieved by encoding each hop
on the path as a segment in the forwarding stack.

7In this context, a neighbor identified in the bitstring is a receiver of the
multicast distribution tree.

Algorithm 1: SEET forwarding algorithm.
Input: packet: p

current node: node

1 if p.fs[0].identifier == node.identifier then
/* Check if destination bit is set

*/
2 if p.fs[0].D then
3 copy packet to upper layer without SEET

header;
4

/* Check if B bit is set */
5 if p.fs[0].B then
6 forward packet without SEET header

according to bitstring;
7

8 return
9

10 p.fs.pop() ; /* Remove first segment

*/
11

12 while p.fs is not empty do
/* next-hop of the packet */

13 next_hop =
node.getNextHop(p.fs[0].identifier) ;

14

/* Keep relevant segments */
15 create packet copy pcp ;
16

/* If bitstring is used, use BS
field as length field */

17 if pcp.fs[0].B then
18 n_bytes = pcp.bs
19 else
20 n_bytes = pcp.l
21 end
22

23 pcp.fs = pcp.fs[0] ++ next n_bytes B ;
24

25 forward pcp to next_hop ;
26

/* Remove processed segments */
27 p.fs.pop(n_bytes) ;
28 end
29 end
30 else

/* next-hop of the packet */
31 next_hop =

node.getNextHop(p.fs[0].identifier) ;
32

33 forward p to next_hop;
34 end

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 7

V. Introduction to P4
We review fundamentals of P4 that are relevant for the
implementation of SEET. First, we give an overview of the
general P4 pipeline of the Intel Tofino™. Then, we discuss
the concept of recirculation and the capabilities of the packet
parser. Details of the P4 language, its ecosystem, and related
literature can be found in [29].

A. Overview
Programming protocol-independent packet processors (P4)
[28] is a programming language used to describe the pro-
cessing behavior of the data plane of compatible network
devices, so-called targets. A P4 target follows an architecture
that defines the processing pipeline and P4 primitives that
are supported. Further, architectures can define so-called
externs that extend the capabilities of the processing pipeline
with target specific functions, e.g., support for cryptography.
Figure 10 illustrates a simplified P4 pipeline of the Intel
Tofino™ defined through the Tofino Native Architecture
(TNA).

In
pu

t
Po

rts Ingress
Parser

Ingress
Control

Ingress
Deparser

Traffic
Manager

Egress
Parser

Egress
Control

Egress
DeparserO

ut
pu

t
Po

rts

Recirculation

FIGURE 10. Visualization of a simplified Tofino Native
Architecture (TNA) [30] P4 pipeline. The pipeline consists of an ingress
parser, ingress control, ingress deparser, traffic manager, egress parser,
egress control, and egress deparser.

The processing pipeline of the Intel Tofino™ is divided
into ingress processing, i.e., when a packet is received,
and egress processing, i.e., when a packet is transmit-
ted. When a packet is received, it is first parsed by the
ingress parser, and relevant packet headers are extracted.
Afterward, the received packet is processed according to the
implemented processing logic in the ingress control. This
may involve changing header fields, storing information in
registers, and deciding which port the packet should be for-
warded to. This is typically done by matching the previously
extracted header fields against user-defined match+action
tables (MATs). After ingress processing, the packet is serial-
ized through the ingress deparser and passed on to the traffic
manager. The traffic manager is responsible for passing the
packet to the correct egress port and performing packet
replication, e.g., when a packet is cloned. Egress parser,
egress control, and egress deparser have similar functionality
as their ingress counterparts. After the egress deparser, the
packet is physically transmitted through the corresponding
egress port.

B. Packet Recirculation
P4 does not support the concept of loops. Therefore, it-
erative packet processing cannot be done within a sin-
gle pipeline iteration. Iterative packet processing can be
achieved through two mechanisms, called resubmission
and recirculation. A resubmitted packet is immedi-
ately placed at the beginning of the ingress pipeline, i.e.,
at the ingress parser, after the initial ingress processing has
finished. Therefore, resubmission allows to repeat the ingress
processing on a packet. Resubmission can only be invoked
during ingress processing. Further, the resubmitted packet
corresponds to the initially received packet, i.e., all changes
to the packet during the ingress processing are not applied.
In contrast, recirculation takes place after egress processing.
The packet is placed in the ingress parser as soon as the
egress processing has stopped and all changes during the
ingress and egress processing are applied. Recirculation on
the Intel Tofino™ is a passive mechanism, which means that
there is no P4 primitive that actively invokes recirculation.
Ports can be configured to operate in a recirculation mode,
i.e., packets transmitted through such a port are immediately
placed in its ingress path again. This behavior is comparable
to a physical loop. A packet that should be recirculated is
forwarded through a port that operates in recirculation mode.
We refer to such ports as recirculation ports.

C. Packet Parser
The packet parser extracts the relevant header fields used
during ingress and egress processing. Both ingress and egress
parsers are modeled as finite-state machine (FSM) and have
a limited number of bytes that can be extracted depending on
the capabilities of the ASIC. The parser divides the packet
into extracted headers and its payload. The payload is not
available during packet processing. Headers that are not
extracted are considered to be part of the packet payload.

The parser extracts pre-defined headers according to the
implemented FSM and the deparser emits previously ex-
tracted, possibly modified, (and still valid) headers. Figure 11
shows the definition of a custom header example_header
and how it is extracted and emitted during parsing.

If a header is invalidated during ingress/egress pro-
cessing, the header is not emitted in the deparser and,
consequently, removed from the packet.

In addition to header extraction, P4 also supports to
advance a packet during parsing. Thereby, the advanced
bytes are removed from the packet. Figure 12 shows an
example of a parsing state that advances the packet by 10
B.

Finally, the Intel Tofino™ provides a ParserCounter
extern [30] that can be used to implement simple
loops during parsing. We leverage the capabilities of the
ParserCounter extern, extracting (and keeping)
header fields and advancing (and removing) bytes in our
SEET implementation (see Section VI) to dynamically keep

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8 VOLUME ,

// header definition

header example_header {

bit<8> type;

bit<16> identifier;

}

// ingress parser

state parse_example_header {

pkt.extract(hdr.example_header);

// transit to the next state

transition select(hdr.example_header.type) {

...

}

}

// ingress deparser

// "add" previously extracted header to the packet

pkt.emit(hdr.example_header)

FIGURE 11. Example of a custom header that is extracted in the ingress
parser and emitted in the ingress deparser.

// ingress parser

state remove_10_bytes {

pkt.advance(8 * 10);

// transit to the next state

}

FIGURE 12. Bytes can be removed by advancing the packet.

a certain number of segments and remove the remaining
segments in a SEET header.

VI. P4 Implementation of SEET for Tofino
In this section, we give a brief overview of the P4 implemen-
tation of SEET for the Intel Tofino™. First, we give a high-
level overview of the implementation. Then, we discuss its
parsing logic in detail. The source code of SEET is available
on GitHub8.

A. Overview
Most of the packet processing logic in general P4 pipelines
is done within the so-called ingress and egress parts of
the pipeline. However, with SEET, we need to be able
to split the SEET header of a packet at an arbitrary byte
position, which is not possible during regular ingress/egress
processing. Therefore, most of the SEET processing logic
is done within the parser. We leverage the capabilities of
the parser to extract (and keep) header fields and to
advance (and remove) bytes from a packet to remove parts
of the SEET header dynamically during parsing. Figure 13

8https://github.com/uni-tue-kn/seet

illustrates the concept of the implementation where a SEET
packet should be split into two SEET packets.

When a SEET packet is received for the first time, it
is parsed up to the first two segments9. Then, the packet
is copied and both the original and the packet copy are
equipped with a bridge header10. The bridge header contains
two values Kbytes and Rbytes. The first value (Kbytes)
specifies how many bytes should be extracted and kept from
the SEET header. The second value (Rbytes) specifies how
many bytes should be advanced and removed from the SEET
header. Then, both packet versions are recirculated. After
recirculation, both packets are parsed before they enter the
ingress section of the pipeline. Thereby, the parser extracts
the first Kbytes B from the SEET header and removes the
next Rbytes B. In the example of Figure 13, a SEET header
with length L = X+Y should be split after X B. Therefore,
the first packet copy extracts the first X B and removes the
next Y B of the SEET header, and the second packet copy
extracts zero B and removes the next X B. Finally, the first
packet copy is forwarded to its intended neighbor, and the
second packet is treated as a new SEET packet for further
processing. This procedure is repeated until the whole SEET
header has been processed11.

If the first segment has the bitstring indicator (B) set,
the contained IPMC packet is replicated according to the
local bitstring to all relevant neighbors without SEET header.
Forwarding logic for bitstring-based replication is similar
to [20] [21]. If the first segment has the deliver bit (D) set,
an additional packet copy is passed to the upper layers of
the device.

B. Parsing Logic
Packets that are recirculated are received on special ports
and always carry a bridge header that contains the number
of bytes that should be extracted (Kbytes) and the number
of bytes that should be removed (Rbytes). Thereby, Kbytes

is split into two fields: tens and units.

Tens represents the number of 10 B that should be
extracted, and units represents the number of single bytes
that should be extracted. Therefore, if 85 B should be
extracted, tens equals eight and units equals five. We
defined seven different headers with sizes of {100, 50, 20,
10, 5, 2, 1} byte(s). The 20-byte and 2-byte headers are
implemented as header stacks of size 2, i.e., up to two 20-
byte and up to two 2-byte headers can be extracted within the
same header stack. Further, we defined 14 different parsing
states PK

i , i ∈ [1, 14] that combine the different headers
to extract i · 10 B depending on the value of tens. For

9If a bitstring follows the first segment, the bitstring is parsed instead.
10A bridge header is a header that is temporarily prepended to the

Ethernet header for local processing. The header is removed when the packet
is forwarded to its final destination.

11The length field of the original first segment is used to determine
whether the whole SEET header has been processed.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 9

https://github.com/uni-tue-kn/seet

SEET packet Parse
packet

Parser Ingress

Create packet
copy

SEET packet

SEET packet

Ingress

[X;Y]

[0;X]

Egress

R
ec

irc
ul

at
io

n

Extract X bytes

Advance Y bytes

Advance X bytes

Send packet
to neighbor

Ingress

SEET packet

SEET packet

[X;Y]

[0;X]

Bridge header

FIGURE 13. High-level implementation overview of the SEET forwarding logic. Most of the processing logic is done within the parser.

example, the parsing state PK
13 extracts one 100-byte header,

one 20-byte header, and one 10-byte header. Similarly, nine
additional parsing states extract up to 9 B depending on the
number of units. This approach can extract between 0 and
149 B with at most two parse state transitions.

Afterward, the ParserCounter extern is used to ad-
vance the packet Rbytes times by one byte. The combina-
tion of extracted headers and the ParserCounter extern
ensures that the maximal parse depth is not exceeded.

VII. Fragmentation Algorithm
We introduced an encoding for Segment-Encoded Explicit
Tree (SEET) in Section IV. It represents the forwarding
tree of a packet in the packet’s header. However, so far we
ignored that the maximum header size that can be processed
by forwarding nodes is limited due to technical restrictions.
Therefore, multiple packets may be required to deliver a
message to all of its receivers. We present a simple yet
efficient algorithm that runs in the control plane to fragment
a message into multiple packets such that traffic overhead is
minimized. The algorithm is executed when multicast groups
change, and its output is used to configure the ingress node
of a SEET domain. First, we give an overview of the idea of
the algorithm. Then, we present its details. Afterwards, we
discuss its runtime. Finally, we illustrate the algorithm by a
brief example.

A. Overview
The presented encoding features two major ideas for mini-
mizing the representation of a multicast tree. First, a long
subpath of the path to a receiver can be bridged by a
single SEET segment. Therefore, it is reasonable to address
receivers that share long subpaths with the same packet.
However, every replication in the multicast tree requires an
additional SEET header. Thus, the number of replications in
a multicast tree should be small. Second, multiple receivers
with a common penultimate hop can efficiently be addressed
by a local bitstring. We conclude that receivers should be
grouped such that the multicast trees of the resulting packets
contain few replication nodes except for replications at the
penultimate hop.

B. The Algorithm
We propose a simple yet efficient algorithm which groups
receivers according to the above observation. Given are a
network topology, a source node, a set of receivers, and the
desired paths for all source-receiver pairs. A forwarding tree
is constructed by merging paths with common subpaths at
the last node present in both paths. Likewise, a tree and a
path are merged by adding a new branch to the tree at the
last node present on the path. The algorithm starts with an
empty packet header. A depth-first search in the forwarding
tree is started at the source node of the message. Every time
a receiver r of the message is discovered, it is added to
the packet header according to exactly one of the following
cases:

1) If the header is empty, a SEET header to r is intro-
duced.

2) If the header does not contain a SEET header with
a common subpath to r, a SEET header to r is
introduced.

3) If the header contains a SEET header s to the penul-
timate hop of r, r is included in the local bitstring of
s.

4) If a SEET header s addresses a node r′ with the same
penultimate hop p as r, s is removed from the header,
a SEET header to p is introduced, and r and r′ are
added to the local bitstring of the new SEET header.

5) If the header contains some SEET header s with a
common subpath to r and none of the other cases
applies, a SEET header to the last possible replication
node of s and r is inserted before s and a SEET header
to r is introduced.

If the resulting packet header exceeds the maximum header
length, the discovered receiver is not added to the header.
Instead, the current packet is finished and the receiver is
added to a new packet header. The algorithm terminates
when all receivers are added to a packet.

C. Runtime
Let V and E be the sets of vertices and edges in the network
topology. Depth-first search has a runtime of O(|V |+ |E|).
In the worst case, every node of the topology is a receiver.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10 VOLUME ,

3

5

6
7

4

21
9

10

8

(a) After discovering node 7.

3

5

6
7

4

21
9

10

8

(b) After discovering node 8.

3

5

6
7

4

21
9

10

8

(c) After discovering node 10.

FIGURE 14. Depiction of the algorithm for a message sent from node 1 to the nodes 7, 8, and 10. Red nodes are addressed by a SEET header while
orange nodes are addressed by a local bitstring.

Deciding which of the above cases applies and finding the
replication point in case 5) can be done in O(|E|) if the
multicast tree of the current packet is stored as list of edges
in topological order. Thus, the runtime of the presented
algorithm is O(|V | · |E|) in the worst case. Typically, this is
an heavy overestimation as the multicast tree of the current
packets contains significantly less than |E| edges.

D. Illustrating Example
We explain the algorithm by a brief example. Figures 14(a)–
14(c) depict a network topology and three steps of the
algorithm. A message should be sent from node 1 to the
nodes 7, 8, and 10. The nodes are discovered in ascending
order. The headers after the steps of the example are shown
in Figure 15. Initially, no receiver is covered by the packet’s
header. When node 7 is discovered in Figure 14(a), case
1) from the algorithm’s description applies. Thus, a SEET
header with node 7 as destination is introduced. Then, node
8 is discovered in Figure 14(b). The current header contains
a SEET header to a node with the same penultimate hop as
node 8. Thus, case 4) of the algorithm’s description applies.
The SEET header to node 7 is removed and a SEET header
to the penultimate hop, node 4, is introduced instead. Nodes
7 and 8 are addressed by the local bitstring of node 4.
Finally, node 10 is discovered in Figure 14(c). The path
to node 10 shares a common subpath with the path of
the already existing SEET header to node 4. Thus, case 5)
of the algorithm’s description applies. The latest possible
replication node to reach node 4 and node 10 is node 3.
Thus, a SEET header to node 3 is introduced which contains
SEET headers to node 4 and node 10 recursively.

Eventually the header will exceed the size limit in larger
topologies with more receivers than in the presented ex-
ample. The header is considered full in this case and a
new empty header is the new working header. The depth-
first search proceeds with the last discovered node and the
algorithm terminates when all receivers were discovered.

7 Payload

4 Payload7+8

4 Payload7+83 10

FIGURE 15. Headers aftet discovering nodes 7, 8, and 10 in the example.
SEET headers are depicted red while local bitstrings are depicted orange.
Numbers indicate the destinations of the respective header.

VIII. Evaluation
We evaluate the encoding and the message fragmentation
algorithm. To that end, we compare the presented approach
with traditional IPMC and BIER. First, we introduce the
methodology of the evaluations. Then, we motivate the
fragmentation algorithm by evaluating the header sizes im-
posed by SEET. Afterward, we evaluate the relative overhead
of SEET and BIER with respect to packet transmissions
compared to IPMC. Finally, we present results regarding the
overall traffic transmitted in the network.

A. Methodology
We give the details of the evaluation setup such as algorithm,
network topology, traffic model, and evaluation metrics.

1) Algorithm
We use the algorithm from Section VII to construct SEET
packet headers. We employ the methodology from [22] to
compute optimized BIER domains, i.e., optimized subsets
of BFERs.

2) Network Topology
We sampled 20 graphs with 1024 nodes according to the
Waxman model [31] such that the average node degree is
4. The nodes of these graphs represent the core nodes of a
distribution network. For each core node, we added 16 end
systems and connected them to the respective core node.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 11

Thus, the resulting network topologies contain (16 + 1) ·
1024 = 17408 nodes and (16 + 2) · 1024 = 18432 links.

3) Traffic Model
For every network topology n and number of receivers
r ∈ {1, 2, 4, ..., 16384}, we sampled 20 sets of r receivers
from the set of end systems of n. For every such set of
receivers R, a message is send from every end system to
all end systems in R. The same sets are used to evaluate
SEET, BIER, and IPMC. We remark that randomized sets
of receivers constitute a worst case for SEET as the local
bitstrings cannot be leveraged for leafs of different core
nodes.

4) Metrics
We calculate results with three metrics: maximum header
size, relative packets, and relative traffic.

5) Implementation
All evaluation results are computed with calculations for
static settings, i.e., no time-dependent simulation is required.
That means that all metrics only depend on the sent packets
and the topology. The evaluations were implemented in Rust.
The execution was accelerated via data parallelism with
Rayon. The network topologies and the evaluation code can
be found on GitHub12.

a: Maximum header size
The maximum header size is the number of bytes required to
encode a set of receivers, excluding headers of lower layers
and IP headers.

b: Source packets
The source packets metric captures the load imposed to
source nodes due to packet construction. It is the number of
packets sent per source node averaged over all end systems.
We remark that IPMC requires exactly one source packet
regardless the the set of receivers. Thus, all results can be
considered to be relative to IPMC.

c: Relative packets
The relative packets metric represents the overhead of indi-
vidual packet hops compared to IPMC. Let pIPMC be the
number of packet hops required to sent a message from
some source node to some set of receivers via IPMC. If an
alternative multicast approach A ∈ {BIER,SEET} requires
pA packet transmissions for the same source node and set
of receivers, the relative packets metric is formally defined
as pA

pIPMC
. For every number of receivers r, we report results

averaged over all source nodes, sets of receivers with size
r, and network topologies for the maximum header size and
the relative packets metrics.

12https://github.com/uni-tue-kn/seet

d: Relative traffic
The relative traffic metric captures the overhead of data
transmitted in the network for a given set of receivers. Thus,
it is the sum of the sizes of all packet hops for all source end
systems, including payload and IP headers, relative to IPMC.
We assume a payload of 500 B as empirical studies suggest
this is the average payload of IP packets in the Internet [32].
For every number of receivers r, we report results averaged
over all network topologies and receiver sets of size r.

B. Header Size
The header size of IPMC and BIER packets is predefined and
does not depend on the set of receivers. This is not the case
for SEET due to its tree engineering capabilities. Figure 16
depicts the average initial header size resulting from sending
a message to varying numbers of receivers.

Reasonable header size
0

2000

4000

6000

20 22 24 26 28 210 212 214

receivers

M
ax

. h
ea

de
r

si
ze

 (
B

)

SEET

FIGURE 16. Average initial header size for varying numbers of receivers.
The dashed line indicates a maximum header size of 256 B which can be
processed by the presented implementation.

We observe a fast increase of the header size for moderate
numbers of receivers (r ≥ 26). With an increasing number of
receivers, the header size reaches a plateau eventually. The
reason for this behavior is the following. If two receivers
are not leave of the same core node by chance, separate
SEET headers are required to reach them. With an increasing
number of receivers, chances are high that every core node
is already included in the header. Thus, additional receivers
can be added by simply flipping the corresponding bits in
the local bitstrings of the SEET headers without increasing
its sizes.

The dashed line indicates the maximum header size that
can be processed by reasonable forwarding hardware (256
B). With such a header limit, only ∼ 32 receivers can
be addressed by a single packet in the case of uncorre-
lated receivers. We conclude that the message fragmentation
algorithm from Section VII is necessary under realistic
conditions. In contrast, BIER can encode 2048 receivers
with the same header limit. Therefore, SEET is less efficient
with respect to encoding denseness. However, SEET headers
decrease in length on their path. Thus, no conclusions
regarding the overall traffic volume can be drawn.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12 VOLUME ,

https://github.com/uni-tue-kn/seet

0

100

200

300

20 22 24 26 28 210 212 214

receivers

R
el

. s
ou

rc
e

pa
ck

et
s

32 B
64 B
256 B

(a) SEET relative to IPMC.

20

40

60

20 22 24 26 28 210 212 214

receivers

R
el

. s
ou

rc
e

pa
ck

et
s

32 B
64 B
256 B

(b) BIER relative to IPMC.

0

1

2

3

4

5

20 22 24 26 28 210 212 214

receivers

R
el

. s
ou

rc
e

pa
ck

et
s

32 B
64 B
256 B

(c) SEET relative to BIER.

FIGURE 17. Average number of source packets.

C. Source Packets
We regard header sizes of more than 256 B as infeasible
for practical applications due to hardware restrictions in
forwarding devices. Thus, packets with more than 26 re-
ceivers must be split into multiple packets. However, the
fragmentation of receivers into subsets matters with respect
to the metrics from Section 4. We used the fragmentation
algorithm of Section VII for this purpose. The fragmentation
of receivers into subsets results in multiple packets per
message send from an end system which imposes additional
overhead.

Figures 18(a)–18(c) depict the average number of packets
sent per end system. We observe that the number of source
packets increases for larger sets of receivers (Figure 18(a)).
This is consistent with the results from Section B. In the
case of BIER (Figure 18(b)) the number of source packets
saturates for rather small receiver sets and does not increase
further. This is due to the design of BIER as only a single
source packet per SD is required. Thus, the maximum
number of source packets is sent when at least one receiver
per SD is addressed.

Comparing SEET directly to BIER (Figure 18(c)), we see
that SEET sends several times more packets than BIER in
the case of many receivers. A BIER packet uses only a single
bit in its header per receiver. While SEET also encodes some
receivers with individual bits, replication nodes must be
encoded with identifiers and subheaders. This in turn results
in less receivers per header or more packets sent. However,
in the case of small receiver subsets, SEET requires less
source packets than BIER. This is due to BIER sending one
packet per SD while SEET can address these receiver sets
with a small number of packets.

D. Packet Overhead
We showed that the SEET encoding is less efficient than
BIER with respect to the number of receivers addressable
with a single packet. However, the forwarding tree of a
packet with a small number of receivers contains less hops.
Additionally, BIER and SEET require multiple packets for
large sets of receivers which results in redundant packet
transmissions compared to IPMC. Thus, it is not clear

whether the remarks regarding encoding efficiency translate
to the number of packet transmissions.

Figures 18(a)–18(b) depict the relative packet overheads
of BIER and SEET for different maximum header sizes
compared to IPMC. We observe that SEET (Figure 18(a))
and BIER (Figure 18(b)) benefit from larger headers as
more receivers can be encoded within a single packet.
Consequently, less additional packets need to be sent.

Further, the relative packet overhead of BIER and SEET
compared to IPMC decreases for large sets of receivers. If
a core node is already receiving a BIER or a SEET packet,
forwarding it to an additional leaf of this core node requires
only a single hop. The same does hold for IPMC which
implies that the relative packet numbers decline.

Figure 18(c) compares SEET directly to BIER. We see that
SEET requires less or an equal number of packet transmis-
sions than BIER. At first this result seems counterintuitive
as BIER can address more receivers with a single packet.
However, BIER subsets are statically configured and may
be suboptimal from the perspective of some source nodes.
In case of rather small sets of receivers BIER requires an
individual packet per subset that contains at least one re-
ceiver. In contrast, SEET packets are individually optimized
for every source node and set of receivers. Thus, a single
packet is sufficient in many cases.

E. Traffic Overhead
The number of packets is an important metric for the
processing load of forwarding hardware. Switching ASICs
are limited by the number of packets that can be processed
per second. However, network congestion and quality of
service depend on the overall amount of traffic that must be
transmitted. The total traffic amount depends on the number
of individual packet hops and the size of a packet. Thus,
there is a non-trivial tradeoff between reducing the number
of packet hops or the header size. We compare SEET and
BIER with respect to this tradeoff.

Figure 19 shows the traffic overhead of BIER and SEET
relative to IPMC with small and large headers.

First, we observe a similar trend as in Figures 18(a)–18(b).
With an increasing number of receivers, the relative overall

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 13

1.00

1.25

1.50

1.75

2.00

20 22 24 26 28 210 212 214

receivers

R
el

. a
dd

iti
on

al
 p

ac
ke

ts

32 B
64 B
128 B
256 B

(a) SEET relative to IPMC.

1.00

1.25

1.50

1.75

2.00

20 22 24 26 28 210 212 214

receivers

R
el

. a
dd

iti
on

al
 p

ac
ke

ts

32 B
64 B
128 B
256 B

(b) BIER relative to IPMC.

0.6

0.8

1.0

1.2

20 22 24 26 28 210 212 214

receivers

R
el

. p
ac

ke
ts

32 B
64 B
128 B
256 B

(c) SEET relative to BIER.

FIGURE 18. Relative numbers of packet transmissions for varying numbers of receivers and different maximum header sizes.

1.00

1.25

1.50

1.75

2.00

20 22 24 26 28 210 212 214

receivers

R
el

. o
ve

ra
ll

tr
af

fic

 32 B
256 B

BIER
SEET

FIGURE 19. Relative traffic of BIER and SEET for varying numbers of
receivers and different maximum header sizes.

traffic increases until almost all core nodes are already part
of the distribution tree. Then, additional receivers can be
addressed by simply flipping a bit in a local bitstring. Further,
we observe that SEET results in less traffic overhead than
BIER. While BIER is more efficient in encoding receivers
into a packet’s header, the size of a BIER header does not
change along the packet’s path. In addition, many bits of the
header bits are set to 0, even for large sets of receivers. The
topology under consideration consists of 16384 end systems.
Thus, even with 8192 receivers, half of the header space is
not efficiently used and only filled with zeros.

In contrast, these drawbacks of BIER do not apply for
SEET. SEET can leverage the whole header limit at every
packet to encode the distribution tree. Further, the size of the
SEET header reduces at every replication node, and only the
relevant parts are relayed to the respective subtree. Nodes
that are not receivers of a packet are not represented in the
header.

F. Performance
We measure the number of multicast groups that can be frag-
mented into packet headers per second. A multicast group
only needs to be fragmented into multiple packets when
multicast group memberships change. Once the multicast
group has been fragmented, the ingress node of the SEET
domain is configured, and packets are equipped with the
appropriate SEET header in line rate, i.e., 100 Gbit/s per port.
The measurement was performed on an AMD EPYC 7543

@ 2.8 GHz with 32 cores. The machine is equipped with
128 GB of RAM. However, the computation requires only
110 MB of RAM for all 32 threads combined. The algorithms
and the evaluations were programmed in Rust. Figure 20
depicts the number of multicast groups that are processed per
second. Even in the case of 16384 receivers, the presented
approach constructed packets for more than 1000 multicast
groups per second. Overall, runtimes increase linearly with
the number of receivers in the evaluation scenario. Thus,
we conclude that SEET and the fragmentation algorithm are
suitable for applications with high multicast turnover rates.

0

10000

20000

30000

40000

20 22 24 26 28 210 212 214

receivers

G
ro

up
s/

s

SEET

FIGURE 20. Number of multicast groups that can be fragmented into
packet headers per second.

IX. Conclusion
In this work, we presented Segment-Encoded Explicit Tree
(SEET), a novel stateless multicast protocol with tree en-
gineering capabilities. SEET explicitly encodes a multicast
distribution tree in the packet’s header. SEET leverages
principles from Segment Routing (SR) for tree engineering
and BIER-like bitstrings for efficient packet replication to-
wards leaf nodes. We presented a P4-based proof-of-concept
implementation of SEET for the Intel Tofino™ ASIC that
runs with 100 Gbit/s per port.

As very large multicast trees cannot be accommodated
within a single packet header, we propose an efficient heuris-
tic to provide mulitple traffic-efficient multicast trees that
avoid additional traffic at best. We employed this algorithm
to compare SEET and BIER in a quantitative study. The
results showed that SEET mostly results in less source

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14 VOLUME ,

packets, packet transmissions, and overall traffic compared
to BIER, especially for small and medium-size multicast
groups. In that sense, SEET is a viable alternative for BIER.

Further, SEET supports tree engineering in contrast to
BIER. It is clear that BIER’s tree engineering variant BIER-
TE scales worse than BIER with regard to sent packets as
it also encodes links in addition to receivers in the bitstring.
Therefore, SEET is in particular a strong alternative to
BIER-TE. However, a direct comparison with BIER-TE was
not possible as scaling BIER-TE towards large networks
still suffers from management problems. Large BIER-TE
domains need to be subdivided into connected subdomains,
for which no solution has been presented so far. Future works
may propose such an algorithm and compare the scalability
of SEET and BIER-TE.

REFERENCES
[1] D. S. E. Deering, “Host extensions for IP multicasting,” RFC

1112, Aug. 1989. [Online]. Available: https://www.rfc-editor.org/info/
rfc1112

[2] N. K. Nainar, R. Asati, M. Chen, X. Xu, A. Dolganow, T. Przygienda,
A. Gulko, D. Robinson, V. Arya, and C. Bestler, “BIER Use Cases,”
Internet Engineering Task Force, Internet-Draft, Sep. 2020, work in
Progress. https://datatracker.ietf.org/doc/draft-ietf-bier-use-cases/12/.

[3] I. Wijnands, E. C. Rosen, A. Dolganow, T. Przygienda, and S. Aldrin,
“RFC8279: Multicast Using Bit Index Explicit Replication (BIER),”
Internet Engineering Task Force, Request for Comments, Nov. 2017,
https://www.rfc-editor.org/info/rfc8279.

[4] T. Eckert, M. Menth, and G. Cauchie, “Tree Engineering for Bit Index
Explicit Replication (BIER-TE),” RFC 9262, Oct. 2022. [Online].
Available: https://www.rfc-editor.org/info/rfc9262

[5] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Jul. 2018.
[Online]. Available: https://www.rfc-editor.org/info/rfc8402

[6] T. Eckert, M. Menth, X. Geng, X. Zheng, R. Meng, and F. Li,
“Recursive BitString Structure (RBS) Addresses for BIER and
MSR6,” Internet Engineering Task Force, Internet-Draft draft-eckert-
bier-rbs-00, Oct. 2022, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-eckert-bier-rbs/00/

[7] S. E. Deering, “Host extensions for IP multicasting,” RFC 988, Jul.
1986. [Online]. Available: https://www.rfc-editor.org/info/rfc988

[8] B. Fenner, M. J. Handley, H. Holbrook, I. Kouvelas, R. Parekh,
Z. J. Zhang, and L. Zheng, “Protocol Independent Multicast - Sparse
Mode (PIM-SM): Protocol Specification (Revised),” RFC 7761, Mar.
2016. [Online]. Available: https://www.rfc-editor.org/info/rfc7761

[9] S. Islam, N. Muslim, and J. W. Atwood, “A Survey on Multicasting
in Software-Defined Networking,” IEEE Communications Surveys &
Tutorials, vol. 20, pp. 355–387, 2018.

[10] Z. AlSaeed, I. Ahmad, and I. Hussain, “Multicasting in Software
Defined Networks: A Comprehensive Survey,” Journal of Network and
Computer Applications, vol. 104, pp. 61–77, 2018.

[11] A. Iyer, P. Kumar, and V. Mann, “Avalanche: Data Center Multicast
using Software Defined Networking,” in International Conference on
COMmunication Systems and NETworks (COMSNETS), 2014.

[12] W. Cui and C. Qian, “Scalable and Load-Balanced Data Center
Multicast,” in IEEE Globecom, 2015.

[13] D. Voyer, C. Filsfils, R. Parekh, H. Bidgoli, and Z. J. Zhang,
“SR Replication segment for Multi-point Service Delivery,” Internet
Engineering Task Force, Internet-Draft draft-ietf-spring-sr-replication-
segment-15, Jun. 2023, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-ietf-spring-sr-replication-segment/15/

[14] D. R. H. Boivie and N. Feldman, “Small Group Multicast,”
Internet Engineering Task Force, Internet-Draft draft-boivie-sgm-
02, Feb. 2001, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/draft-boivie-sgm/02/

[15] M. Shahbaz, L. Suresh, J. Rexford, N. Feamster, O. Rottenstreich, and
M. Hira, “Elmo: Source Routed Multicast for Public Clouds,” in ACM
SIGCOMM, 2019, p. 458–471.

[16] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve,
“LIPSIN: Line speed Publish/Subscribe Inter-Networking,” in ACM
SIGCOMM, Barcelona, Spain, Aug. 2009.

[17] M. J. Reed, M. Al-Naday, N. Thomos, D. Trossen, G. Petropoulos,
and S. Spirou, “Stateless Multicast Switching in Software Defined
Networks,” in IEEE International Conference on Communications
(ICC), May 2016, pp. 1–7.

[18] Z. Chen, J. Huang, Q. Wang, J. Liu, Z. Li, S. Zhou, and Z. He,
“MEB: an Efficient and Accurate Multicast using Bloom Filter with
Customized Hash Function,” in Asia-Pacific Workshop on Networking,
2023, pp. 157—-163.

[19] D. Merling, S. Lindner, and M. Menth, “P4-Based Implementation of
BIER and BIER-FRR for Scalable and Resilient Multicast,” Journal
of Network and Computer Applications, vol. 169, Nov. 2020.

[20] ——, “Hardware-Based Evaluation of Scalable and Resilient Multicast
With BIER in P4,” IEEE Access, vol. 9, pp. 34 500–34 514, Feb. 2021.

[21] S. Lindner, D. Merling, and M. Menth, “Learning Multicast Patterns
for Efficient BIER Forwarding with P4,” IEEE Transactions on Net-
work and Service Management, vol. 20, no. 2, pp. 1238–1253, Jun.
2023.

[22] D. Merling, T. Stüber, and M. Menth, “Efficiency of BIER Multicast
in Large Networks,” IEEE Transactions on Network and Service
Management, 2023.

[23] M. Flüchter, F. Ihle, S. Lindner, T. Eckert, and M. Menth, “Exten-
sions to BIER Tree Engineering (BIER-TE) for Large Multicast Do-
mains and 1:1 Protection: Concept, Implementation and Performance,”
https://doi.org/10.48550/arXiv.2409.07082, Sep. 2024.

[24] L. Lu, Q. Li, D. Zhao, Y. Yang, Z. Luan, J. Zhou, Y. Jiang, and M. Xu,
“Hawkeye: A Dynamic and Stateless Multicast Mechanism with Deep
Reinforcement Learning,” in IEEE Infocom, May 2023.

[25] Y. Liu, J. Xie, X. Geng, and M. Chen, “RGB (Replication through
Global Bitstring) Segment for Multicast Source Routing over IPv6,”
Internet Engineering Task Force, Internet-Draft draft-lx-msr6-rgb-
segment-04, Mar. 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-lx-msr6-rgb-segment/04/

[26] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and
Z. Li, “Segment Routing over IPv6 (SRv6) Network Programming,”
RFC 8986, Feb. 2021. [Online]. Available: https://www.rfc-editor.org/
info/rfc8986

[27] K. Diab and M. Hefeeda, “Yeti: Stateless and Generalized Multicast
Forwarding,” in USENIX Syposium on Networked Systems Design &
Implementation (NSDI), Apr. 2022, pp. 1093–1114.

[28] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-Independent Packet Processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, 2014.

[29] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich, F. Zeiger,
R. Frank, and M. Menth, “A survey on data plane programming
with P4: Fundamentals, advances, and applied research,” Journal of
Network and Computer Applications, vol. 212, 2023.

[30] Intel, “P416 intel tofino native architecture - public version,” https:
//github.com/barefootnetworks/Open-Tofino, 2021.

[31] B. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, pp. 1617–1622, 1988.

[32] F. Liu et al., “The packet size distribution patterns of the typical
internet applications,” in IEEE International Conference on Network
Infrastructure and Digital Content, 2012, pp. 325–332.

Steffen Lindner is a postdoctoral researcher spe-
cialized in software-defined networking (SDN),
P4, time-sensitive networking (TSN), and con-
gestion management. He studied, worked, and
obtained his bachelor’s (2017), master’s (2019),
and Ph.D. (2024) degrees at the University of
Tuebingen.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME , 15

https://www.rfc-editor.org/info/rfc1112
https://www.rfc-editor.org/info/rfc1112
https://datatracker.ietf.org/doc/draft-ietf-bier-use-cases/12/
https://www.rfc-editor.org/info/rfc8279
https://www.rfc-editor.org/info/rfc9262
https://www.rfc-editor.org/info/rfc8402
https://datatracker.ietf.org/doc/draft-eckert-bier-rbs/00/
https://www.rfc-editor.org/info/rfc988
https://www.rfc-editor.org/info/rfc7761
https://datatracker.ietf.org/doc/draft-ietf-spring-sr-replication-segment/15/
https://datatracker.ietf.org/doc/draft-ietf-spring-sr-replication-segment/15/
https://datatracker.ietf.org/doc/draft-boivie-sgm/02/
https://datatracker.ietf.org/doc/draft-boivie-sgm/02/
https://datatracker.ietf.org/doc/draft-lx-msr6-rgb-segment/04/
https://www.rfc-editor.org/info/rfc8986
https://www.rfc-editor.org/info/rfc8986
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino

Thomas Stüber received the Doctoral degree
from the Chair of Communication Networks of
Prof. Dr. habil. Michael Menth, Eberhard Karls
University Tübingen, Germany, in 2024. He be-
came part of the Communication Networks Re-
search Group after writing his master’s thesis
there in 2018. His research interests include time-
sensitive networking (TSN), scheduling, perfor-
mance evaluation, and operations research. He
currently works in the automotive industry in the
context of time synchronization and other TSN

features for HIL/SIL platforms.

Maximilian Bertsch is a software developer at
a medtech startup located in Tuebingen, Germany.
He obtained his master’s degree in 2023 at the
Eberhard Karls University Tuebingen. His interests
are development with Python and running cloud
infrastructure with Kubernetes.

Toerless Eckert is a Distinguished Engineer at
Futurewei, California, USA where he works on
innovations in architecture and standardization of
the Internet and its protocols. His experiences
includes planning, building and operating networks
with new technologies, educating and supporting
customers around the globe, researching, develop-
ing, standardizing and building network products,
protocol and services and developing advanced,
network integrated multimedia applications. Toer-
less is subject matter expert for routing, multicast,

MPLS, QoS and secure network automation. He was a part of Cisco Systems
IOS operating system development team where he worked on IP/IPv6/MP
LS multicast and from the early 2000s, IP/IPv6 multicast standardization
in DOCSIS 3.0 and integration of multicast with a variety of networked
applications. He led the architectures for the Medianet and Autonomous
Networking advanced development projects. Currently, Toerless is co-chair
of the IETF ANIMA working group which is defining an IPv6-centric
and fully autonomous and secure network communications infrastructure.
He holds more than 45 patents, issued and pending, and is co-author of
13 IETF RFCs and various IETF drafts. Beside IETF and CableLabs, he
has also worked for standardization in ETSI and ITU-T and has published
research papers and research book chapters. Toerless holds a CS diploma
from Friedrich Alexander Universität Erlangen Nürnberg, Germany.

Michael Menth, (Senior Member, IEEE) is pro-
fessor at the Department of Computer Science
at the University of Tuebingen/Germany and
chairholder of Communication Networks since
2010. He studied, worked, and obtained diploma
(1998), PhD (2004), and habilitation (2010) de-
grees at the universities of Austin/Texas, Ulm/Ger-
many, and Wuerzburg/Germany. His special in-
terests are performance analysis and optimization
of communication networks, resilience and rout-
ing issues, as well as resource and congestion

management. His recent research focus is on network softwarization, in
particular P4-based data plane programming, Time-Sensitive Networking
(TSN), Internet of Things, and Internet protocols. Dr. Menth contributes to
standardization bodies, notably to the IETF.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16 VOLUME ,

	Introduction
	Related Work
	Stateful Multicast
	Stateless Multicast

	Bit Index Explicit Replication (BIER)
	Overview
	Scaling BIER(-TE) to Large Networks
	Performance Issues

	Segment-Encoded Explicit Trees (SEETs)
	Generic Multicast Tree Encoding
	SEET Overview
	SEET Encoding
	Efficient Replication at Leaf Nodes
	SEET Forwarding Algorithm

	Introduction to P4
	Overview
	Packet Recirculation
	Packet Parser

	P4 Implementation of SEET for Tofino
	Overview
	Parsing Logic

	Fragmentation Algorithm
	Overview
	The Algorithm
	Runtime
	Illustrating Example

	Evaluation
	Methodology
	Algorithm
	Network Topology
	Traffic Model
	Metrics
	Implementation

	Header Size
	Source Packets
	Packet Overhead
	Traffic Overhead
	Performance

	Conclusion
	REFERENCES
	Biographies
	Steffen Lindner
	Thomas Stüber
	Maximilian Bertsch
	Toerless Eckert
	Michael Menth,

