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Abstract—Monitoring network traffic and devices is crucial
for ensuring secure network operation, particularly in industrial
networks, which operate for a long time and contain a mix
of devices, i.e., devices with state-of-the-art security and legacy
devices whose security features are often insufficient. Such
legacy devices require additional compensating security measures
for secure operation, especially due to increasing connectivity,
exposing legacy devices to new security threats, such as spoofing.
For this purpose, we propose an anomaly detection mechanism
based on the IPv4 Identifier (IP-ID) field that provides hints for
spoofed IPv4 devices. The IP-ID field is a 16-bit value in the
IPv4 header. Receiving hosts use it to identify and reassemble
parts of a fragmented IP packet. Multiple variants for assigning
IP-IDs exist. For example, many legacy devices use a global
counter with a fixed increment between subsequent packets. The
proposed mechanism is based on the observation that IP-IDs
in spoofed traffic may not comply with the previously observed
IP-ID assignment behavior of the device. Such deviations can
be detected as an anomaly and taken as a hint for spoofing. We
provide an overview of existing assignment behaviors and present
a classification algorithm using captured traffic. Likewise, we
present a simple monitoring algorithm for detecting deviations in
a host’s classified IP-ID assignment behavior. We address various
challenges, such as incomplete captures and unsuited deployment
positions, and how to deal with them. We evaluate the feasibility
of the algorithms on real-world traces. Further, we present a
proof-of-concept implementation that detects various spoofing at-
tacks in a testbed. The proposed mechanism improves security in
industrial and related brownfield networks by passively detecting
spoofed devices.

Index Terms—Spoofing, IP-ID, Legacy devices, Compensating
security measures, Brownfield networks

I. INTRODUCTION

Monitoring network traffic and devices is essential in en-
suring secure network operations. Implementing monitoring
mechanisms is particularly important for brownfield networks,
which contain both state-of-the-art and legacy devices, the lat-
ter often having insufficient security features. Brownfield net-
works are common for industries such as industrial automation
or cyber-physical systems, which contain specialized devices
with long lifespans. Legacy devices in these domains, e.g.,
networked devices in the Field and Control Layers, such as
Programmable Logic Controllers (PLCs), lack the capabilities
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to support enhanced security measures, e.g., authentication.
With increasing connectivity brought by concepts such as
Industry 4.0 and the Internet of Things, exposing legacy de-
vices to new security threats, alternative compensating security
measures are required to secure operations.

In this paper, we propose an anomaly detection mecha-
nism for spoofed traffic based on the 16-bit IP-ID value in
the IPv4 header. Receiving hosts use the IP-ID to identify
and reassemble fragmented IP packets. Hosts may assign
the IP-ID using a variety of behaviors. For example, many
legacy devices use a counter with a fixed increment between
subsequent packets. The proposed mechanism is based on the
observation that IP-IDs in spoofed traffic might differ from
the previously observed IP-ID assignment behavior of the
legacy device. These deviations can be identified as anomalies,
hinting at spoofing. The mechanism applies to IPv4 traffic and
is compatible with existing infrastructure and devices, as it
passively monitors traffic. I[Pv6-capable devices are typically
not legacy devices and already support security mechanisms
themselves. The mechanism provides a compensating security
measure to apply in brownfield networks, strengthening the
secure operation of legacy devices.

The proposed mechanism consists of two algorithms: clas-
sification and monitoring. The classification algorithm clas-
sifies the IP-ID assignment behavior of each device in the
network based on traffic captures. The monitoring algorithm
continuously checks in an online manner if the following IP-
IDs match the previously observed assignment behavior and
detects any deviations. This mechanism makes it very costly
or impossible for an attacker to integrate an attack device in
the network that complies with the expected IP-ID behavior.

We evaluate the proposed mechanism in two parts. First, we
verify its applicability by applying the classification algorithm
to network traces from various industrial testbeds. This part
visualizes the different IP-ID assignment behaviors we can
classify and monitor. Second, we present a proof-of-concept
(PoC) that detects different spoofing attacks. We discuss
arising challenges, such as incomplete captures or unsuited
deployment positions, and how to deal with them.

For transparency, we open-source the code for the classi-
fication algorithm, the monitoring algorithm, and the PoC.
We also detail the results of the application test cases
in the evaluation: https://github.com/hs-esslingen-it-security/
hses-1pid-monitoring,
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Figure 1: Different IP-ID assignment behaviors.

The remainder of the paper is structured as follows. Sec-
tion ] provides information on different IP-ID assignment
behaviors and their suitability for monitoring. In Section [I1I}
we present related work in the context of network security
and monitoring. We introduce the classification and monitoring
algorithm and present an exemplary deployment in Section [[V]
In Section [V} we evaluate the feasibility of the approach and
present the PoC. We conclude this work in Section [VI}

II. BACKGROUND: IP-ID

In this section, we provide background information on the
IP-ID specifications. We introduce common IP-ID assignment
behaviors and discuss their suitability for monitoring. Further,
we discuss the distributions of deployed behaviors to address
the applicability of the proposed monitoring approach.

A. IP-ID Specifications and Assignment Classes

Every IP packet contains a 16-bit IP-ID in the IPv4 header.
If an IP packet is fragmented, each fragment carries the same
IP-ID, allowing for reassembly by the receiving host. Specifi-
cations of the IP-ID assignment [1} [2] state that each packet
requires an IP-ID that is unique for the tuple of source address,
destination address, and protocol for the maximum lifetime of
a packet in the network. Specifically, this specification has to
hold if fragmentation is possible.

The IP-ID assignment depends on the implementation of the
network layer in the operating system of a host. RFC 4413 [3]]
and RFC 5225 [4] describe four common assignment classes,
visualized in Figures [[aHId| and detailed in the following.

(a) Global. A global counter implementation assigns the IP-
ID for all IP packets sent by the host. Typically, the counter
is incremented by 1 (IP-ID increment) after each packet and
restarts at O after exceeding the value 2'6 — 1 (wrap-around).

(b) Per-stream. A per-stream counter implementation is
similar to a global counter implementation. It uses multiple
counters to assign IP-IDs for different IP streams identified
by the tuple of protocol, source, and destination. The counter
is incremented after each packet in the stream.

(c) Constant. In the case of a constant implementation, the
IP-ID value is set to a constant value, typically zero.

(d) Random. The random implementation uses a pseudo-
random number generator to assign IP-IDs.

Current implementations show variations to these classes,
e.g., a global counter where the two bytes of the IP-ID are
byte-swapped [4], i.e., a little-endian byte order is used instead
of a big-endian. Other behavior may result from non-standard
increments and wrap-arounds or wrong configuration [3].

The proposed IP-ID-based mechanism requires predictable
IP-ID values to distinguish expected from anomalous behavior.
In the case of a random assignment, we cannot classify
behavior as expected or anomalous. We can observe the
frequency of IP-IDs in specific value ranges and conclude
whether they behave randomly. For the monitoring of legacy
devices, however, we do not consider the random assignment.
In the case of a constant IP-ID, we can only detect anomalous
packets if the IP-ID differs from the expected constant. For
the global and per-stream assignment, increments in the IP-IDs
are predictable. Hence, we can determine whether consecutive
IP-IDs follow the assignment behavior of the device. We can
further detect anomalous IP-IDs resulting from injected or
replayed packets that lead to unexpected or duplicate IP-IDs,
respectively. Therefore, variations of counter assignments are
best-suited for monitoring.

B. IP-ID Assignment Distributions

Regarding the applicability of IP-ID monitoring, we need
to consider the distributions of IP-ID counter implementations.
In the following, we present studies that analyzed the distri-
butions of deployed IP-ID implementations.

Salutari et al. [5] classified the IP-ID behavior of one host
per /24 subnet in the public IPv4 space using ICMP probes.
They reported a proportion of 18% global and 34% per-
stream behavior in 2017. In 2022, Feng et al. [6] conducted
an Internet-wide study of the distributions using ZMap. They
reported that 68% of hosts implement an IP-ID counter with a
linear increment. They further analyzed the IP-ID assignment
algorithms in various TCP/IP stack implementations. Windows
XP and Windows 7, e.g., implement a global, and Linux
Kernel 3 versions implement a per-stream counter.

While these studies provide insights into the relative pop-
ularity of IP-ID counter implementations, these studies are
limited to implementations in devices in the public IPv4 space.
In particular, legacy devices placed, e.g., in isolated industrial



networks, are not considered. Legacy devices are more likely
to use IP-ID counters, such as the global counter, which was
the most common implementation in 2006 [3]]. Thus, while the
proposed IP-ID-based mechanism is limited to deterministic
IP-ID counter implementations, these implementations are
common in industrial brownfield systems.

III. RELATED WORK

Researchers utilize the predictability of IP-ID increments
of counter implementations for various purposes. We review
related work that uses the IP-ID in the context of network
security and monitoring.

A. Fingerprinting

The IP-ID assignment behavior is used in TCP/IP finger-
printing. TCP/IP fingerprinting uses TCP/IP header informa-
tion unique for systems, such as the initial TTL value or TCP
window size, to form signatures used to fingerprint them. This
fingerprinting can either be active or passive. Active techniques
send TCP/IP probes and analyze header fields in the response.
For example, Nmap uses TCP and ICMP probes to determine
the IP-ID assignment behavior of a device [7]. In contrast,
passive fingerprinting approaches observe network traffic and
use heuristics to identify systems or devices. Al Ghazo and
Kumar [8]] use the IP-ID increment of consecutive packets
together with the initial TTL and MAC address to passively
fingerprint industrial control devices.

TCP/IP fingerprinting tools, such as Nmap and the work by
Al Ghazo and Kumar, are useful for determining the IP-ID
assignment behavior of a device. However, while fingerprint-
ing tools analyze IP-IDs to classify the assignment behavior,
the goal in this work is to detect when a device behaves
differently, e.g., due to being spoofed, by closely observing
IP-ID sequence behavior. We follow a passive approach to not
disturb processes through additional traffic, which is important
for the application in critical infrastructures.

B. End-Points and End-Point Behavior

Other related work uses the IP-ID to observe end-points
and end-point behavior. Bellovin [9] proposes an IP-ID-based
algorithm for counting the number of hosts behind a NAT.
It observes IP-IDs and groups them into sequences based on
whether the IP-IDs match within a predefined threshold and
time interval. Using the grouped sequences, it estimates the
number of hosts behind the NAT. This algorithm works for
the global counter implementation. However, for per-stream
counter implementations, it overestimates the number of hosts.
Further, random and constant assignments are not considered.
Mongkolluksamee et al. [10] enhance this algorithm by as-
sociating IP-ID sequences with TCP sequence numbers and
TCP source ports, which are initialized differently by operating
systems at the beginning of a connection, e.g., at random or
linearly ascending. By associating the different sequences, it
is possible to count hosts implementing per-stream counters.
Chen et al. [11] present an approach to measure the amount
of internal and external network traffic sent by a server

using a global IP-ID assignment. They observe gaps in IP-
ID sequences over time at a gateway. Based on the size of the
gaps, they infer how much traffic the server sent.

In contrast to these works, we observe changes in IP-ID
behavior. Specifically, we check for the correctness and conti-
nuity of IP-ID sequences to detect security-relevant changes in
device behavior. We can apply the mechanism to various IP-
ID counter implementations since we classify their behavior
with the specific increment and wrap-around.

C. Spoofing Defense

Templeton and Levitt [|12] propose an IP-ID-based probing
technique to detect spoofed packets. After receiving a packet,
a probe is sent to the source. If the IP-ID in the response is
greater than and close to the initially received IP-ID, the packet
was likely sent by the claimed source. Rather than verifying
IP-IDs of individual packets, we monitor IP-ID sequences.
This way, we are not limited to the implementation of a global
counter in a device to detect spoofing attempts and can detect
unexpected as well as duplicate IP-IDs. Due to the passive
approach, we can also apply the mechanism to network traces
at a later time to identify attack devices in retrospect.

IV. IP-ID-BASED ANOMALY DETECTION: ALGORITHMS
AND DEPLOYMENT

We monitor the traffic of legacy devices for their expected
IP-ID assignment behavior to detect anomalous behavior
caused by spoofing. The proposed mechanism operates on traf-
fic data captured by one or multiple monitoring instances, e.g.,
a monitoring gateway. In the first classification phase, we use
captured traffic to classify the IP-ID assignment behavior of
each device in the traces. During monitoring, we continuously
check whether the IP-IDs in sent packets follow the classified
behavior and report deviations. Figure 2] provides insights into
the deployment of the monitoring mechanism. In the follow-
ing, we present the classification and monitoring algorithm in
detail and address challenges regarding the deployment.

PLCt ,B ._./ o—or :,C PLC

' Switch
/ *
Spoofing ’E

Device \/
] PLC
N

Monitoring Algorithm

A: eeseesises o s / é .

Spoofing
Device

B: ©{@000C00 08000000
I

=

Monitoring Gateway

Figure 2: Example monitoring deployment.
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Figure 3: Classification of IP-ID behavior. Standard deviations were calculated over IP-ID sequences of differences.

A. Classification Algorithm

We classify the IP-ID assignment behavior of each device in
the traces in four steps, using traces captured over time.

(1) We split the traces per source IP. We then extract the
source and destination IP address, protocol, and IP-ID value
of each packet in the traces and store them in 4-tuples.

(2) For each source IP, we prepare the identification of
the underlying IP-ID assignment behavior by aggregating
the respective tuples into different groups based on common
assignment behaviors: a group holding all tuples (Global), a
group holding the tuples for each protocol (Per-protocol), and
a group holding the tuples for each stream (Per-stream).

(3) For each resulting IP-ID sequence in the different
groups, we compute the differences of consecutive IP-IDs, i.e.,
IP-ID; 1 —IP-ID;. For the examplary sequence [1 234 7 8 9],
the corresponding sequence of differences is [1 113 1 1J.

(4) In each resulting group, we calculate statistics over
the corresponding sequence of differences to check how well
different assignment behaviors fit. If a device implements
a global counter, the standard deviation of the sequence of
differences in the Global group will be zero as all IP-ID
increments are identical. If a device implements multiple per-
protocol or per-stream counters, the standard deviation in
individual Per-protocol or Per-stream groups will be zero. In
the case of a constant assignment, i.e., increments of zero,
the mean in the group will also be zero. In the case of
random behavior, the statistics will show no such determin-
istic behavior, cf. features in [5]. To classify the underlying
assignment behavior and identify the underlying counter(s),
we compare the standard deviations of the individual groups.
We identify the assignment behavior that fits best based on
the group(s) with the lowest standard deviation. For this
comparison, we proceed in a hierarchical order, from the
Global group to the more granular Per-protocol and Per-stream
groups. Figure [3] visualizes this process. Whenever we find
a smaller (or equal) standard deviation in a more granular
group, the device assigns its IP-IDs more granularly. We then
select the more granular behavior. For example, in Figure
we classify a global behavior as the standard deviation is
the smallest for the Global group. Similarly, in Figure 3
we classify a per-stream behavior for TCP and ICMP traffic
and a per-protocol behavior for UDP traffic. For some groups
that are part of the best-fitting behavior, the corresponding

standard deviations may not be zero but considerably higher.
For example, for the behavior in Figure TCP-dst3 shows
no clear per-stream assignment compared to the other TCP
streams. However, as we identify a per-stream behavior for the
other TCP streams, all TCP streams must follow this behavior.
Such a high standard deviation likely results from irregularities
in the IP-ID sequence, caused, e.g., by traffic reordering or
gaps. In addition, if the sequence includes a wrap-around,
the difference of, e.g., -65535, impacts the standard deviation
negatively even though it is expected behavior. To address
these irregularities, we sort all observed differences of IP-IDs
and trim this list on both sides by 0.5%. By doing so, we
reduce the influence of such effects, allowing us to match
the underlying assignment behavior more accurately while
still using 99% of the input for classification. For a standard
deviation greater than (216 —1)/1/12, we classify the behavior
as undefined, cf. features for random behavior in [5].

For each source IP, we report the classified behavior, i.e., the
assignment class and specific configuration, including the in-
crement or constant and wrap-around value used. For the con-
figuration, we use the mode and smallest observed difference
smaller than zero (not considering the wrap-around value),
respectively. We further include other meta-information, such
as the largest observed gap.

B. Monitoring Algorithm

Using the monitoring algorithm, we aim to detect deviations
in a host’s classified IP-ID assignment behavior. While some
irregularities in IP-ID sequences are normal, such as those
caused by traffic reordering, gaps caused by traffic not passing
through the capturing instance or packet loss, they must be
identified during the classification phase and considered during
monitoring. We use a monitoring window to assess the validity
of observed IP-IDs in the expected sequence. This approach
enables us to detect unexpected IP-IDs and account for packet
reordering or loss. The algorithm operates on network traces
in an online manner.

We implement the monitoring window using a bit vector
with two control parameters: window size and history factor.
We set the window size w using the largest gap observed
during classification (gapy,qz), i.€., the largest difference in the
IP-ID sequence (not considering wrap-around). In particular,
we set the window size to a multiple of gap,,q;, With a
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default of w = gapmqes - 2. The resulting window ensures
that traffic anomalies that may occur during the runtime do
not result in false positives or interfere with the progress of
the monitoring window. The history factor h specifies the
percentage of already seen IP-IDs in the window, set by the
user, e.g., h = 0.5. Figure {4] visualizes the concept of window
size and history factor.

For each legacy device, we first initialize the respective
monitoring window(s). The window bounds are set using the
first IP-ID received during monitoring and the window size
obtained during classification. When a following IP-ID falls
within these bounds, it is accepted and the corresponding
position marked. We then shift the window forward until the
position aligns with the history factor, see Figure [4]

If a received IP-ID does not fall within the window or
results in a duplicate not caused by fragmentation, we report
an anomaly. Figure E] illustrates these anomalies, i.e., (a) an
unexpected IP-ID and (b) a duplicate IP-ID. An unexpected
IP-ID that falls outside the window may be caused by spoofed
packets. A duplicate IP-ID may result from replayed packets
with the respective position in the window already marked.

C. Monitoring Deployment

The monitoring algorithm can be deployed at different po-
sitions in the network. When deploying it for multiple legacy
devices, the distance of the devices to the monitoring instance
influences the amount of traffic captured and, thus, the mon-
itoring accuracy. For example, in the deployment visualized
in Figure 2] the monitoring gateway does not capture packets
sent between PLC B and C. We refer to such traffic not visible
to the gateway as internal traffic. Depending on the position
of the monitored device, different challenges arise.

When monitoring PLC A, the monitored device is directly
connected to the monitoring instance. As all traffic of PLC A
passes through the gateway, we can closely monitor IP-ID
sequences for the expected behavior. Thus, we can detect
anomalous IP-IDs with high accuracy using a small window.

When monitoring PLC B, we may have to deal with gaps
caused by internal traffic if PLC B implements a global counter

and communicates with PLC C. As a result, we experience a
higher standard deviation during classification, resulting in a
wider monitoring window. A too-wide window, e.g., with a
size of several hundred, is not suited for closely monitoring
IP-ID sequences. However, it still provides information on
whether an attack device is active as IP-IDs in spoofed packets
likely deviate from the expected behavior.

V. EVALUATION

In this section, we evaluate the proposed mechanism. First,
we evaluate its applicability by analyzing the IP-ID assignment
behavior of different industrial devices, using network traces
from several external physical testbeds. We apply the classi-
fication and monitoring algorithm to the traces and discuss
the results. Second, we present the PoC implementation,
evaluating the accuracy of the monitoring algorithm to detect
spoofing attacks. Finally, we discuss the challenges of the
proposed mechanism and how to address them.

A. Application Test Cases

To validate the applicability of the proposed mechanism,
we analyze network traces from several physical industrial
testbeds published for security research, see Table [, These
testbeds cover different industrial application domains and
devices in the scope of considered legacy devices, including
PLCs, Remote Terminal Units (RTUs), Intelligent Electronic
Devices (IEDs), and Human-Machine Interfaces (HMIs). We
investigate how IP-IDs are set by these devices, whether the
behaviors follow specifications or there are any deviations, and
if we can successfully monitor them. We apply the classifica-
tion and monitoring algorithm to traces from each testbed,
using one part for classification and another for monitoring,
and discuss the results.

1) Classification: We classify the IP-ID assignment behav-
ior of 30 devices present in the traces, including PLCs, RTUs,
IEDs, and HMIs. Note that some traces contain duplicate pack-
ets, possibly due to merging captures from multiple positions
in the network. We filtered out duplicate packets before further
analysis to improve accuracy.

We identified 19 (63.33%) global and 11 (36.66%) per-
stream counter implementations. Therefore, the assignment
behaviors of all devices are suited for monitoring. We man-
vally reviewed the classification results to confirm that all
classified behaviors match the underlying ones. The algorithm
only misclassified the specific configuration of four devices,
detecting an incorrect increment or wrap-around value due to
noisy or insufficient data.

Table I: Overview of external testbed datasets used in the evaluation.

#Packets used for

Testbed Domain Protocol Classification ~ Monitoring ~ Open-Source Dataset

QUT_DNP3 [13] Power transmission =~ DNP3 129.652 132.033  https://github.com/qut-infosec/2017QUT_DNP3
QUT_S7Comm [13] Mining refinery S7Comm 1.782.486 396.523  https://github.com/qut-infosec/2017QUT_S7comm
MODBUS TCP SCADA #1 [14]  Liquid pump Modbus 394.905 66.299  https://github.com/tjcruz-dei/ICS_PCAPS

EPIC [15] Smart grid IEC 61850 8.971.319 8.414915 -

SWaT [16] Water treatment EtherNet/IP 6.933.125 2.108.317 -
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From the analyzed IP-ID behaviors, one device showed
perfect behavior without any variations resulting from, e.g.,
packet reordering, gaps, or unusual configuration. However,
slight variations in IP-ID sequences are usual, particularly
if the monitoring instance is not placed directly in front
of the legacy device. Figures [SaH5d] illustrate variations and
anomalies encountered in the analyzed behaviors. We observed
(a) early wrap-arounds, (b) a mix of IP-ID class implementa-
tions, (c) an unexpected reset, and (d) gaps in IP-ID sequences.
In the following, we discuss these anomalies and how we
address them during classification and monitoring.

IP-ID counters typically wrap around after reaching 216 —1.
Figure [5a| shows an early wrap-around after reaching the value
215 — 1 in two devices, possibly resulting from a specific
configuration in the deployed Windows operating system [/13}
14]). The classification algorithm determines any wrap-around
value, given at least one wrap-around in the traces.

Implementations using multiple IP-ID counters show a
mixed class behavior. For example, the PLCs in the EPIC
testbed use one counter each for TCP and ICMP streams and a
constant assignment for UDP traffic, see Figure [5b] The PLCs
in the SWaT testbed use only one UDP counter but assign the
IP-IDs for TCP connections considering the different streams.
Further, the UDP counters use an increment of 1 while the
TCP counters use an increment of 256, i.e., the counters are
byte-swapped. As we check for the different behaviors during
classification using grouped IP-ID sequences, we can identify
such mixed implementations, see Figure [3b]

We observe a reset in one IP-ID sequence from 14902 to 1,
see Figure As the authors [|14] address no anomalies, we
cannot be sure what caused this reset. A possible cause could
be a restart. To ensure that restarts during classification do not
negatively affect the window size, a maximum window size
should be agreed on. To handle restarts during monitoring,
we can use a backup window. For example, if we detect an
anomaly and the counter restarts at 0, we can use the backup
window to monitor subsequent IP-IDs. If the IP-IDs continue
as expected, we can raise a dedicated warning reporting a
restart and continue monitoring with the backup window.

Several IP-ID sequences show gaps, see Figure [5dl To
verify that the gaps do not result from an unusual behavior,
we investigated the corresponding TCP sequence numbers
for continuity. The continuous sequence numbers indicate no
missing TCP segments but rather that the gaps result from,
e.g., internal traffic. Frequent gaps in the IP-ID sequences lead
to a higher standard deviation during classification. Still, by
following the presented process to identify the IP-ID behavior,
we correctly classify the behavior even in the presence of gaps.

2) Monitoring: We applied the monitoring algorithm to the
traces using the (corrected) configurations obtained after clas-
sification. The algorithm ran successfully for the QUT_DNP3,
QUT_S7Comm, and MODBUS TCP SCADA traces. For the
EPIC traces, the algorithm reported false positives in two
cases where the devices experienced much larger gaps during
monitoring than during classification. The monitoring of SWaT
traces was unsuccessful since the algorithm reported numerous

(a) Early wrap-around (b) IP-ID class mix
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Figure 5: IP-ID sequence and assignment anomalies observed
in the different testbed datasets.

unexpected IP-IDs. The SWaT traces contain duplicate pack-
ets and redundant information, most likely due to merging
from multiple capturing points. While the classification was
successful, such noisy traces are not suited for monitoring.

B. Proof-of-Concept (PoC)

Within the PoC, we discuss the accuracy of the monitoring
algorithm to detect spoofing attacks. First, we address the
underlying attack model. Second, we present the PoC setup
and the different test cases considered.

1) Attack Model: We consider an attacker with physical
access to the network able to place attack devices that spoof
network addresses. The attack devices can be placed as a
replacement for an authorized legacy device or as an additional
device using, e.g., an unsecured switch port. The attack devices
can send packets into the network.

2) Setup and Monitoring Test Cases: We set up a virtual
testbed to implement the deployment shown in Figure [
PLC A and PLC B communicate with each other in an inter-
mittent behavior, exchanging TCP traffic to simulate industrial
communication. Additionally, PLC A sporadically sends UDP
traffic to simulate answers to, e.g., SNMP requests. PLC C
also sporadically communicates with PLC B over TCP. The
hosts representing the PLCs can mimic a global and a per-
stream [P-ID behavior, allowing us to assess the detection of
spoofing attacks for different assignment behaviors.

We discuss the two test cases of monitoring PLC A and
PLC B. For each mimicked IP-ID assignment behavior, i.e.,
global and per-stream, we captured 200.000 packets each
for both test cases and for classification and monitoring. We
performed the spoofing attacks during both phases, whereby
we first captured a classification phase without spoofing to
analyze the impact on classification results. Spoofed TCP



packets were assigned a fixed IP-ID value of 1 to verify the
detection accuracy during monitoring. In the following, we
discuss the results and address emerging vulnerabilities.

Monitoring Test Case 1 - PLC A. The classification algo-
rithm correctly classifies the global IP-ID assignment behavior
of PLC A during classification without active spoofing, observ-
ing a gap,q, of 1 and a standard deviation of 0.0 for the global
group. With active spoofing, deviations caused by the attack
device result in a gap,,.; of 65507 and a considerably higher
standard deviation, distorting the result to such an extent that
the algorithm classifies a per-stream behavior for the UDP
stream. However, as these deviations are recognizable in the
report, the attack device can be detected by manual review.
We apply the monitoring algorithm to the monitoring traces
using the configuration obtained during classification without
active spoofing and detect all spoofed packets. As the bounds
of the monitoring window are initialized using the first IP-
ID received, they may be wrongly set if this first packet is
spoofed. However, following IP-IDs of PLC A then result in
subsequent unexpected IP-IDs, hinting at spoofing.

Mimicking a per-stream assignment, the classification algo-
rithm correctly classifies the underlying per-stream assignment
behavior of PLC A, with both streams showing a gapaz
of 1 and a standard deviation of 0.0. With the attack de-
vice active, the algorithm also correctly classifies the per-
stream behavior, despite the resulting gaps and higher standard
deviation. However, when the attacker sends packets during
classification for a new stream, e.g., introduces a new protocol
or sends packets addressing another destination, the algorithm
learns an unauthorized stream. During monitoring, packets in
this stream may then not be detected as anomalous. After
classification, the algorithm reports the classified behavior,
including a list of the individual streams with source and
destination IP, protocol, and specific IP-ID assignment be-
havior. In industrial environments, devices typically have a
few known connections. Manually reviewing the classified
behavior, therefore, ensures that no unauthorized streams are
considered by the monitoring algorithm. When applying the
monitoring algorithm using the configuration obtained for
classification without active spoofing, we detect all spoofed
packets. The other configuration, while the classified behavior
is correct, is unsuited for monitoring due to the large gaps
caused by the attack device. The resulting window would cover
the whole IP-ID range. We would have to manually adjust the
window size to a suitable value.

Monitoring Test Case 2 - PLC B. Due to internal traffic
between PLC B and PLC C, the monitoring gateway does
not capture the whole IP-ID sequence of PLC B in the
case of a global IP-ID assignment. Despite resulting gaps,
the algorithm correctly classifies the global behavior with an
observed gap,,q. of 6 and a standard deviation of 0.16. With
the attack device active, the algorithm wrongly classifies the
behavior as per-stream, as in the other test case. Applying the
monitoring algorithm, only 1 of 645 spoofed packets remained
undetected as it fell into a gap during the wrap-around.

For a per-stream assignment, internal traffic between PLC B
and PLC C does not cause gaps in the IP-ID sequences
captured at the gateway, resulting in two monitored streams
with a gap,,q, of 1 and a standard deviation of 0.0. With active
spoofing, the classification algorithm also correctly classifies
the behavior, despite deviations caused by the attack device.
During monitoring, we again detect all spoofed packets.

C. Discussion

IP-ID monitoring builds on the IP-ID specifications [1}
2] that require IP-IDs to be unique for the tuple of source
address, destination address, and protocol for the maximum
packet lifetime in the network if fragmentation is possible.
This uniqueness limits the speed of connections between
two hosts to 6.4 Mbps for typical packet sizes [2]. Devices
follow fixed assignment behaviors, which may violate this
specification at higher sending rates. However, this violation
does not affect the proposed mechanism as we monitor specific
assignment behaviors. The IP-ID sequences continue to follow
these behaviors, although wrapping around faster.

If traffic captures contain many gaps or other noise, the clas-
sification results show higher standard deviations, leading to
wider windows during monitoring. Additionally, the behavior
of some streams or devices may even be undefined. Thus, to
correctly classify the IP-ID assignment behavior, particularly
the specific configuration of the increment and wrap-around
values, we require sufficient traffic data, e.g., at least one IP-
ID cycle to capture the wrap-around. However, despite wider
windows, IP-IDs in packets sent by a spoofing device are still
likely to fall outside the monitoring window. Further, even if
the IP-ID assignment strategy of some streams is classified as
undefined, the respective traffic streams are still known by the
monitoring instance, allowing us to detect unknown streams
initiated by an attack device during monitoring.

To closely monitor the IP-IDs of one or multiple legacy
devices, we must identify a suitable position in the network,
see Section Further, we need to consider other devices
that operate on packet headers, such as VPN gateways and
NATs. Since these devices modify IP addresses or encapsulate
IP headers, the IP-ID-based mechanism must be implemented
within the cell or subnet where the monitored devices are
placed. Otherwise, the algorithms cannot classify and monitor
the IP-ID assignment behavior of individual devices.

Despite the discussed challenges, the proposed mechanism
effectively detects attack devices spoofing network addresses.
As we closely monitor the IP-ID sequence of a legacy device
for the classified behavior, we can detect when the device
behaves differently, hinting at a spoofing attack. In the PoC, we
detected the spoofing attacks in each test case by identifying
unexpected or duplicate IP-IDs. Even in the presence of
gaps, an undetected duplicate can lead to multiple subsequent
unexpected IP-IDs if the monitoring window advances too
early. We can also detect spoofing by attack devices that use
assignment behaviors other than a constant one, such as a
random assignment, since spoofed packets eventually result in
an anomaly, see Figure [6a]



/

////
: 7, s

IP-ID
IP-ID

o _
;
/ s/
/

0 V4

IP-ID

(a) Attacker sends spoofed packets, resulting (b) Attacker replaces the legacy device and (c) Attacker sends packets, mimicking and

in detected unexpected IP-IDs.

mimics its IP-ID behavior.

correcting the IP-IDs of the legacy device.

Figure 6: IP-ID sequences under different monitoring and bypassing scenarios.

Bypassing the monitoring algorithm requires the attacker to
learn and then mimic the expected IP-ID assignment behavior
of a legacy device. If the attacker solely spoofs the source
address in generated packets or replays intercepted packets,
the monitoring mechanism will detect unexpected or duplicate
IP-IDs, respectively, see Figure [6a] When replacing a legacy
device, the attacker will only successfully transmit packets if
the IP-IDs set in the packets follow the learned behavior, as
visualized in Figure If the legacy device is still active and
sending traffic into the network, injecting packets with the
correct next-expected IP-IDs will result in detected duplicates
when the device sends further packets. Therefore, the attacker
must either drop the following packets sent by the legacy
device or manipulate their IP-IDs, see Figure Overall,
obfuscating the spoofing attack and remaining undetected is
complex and time-consuming.

VI. CONCLUSION

Brownfield networks contain legacy devices with insuffi-
cient security features, necessitating compensating security
measures. For this purpose, we present an anomaly detection
mechanism for spoofed IPv4 traffic based on the IP-ID in the
IPv4 header. The mechanism consists of a classification and a
monitoring algorithm, utilizing the fact that IP-IDs in packets
sent by an attack device likely differ from the classified IP-
ID assignment behavior of the legacy device. The proposed
mechanism applies to various IP-ID counter behaviors and
configurations identified by the classification algorithm. The
monitoring algorithm employs a window-based approach to
observe if IP-IDs correspond to this classified behavior. In
the PoC implementation, we detected any spoofing attempts,
even in challenging use cases where IP-ID sequences showed
gaps. The passive and application-independent nature of the
proposed mechanism makes it applicable for use in various
domains, including critical infrastructures.
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