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Abstract—Communication in Industrial Control Systems
(ICSs) depends on predictable timing to ensure reliable operation.
In converged networks, this timing can be disrupted not only by
cyber attacks but also by misconfiguration or benign misbehavior
of devices. Such issues degrade Quality of Service (QoS) through
delays or jitter, without altering packet content, making it hard
to detect them with traditional monitoring systems.

This paper presents a configuration-agnostic monitoring sys-
tem that detects QoS degradation using statistical anomaly
detection. We evaluate three detection methods, single-value
thresholds, exponential moving averages, and distribution-based
analysis, and show that distribution-based detection offers the
most robust results. The system supports both passive and active
timing measurement to balance accuracy and overhead. By
operating independently of network configuration, the proposed
approach enables early detection of timing anomalies caused by
misbehavior, misconfiguration, or attacks, demonstrating appli-
cability in real-world industrial networks.

Index Terms—Industry 4.0, TSN, Time-Sensitive Networking,
Security, Network Security, Intrusion Detection System

I. INTRODUCTION

Industrial Control Systems (ICSs) are crucial for automating
complex manufacturing processes and ensuring operational
efficiency in industrial settings. These systems require control
messages to arrive at fixed intervals with minimal deviation,
i.e., small jitter. The emergence of Time-Sensitive Networking
(TSN) standards has enabled the convergence of industrial
automation and IT networks, maintaining Quality of Service
(QoS) for ICSs while sharing links with bandwidth-consuming
IT applications. However, this convergence increases the com-
plexity of network architecture, raising the risk of misconfig-
uration, unintentional misbehavior, and cyberattacks.

Misconfiguration of TSN networks or misbehaving end
devices can degrade QoS for critical traffic, leading to reduced
bandwidth and delayed or lost packets. Similarly, attackers
can degrade the timing of traffic rather than altering packet
contents [1], for example, by delaying packets or manipulating
the time synchronization within the network. In addition,
injected traffic can displace time-critical messages. While
protection mechanisms exist, such as filtering and policing [2],
they are often unavailable because the deployed hardware does
not support them at scale [3], [4].
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Fig. 1: Exemplary cycle-time and jitter anomaly.

Traditional Intrusion Detection Systems (IDS) rely on
packet content inspection and fail to detect QoS degradation,
as the degradation does not affect data integrity but alters
timing behavior. This work aims to detect QoS degradation
independent of the network configuration while ensuring zero
false positives, meaning no alerting during normal behavior.
We present two mechanisms to capture timing information and
three algorithms to detect degradation based on this data.

Figure 1 shows an example of QoS degradation for cyclic
messages. Typically, time-critical traffic follows a known cycle
time. In the example, the expected cycle time is 10 ms.
Message M1 occurs at 0 ms, and M2 at 10 ms. However,
the third message M3 arrives at 22 ms (M ′

3) instead of the
expected 20 ms, resulting in a cycle time of 12 ms and a jitter
of 2 ms. Such subtle deviations are difficult to detect for end
devices, especially if the time synchronization is manipulated.

Most industrial applications detect increased delays and stop
their operation if delays exceed predefined thresholds. How-
ever, detection becomes non-trivial when time synchronization
is attacked. Additionally, the network management system
should detect QoS degradation before critical processes are
impacted. Therefore, this work proposes a network monitor-
ing solution that detects QoS degradation independently of
network configuration, comprising traffic sampling and degra-
dation detection. The detection aims for zero false positives
while reliably identifying early stages of degradation.

In the following, we first analyze the impact and causes
of QoS degradation (Section II), before presenting the system
model and timing extraction methods (Section III). We then
introduce and compare three different detection algorithms
(Section IV), and evaluate performance under various degra-
dation scenarios (Section V). Finally, we discuss related work
(Section VI) and conclude with future research (Section VII).

II. QOS DEGRADATION

In real-time applications such as motion control, robotics,
and industrial automation, consistent and predictable commu-
nication timing is essential for correct and reliable system



behavior. Even when most communication operates within ex-
pected limits, intermittent delays can still significantly impact
the process quality, depending on how often they occur and
how large the timing deviation is.

A. Degradation Impact

Consider a welding robot with a camera that provides
visual input for seam tracking [5], [6]. The control system
relies on precise transmission timing to coordinate camera
data processing, robot motion, and welding torch actuation.
An end device can detect delayed packets and treat them
as lost if they are correctly synchronized with the network.
However, if delays are small, such as 1% of the cycle time,
minor misalignments between visual feedback and motion may
occur, resulting in slight deviations along the weld path. As
delays grow to 5% or 10%, the robot may react to outdated
camera frames, leading to visible welding errors, excessive
corrections, or welds outside the intended track. Infrequent but
significant delays can also cause mistimed weld starts or stops,
especially when vision-based adjustments must be made on the
fly. These issues compromise weld quality, increase stress on
mechanical components, and reduce production efficiency.

Typically, QoS degradation begins subtly, with only a few
packets being delayed by a small amount. Systems may
continue operating without timely detection with silent per-
formance loss until the impact becomes severe or disruptive.
Early detection of such degradation is critical, allowing sys-
tems to react by adapting control logic, buffering input, or
alerting operators before quality or safety is compromised.

B. Degradation Sources

Regular Ethernet provides no timing guarantees, as devices
send data whenever needed, and delays occur if the network is
busy. However, under constant load conditions, delay behavior
appears static. A single misbehaving device that sends too
much or too often can delay critical messages and disrupt
system behavior (cf. Misbehaving Device in Figure 2). Time-
sensitive applications require lower and guaranteed delays.
TSN extends Ethernet to support real-time communication by
adding time synchronization, scheduled traffic, and preemp-
tion features. These mechanisms enable precise control over
data flows but also increase complexity in configuration and
deployment (cf. Misconfigured Switch in Figure 2), making
networks vulnerable to interference by misbehaving devices.

Attackers can intentionally cause similar effects. As a man-
in-the-middle, an attacker can inject additional traffic, delay
specific packets, or subtly manipulate the time synchronization
to degrade QoS without modifying packet contents (cf. At-
tacker in Figure 2). Although the content remains unchanged,
application traffic becomes mistimed, disrupting time-critical
communication. Detection is particularly challenging when
injected traffic is well-formed and time synchronization is
manipulated to hide timing anomalies.

Finally, physical failures such as broken links can introduce
QoS degradation as well (cf. Corrupt Link in Figure 2).
Broken equipment typically results in packet loss due to CRC
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Fig. 2: Potential sources of QoS degradation.

errors, allowing applications to detect these failures through
payload counters. However, such failures can also cause subtle
degradation before a total link loss occurs.

III. SYSTEM MODEL

This section describes the four stages of the system model
to detect QoS degradation in time-sensitive networks:

1) Collection of timing information,
2) Extraction of timing information,
3) Benchmarking of normal operation, and
4) Detecting QoS degradation

Collection and extraction are continuous tasks during both
benchmarking and detection. Benchmarking initializes thresh-
olds based on observed traffic, while the detection compares
the measurements to these thresholds to identify anomalies.

In the following sections, we detail the collection and ex-
traction of the data. Afterwards, we highlight the benchmark-
ing and detection operation. We detail three benchmarking and
detection algorithms in Section IV. Finally, we conclude this
section with requirements for detection performance.

A. Collection

The system captures timing information from the network
to evaluate the timing of packets. The closer the measurement
point is to the receiver, the more accurately it reflects the
observed behavior. Different collection methods offer dif-
ferent timing precision, which influences detection quality.
We propose two methods for collecting timing information:
passive traffic analysis via port mirroring and enhanced active
measurements with in-band timestamping.

1) Passive Traffic Analysis via Port Mirroring: Port mir-
roring enables non-intrusive observation of existing traffic in
both industrial and IT environments. The network card adds a
receive timestamp based on a local clock to the metadata of
every packet, allowing for time-frequency analysis.

This work uses the Switch Port Analyzer (SPAN) feature,
where the monitoring station is directly attached to the mirror-
ing switch. Using SPAN with low-budget network cards, we
observed a jitter of 0.5 ms and a standard deviation of 75 µs for
traffic with a cycle time of 5 ms. This jitter results from cross
traffic on the network, the software stack of the monitoring



device, and port mirroring itself. The detection algorithms
must tolerate this imprecision to avoid false positives. More
precise capture with hardware timestamping network cards is
possible, but it increases deployment costs.

2) Enhanced OAM-based Timing Monitoring: We use ac-
tive measurements based on Orchestration, Administration,
and Maintenance (OAM) protocols to complement passive
monitoring. Existing OAM standards such as RFC 7456 [7]
and IEEE 802.1ag [8] provide latency measurements. How-
ever, they do not capture timing at intermediate points.

We extend OAM-based monitoring with in-band times-
tamping at the PHY layer of switches, leveraging hardware
features originally intended for one-step time synchroniza-
tion. Specifically, we inject measurement packets that carry
transmission timestamps inserted by switches along the path.
The injected packets emulate characteristics of critical traffic,
such as priority, size, and cyclic behavior. The OAM flows
are registered in the network management system to avoid
interfering with critical traffic, similar to IEEE 802.1Qdj [9].

In our prototype, the hardware-assisted mechanism achieved
a jitter of 5 µs and a standard deviation of 1 µs, caused
by other traffic in the network. Although more precise than
SPAN-based monitoring, this method requires modifications to
network configuration and hardware support for timestamping,
making this approach less applicable.

B. Extraction
The monitoring system extracts timing parameters from

observed network streams. Each application stream generates
a time series based on cycle time and jitter measurements.
Depending on the detection algorithm, the system uses either
only cycle time, only jitter, or a combination of both.

1) Cycle Time: The cycle time is the time difference be-
tween two consecutive packets (cf. Figure 1). The system cal-
culates it based on receive timestamps from mirrored traffic or
timestamps embedded in OAM packets. If multiple timestamps
are available, such as in OAM-based monitoring, the system
can extract cycle times from different locations along the path.
Cycle time extraction does not require time synchronization,
as the local clock drift between two consecutive packets is
negligible. However, packet loss affects extraction, as missing
packets lead to measured cycle times being multiples of the
expected cycle.

2) Jitter: Jitter is the deviation of the reception time of
a packet from its expected reception time within the cycle.
During benchmarking, the system establishes the expected
reception time by calculating the mean offset of packets within
the cycle. Jitter extraction requires time synchronization, as the
device must interpret absolute time values. While cycle time
extraction is sensitive to packet loss, jitter extraction is not.
However, jitter measurements can be manipulated if an at-
tacker compromises the time synchronization. Specifically, an
attacker can adjust the observed jitter to hide QoS degradation.

C. Benchmarking
Benchmarking is the initial phase of the detection system.

During this phase, we assume no attacker or misbehavior is

present in the network. The goal of benchmarking is to estab-
lish detection thresholds based on observed timing behavior,
ensuring independence from specific network configurations.

We execute the benchmarking algorithm during the first
20 seconds of operation (4,000 packets with a cycle time
of 5 ms). During this time, the system continuously collects
timing information and extracts cycle time and jitter values.
Based on these observations, it calculates statistical measures
such as mean, standard deviation, minimum, and maximum
values. These values define the thresholds used later for
detecting deviations from normal behavior.

Each detection mechanism applies the same calculation
methods during benchmarking as it does during detection, but
updates the statistical measures only during the benchmarking
phase. After benchmarking concludes, the detection phase
begins and runs continuously.

D. Detection

During detection, the system applies the same calculations
as during the benchmarking but does not update the statistical
measures. Instead, it compares the new measurements against
the established thresholds. A value that exceeds a threshold is
classified as a positive detection. Otherwise, it is classified
as negative. Depending on the correctness, each value is
categorized as True Positive (TP), False Positive (FP), True
Negative (TN), or False Negative (FN).

E. Requirements

The detection system must achieve a false positive rate of
zero, as false alarms require costly manual analysis and reduce
practical applicability. At the same time, it must minimize false
negatives and reliably detect QoS degradation. Specifically, the
detection rate must approach 100% with increased deviations
and delays, ensuring early identification of critical issues.

IV. DETECTING QOS DEGRADATION

Based on the previous section, we assume we have the
timing information from a SPAN measurement. In the follow-
ing, we introduce three different methods for detecting QoS
degradation: A) single-value thresholds, B) moving averages,
and C) distribution-based analysis. This section uses reference
degradation scenarios to discuss the behavior, pros, and cons
of the three mechanisms. We use the same captured traffic
for all visualized detections. In Section V, we introduce the
testbed and we evaluate the most promising methods with
more variation in the degradation and variance in the delay.

A. Single Value Detection

We use the detection based on a single value as a baseline
algorithm, as it is intuitive and simple to implement. During
the benchmarking, this algorithm combines all extracted cycle
times or jitter and calculates the mean, standard deviation
(std), minimum (min), and maximum (max) value. We calcu-
late the thresholds with these values, as visualized in Figure 3
with the dashed horizontal lines. The subfigure a) visualizes
the thresholds mean± (2 ·std), whereas the subfigure b) uses
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Fig. 3: Detection of time degradations during three scenarios based on a single packet with two different thresholds: a) mean±
(2 · std) and b) min/max. Degradation delay every 2nd packet by 2% (d1), 10th by 5% (d2), and every packet by 1% (d3).

the min and max for the presented thresholds. The y-axis on
the left measures the cycle time, and the y-axis on the right
measures the jitter. On the x-axis, Figure 3 presents the packet
number. All values between the threshold lines indicate regular
behavior, while values above or below the window between the
threshold lines indicate QoS degradation. The traffic suffered
QoS degradation within the areas with a red background, and
the presented monitoring system should detect it. The first
degradation d1 delays every second packet by 2% of the cycle
time, which is a very intense degradation of QoS. The second
scenario d2 delays every 10th packet by 5%. The third scenario
d3 delays every packet by only 1%. Outside these areas, the
traffic has a similar timing as the benchmarking phase.

Figure 3a shows that this intuitive single-value comparison
is too sensitive to outliers (cf. markers 1a and 1b). Specifically,
the outliers in the regular behavior have a similar height as
the introduced degradation. Independent of the choice of the
formula and factor for the standard deviation, the threshold
selection will always result in false positives (cf. markers 1a

and 1b) and false negatives (cf. marker 2). The algorithm will
have even more false negatives if the threshold is adjusted to
have no false positives (cf. marker 3). Therefore, the detection
based on single values is insufficient for a good IDS. The
algorithm must be less sensitive to outliers to fulfill the
requirements of zero false positives and low false negatives.
In the next section, we introduce the detection based on the
exponential moving average to smooth the detection.

B. Exponential Moving Average

The exponential moving average (EMA) is a simple and
efficient method for smoothing time series data. It applies
exponential decay to past values, giving more weight to recent
samples. EMA updates recursively and does not require storing
historical data, making it ideal for real-time systems. We use
EMA to calculate changes in jitter and cycle times for a single
packet based on the previous traffic. Figure 4 visualizes the
results for two different EMA configurations.

Equation 1 describes the EMA computation at time step i.
Xi is the current sample, Ai−1 is the previous average, and
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Fig. 4: Detection of time degradation during three scenarios based on exponential moving average (EMA) with two different
memory sizes n: a) n = 10 and b) n = 50 packets. Threshold: min/max. Same degradation scenarios as in Figure 3.



α ∈ (0, 1] is the smoothing factor that controls the memory.
In addition, Menth et al. [10] proposed a common memory
definition for moving averages: α = 1− 1/memory.

Ai = α ·Ai−1 + (1− α) ·Xi (1)

During the benchmarking phase, we apply the EMA to all
cycle times and jitter values to calculate the min and max
values we use as thresholds. Figure 4 shows the application
of the EMA during the detection with different memory sizes:
subfigure a) 10 packets and subfigure b) 50 packets. Important
to note that the different memory sizes result in different scales
for the two subfigures. In both figures, the cycle time has
thin spikes during degradation (cf. orange line at marker 2),
as one cycle time is larger than the average for a delayed
packet and smaller by the same amount for the next packet,
which is not delayed. Hence, the average only changes for the
first packet and is reset with the second packet. The EMA for
the cycle time is always close to the desired cycle time, and
only single packets exceed the threshold. It is similar to the
previous approach and sensitive to outliers (cf. marker 3 with
false positives) and false negatives for the cycle time at marker
1. Additionally, if every packet is delayed, the detection based
on the cycle time cannot reveal the degradation (cf. orange
line in marker 6). The jitter is a per-packet observation, and a
delayed packet does not impact the following jitter. Therefore,
the moving average on jitter indicates areas with multiple
packets suffering QoS degradation (cf. jitter at marker 1). The
larger memory makes the algorithm less sensitive to outliers,
resulting in flatter slopes during detection, i.e., requires a
longer time until a deviation is alerted (cf. jitter at marker 5)
and until detection is reset to normal (cf. jitter at marker 4).

Concluding the introduction of the EMA to detect QoS
degradation, we notice a sensitive behavior of cycle time,
independent of the memory size, making it insufficient for
the goal of having zero false positives. For the EMA based
on jitter, sparse degradation (cf. d2) results in only a few
degradation samples per memory and thus is difficult to detect.

Hence, the EMA based on jitter with a larger memory size is
less sensitive to outliers and detects sparse degradation more
reliably, but has a longer delay until the detection.

C. Distribution-based Detection

To reduce the sensitivity to single values, e.g., the cycle
time in the detection with the EMA, we compare the distri-
bution of values in the benchmarking phase and the detection
phase. This work uses the Wasserstein distance (WD), which
calculates the distance between two distributions for single
and multi-dimensional values. The WD, also known as Earth
Mover’s Distance, measures how much effort is needed to
transform one distribution into another, by considering loca-
tion, spread, and shape. This is especially useful for detecting
subtle shifts in timing behavior.

The first-order Wasserstein distance between two sorted
samples x1, . . . , xn and y1, . . . , yn is given by Equation 2.
P and Q are uniform distributions over sorted samples
x1, . . . , xn and y1, . . . , yn, respectively. The benchmarking
phase starts with creating the reference distribution of size
n. During the rest of the benchmarking phase, we compare
the distribution of the last n received packets to this reference
distribution. From this comparison, we store the max distance
as the threshold for the detection.

W1(P,Q) =
1

n

n∑
i=1

|xi − yi| (2)

Figure 5 shows the application of the WD during the
detection with different distribution sizes: subfigure a) 10
packets and subfigure b) 50 packets. In addition to the previous
plots, we present the WD applied to the combination of cycle
time and jitter as a two-dimensional distribution. Important to
note is that the subfigures use the same scale, i.e., the detected
differences are in the same order, but the thresholds are
lower for the larger distribution size. Hence, larger distribution
sizes result in more confidence in the detection with WD
and remove the impact of single outliers, as presented by
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Figure 5b at marker 4. The confidence in the detection is
visible by comparing the detection, i.e., barely reaching the
threshold at marker 1 and exceeding the threshold at marker 3.
Marker 2 highlights the potential of false negatives in small
distribution sizes due to the large threshold. Similar to the
detection based on single values and EMA, the detection
solely on the cycle time cannot detect the delay of all packets
(cf. marker 5). However, for all other degradations, the WD
algorithm can operate solely on the cycle time measurements
and is independent of the time synchronization.

V. EVALUATION

In the previous section, we introduced three methods to
identify QoS degradation in the timing information of packet
traces. In this section, we evaluate the most promising methods
in more detail: the EMA based on jitter and the WD based on
jitter, cycle time, and the combination of cycle time and jitter.
First, we briefly describe the testbed used to gather all samples
for the data presented in this paper. Second, we execute
parameter studies to discuss the benefits and downsides of the
four approaches. Finally, we use traffic with delay as a normal
distribution to evaluate less structured QoS degradation.

A. Testbed

We evaluate the effectiveness of the network monitoring
solution in a testbed that represents a small industrial net-
work, as visualized in Figure 7. The testbed comprises four
synchronized Hirschmann RSPE35 switches and a real-time
OPC UA application. The cyclic real-time traffic stream with
a cycle time of 5 ms is based on the open-source open62541
pub-sub application developed by Pfrommer et al. [11]. This
transmission is similar to the communication between a con-
troller and an IO system in a discrete manufacturing line using,
e.g., PROFINET traffic. We simulate the QoS degradation at

EDED ED ED
OPC UA
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Delay

Fig. 7: Testbed for evaluating QoS degradation.

the second switch by delaying every n-th packet. End devices
(cf. ED in Figure 7) send cross traffic with 10 Mbit/s at every
switch with the traffic generation tool iPerf version 2.1.5 to
represent background traffic, e.g., SCADA. At the last switch,
we mirror the traffic with SPAN and record the reception
timestamps with tcpdump version 4.99.2 and libpcap version
1.10.2. The percentage of added delay results in smaller jitter
for smaller intervals, making detection more challenging.

B. Parameter Studies

We use a structured evaluation with different parameters
on the QoS degradation to analyze the detection performance
in different scenarios. Throughout the evaluation, we modified
the added delay and the frequency of delayed packets. Figure 6
presents the applied delay to every nth = {2, 10, and 25}
packet to determine the impact of different QoS degradation
scenarios. Additionally, we apply a delay of varying intensity
= {1%, 5%, and 10%}, resulting in nominal values for a 5 ms
cycle time of 0.05 ms, 0.25 ms, and 0.5 ms, respectively.
We determine the effectiveness of the detection methods by
the ratio of correctly and incorrectly classified values (cf.
TP, FP, TN, and FN in Section III-D). We evaluate detection
performance using precision, recall, and F1-Score (Equations 3
to 5). Precision measures correct positive detections, recall
measures the detection rate of actual degradations, and the F1-
Score combines both into a single metric. The system requires
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Fig. 6: Detecting QoS degradation in different scenarios with the EMA based on jitter and WD based on cycle time, jitter, or
the combination of both. Memory/distribution size: 50; Threshold: min/max.



precision to equal 1 and a recall close to 1, specifically for
high-frequency, high-delay degradations.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(5)

Figure 6 presents the detection results for the QoS degra-
dation variations. Each subfigure presents the Precision,
Recall, and the F1-Score for each evaluation scenario. For
each of the added delay and frequency combinations, we used
1.000 degradation samples captured in our testbed, always
combined with the same duration of non-degrading traffic to
have a cross-check for false positives. We set the detection
thresholds during the baseline phase to the max and min
detected values. We generally observe that all four detection
methods more precisely detect larger delays and higher fre-
quencies. Specifically, all mechanisms identify all degradations
for these scenarios (cf. recall heatmaps). As discussed in
Section II, the infrequent delay and small delay scenarios
do not impact the performance and quality of a machine
(cf. left column and bottom row). Still, they typically are
the start of a degradation process. Hence, early detection is
achieved by detecting the samples at the bottom left of the
heatmaps. Based on the jitter, the WD achieves the best results
for these small degradations. For applicability in industrial
networks, a small false positive rate is important. Someone
must analyze the situation and verify the reported state for
any false positives causing alert fatigue. In the executed test
runs, the WD mechanisms never detected any false positives,
while the EMA has a precision of 0.96.

We propose to use the WD based on the combination of
jitter and cycle time. If the degradation or an attacker affects
the time synchronization, such that the jitter aligns with a
wrong clock, the detection system still has the performance
of the WD based on the cycle time.
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Fig. 9: Delay by packets between degradation start and detec-
tion, as well as between degradation end and recovery. Values
per method from top to bottom from d1 to d3.

C. Normally Distributed QoS Degradation

As the previous measurements used structured and constant
delays, we also execute measurements with non-static QoS
degradations. For that, the added delay follows a normal
distribution, but has a similar range as the previously discussed
scenarios. Figure 8 presents the detection in these scenarios
for the EMA and WD in a single graph with the WD scale
on the left and EMA scale on the right. The combined figure
enables the discussion on the detection speed, where the EMA
presents a more sensitive behavior (cf. marker 4). For each
method, Figure 9 shows from top to bottom the detection and
recovery delay at d1 and d2, as well as the detection delay at
d3. The EMA jitter is the fastest in detection and the slowest
in recovery. All WD detection algorithms have a slightly larger
delay for the detection, but recover faster than the EMA.
Specifically, the detection speed is important to observe short
degradation phases and react as soon as possible. However, the
EMA also detects multiple false positives as degradation (cf.
marker 3), as the detection for the EMA takes longer to return
to normal (cf. marker 2). The three WD detection mechanisms
perform similarly, with the jitter being less sensitive in the first
degradation scenario (cf. marker 1). Hence, WD proves to have
the best applicability in dynamic environments.
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Fig. 8: Detecting QoS degradation in different scenarios with the exponential moving average (EMA) based on jitter and
Wasserstein distance (WD) based on cycle time, jitter, or the combination of both. Memory or distribution size: 50; Threshold:
min/max. Similar degradation scenarios as in Figure 3, 4, and 5, but with a normally distributed added delay.



VI. RELATED WORK

Time-critical traffic streams are high-priority attack targets,
as delayed or lost packages can disrupt the production pro-
cess. To protect these critical streams, the TSN Task Group
developed the IEEE 802.1Qci Per-Stream Filering and Policing
(PSFP) standard [2]. Luo et al. [12] and Meyer et al. [13] de-
veloped anomaly-based detection systems for Time Sensitive
Networking (TSN) that rely on PSFP for attack detection. The
authors evaluated their IDS in an OMNeT++ simulation, where
the IDS identified and discarded all abnormal traffic events
with high accuracy. Their work is limited by the assumption
that PSFP is supported on every port of every switch in
the network. The same applies to earlier work from Meyer
et al. [14], where the authors achieved DoS protection with
credit-based metering and PSFP. However, current infrastruc-
ture in industrial environments does not support PSFP or has
a limited number of filtering rules and thus is not feasible
in large networks [4]. Bülbül et al. [15] proposed TSN-
Gatekeeper, a Software Defined Networking (SDN) ingress
filter approach similar to PSFP. Similarly, Ihle et al. [16]
implements P4-PSFP, i.e., a fully IEEE 802.1Qci standard-
conform P4-based PSFP implementation. Unfortunately, both
implementations are limited to data plane programmability
with P4 and thus are not applicable in industrial networks.

Ergenc et al. [17] proposed an open-source IDS for TSN
called TSNZeek. Their IDS can accurately detect attacks on
TSN protocols like the Stream Reservation Protocol (SRP)
and the fault tolerance mechanism Frame Replication and
Elimination for Reliability (FRER). However, their IDS is
limited to these two protocols and fails to detect delay attacks
on time-critical traffic streams. Zhang et al. [18] developed
TSN-Peeper, a network monitoring solution that relies on in-
band telemetry data to detect forwarding misbehavior of TSN
streams. Similar to this work, Chou et al. [19] present the
analysis of the cycle time but lack algorithms and evaluation.

None of the existing literature provides a configuration-
independent, widely available solution for QoS degradation
detection in time-critical traffic. Existing solutions rely on spe-
cific standards or are limited to specific attacks or protocols.
We close this gap and provide a practical, standard agnostic
monitoring solution that detects QoS degradation.

VII. CONCLUSION AND FUTURE WORK

This work presents a configuration-independent detection
system for identifying QoS degradation in time-sensitive net-
works. We introduce passive and active timing measurements
to capture traffic behavior and evaluate three statistical de-
tection algorithms. Among them, the Wasserstein distance
achieves the most reliable results, detecting degradation early
while remaining robust against minor jitter fluctuations.

Operating independently of network configuration and ap-
plication semantics, the system remains applicable even in het-
erogeneous industrial environments. Our evaluation confirms
that early-stage degradations, often precursors to critical fail-
ures, can be reliably detected. For the majority of degradations,
detection does not require time synchronization. Future work

will refine threshold selection and validate the system across
diverse industrial environments to bridge the gap between
experimental and operational deployments.
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