
Time-Limited Software Firewall Based on DPDK
Supporting TSN and DetNet Traffic

Lukas Bechtel∗†, Markus Schramm∗, Michael Menth§, Tobias Heer∗†
∗University of Applied Sciences Esslingen, Germany, {lukas.bechtel,markus.schramm,tobias.heer}@hs-esslingen.de

§Chair of Communication Networks University of Tuebingen, Germany, menth@uni-tuebingen.de
†Belden Inc., Neckartenzlingen, Germany

Accepted for publication in Proceedings of 30th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
Porto, Portugal, September 9-12, 2025
©2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract—The convergence of IT and OT networks introduces
strict latency and security requirements, especially in virtual-
ized industrial environments. While TSN and DetNet provide
bounded-latency traffic delivery, traditional software firewalls
break determinism due to variable rule evaluation times. Hence,
we propose a time-limited firewall design that limits per-packet
rule evaluation time to a fixed budget, ensuring deterministic
processing even under high load. To preserve security despite
partial rule checks, we propose that a deferred filtering stage
verifies and, if necessary, retroactively corrects earlier forwarding
decisions. We implement this design in a software firewall
prototype and evaluate it under maximum packet rate. The
system guarantees limited latency for all packets, maintains high
throughput, and ensures eventual security consistency, all without
requiring specialized hardware.

Index Terms—Industry 4.0, TSN, Time-Sensitive Networking,
Security, Network Security, Network Segmentation, IoT

I. INTRODUCTION

Modern industrial automation systems depend on time-
critical communication. Control operations, real-time sensor
data, and safety functions rely on the timely and predictable
delivery of messages. Even small deviations in timing can
cause instability, performance degradation, or safety risks. This
challenge intensifies with the adoption of edge computing
and local data centers since time-critical traffic is no longer
restricted to isolated network segments. Instead, traffic passes
through shared network segments, routers, and firewalls. Best-
effort traffic with high data rates also uses these components,
which makes isolating traffic and preserving timing guarantees
increasingly difficult. Time-Sensitive Networking (TSN) and
Deterministic Networking (DetNet) address the need for time-
critical communication in shared networks and across multiple
network segments. These standards ensure deterministic tim-
ing behavior if network designers model the timing of the
network with the knowledge of the latencies of all individual
components, i.e., switches, routers, and firewalls.

Today, software firewalls do not perform time-deterministic
filtering and thus, break the deterministic guarantees required
by TSN and DetNet environments [1]. To address this is-
sue and forward traffic at wire speed without packet loss,
we propose a time-limited software firewall architecture that

This work has been funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – Project-ID 528745080 - FIP 68 and ”FHP:
Qualifizierung und Entwicklung des professoralen Personals der Hochschule
Esslingen für zukunftsweisende Themen” (FKZ: 03FHP115) as part of the
”FH-Personal”, funded by the BMBF and MWK Baden-Württemberg. The
authors alone are responsible for the content of the paper.

Fig. 1. Limiting filter duration to support static latencies for critical traffic.

enforces a per-packet processing budget. The firewall assigns
each packet a time budget. If the firewall cannot decide within
this budget, i.e., does not reach a matching rule, it immediately
applies a default action, such as ACCEPT or DROP. This
design prioritizes latency bounds over complete ruleset eval-
uation. Figure 1 compares the state-of-the-art behavior with
packet loss and latencies above the time limit with the target
latency limited by the time limit and no packet loss.

To maintain security, a deferred filtering mechanism asyn-
chronously re-evaluates forwarded packets and corrects any
misclassification for future traffic. This guarantees bounded
latency per packet while preserving security by comparing the
executed decision to the correct rule in the ruleset. As the
performance of a firewall varies with different packet rates, we
introduce the concept of a dynamic time budget. With that, the
initially configured maximum budget is dynamically adjusted
so that the firewall can process all packets in a timely manner.

In summary, our contributions are as follows:
• We analyze the impact of high packet rates on the

available time for filtering in software firewalls.
• We present a time-limited firewall design that bounds the

per-packet filter duration to a time budget.
• We introduce and discuss a mechanism to limit the

introduced security tradeoff.
• We enhance the model with a dynamic time budgeting

mechanism that adapts to the packet rate.
Our prototype, implemented using FD.io VPP based on

the Data Plane Development Kit (DPDK), demonstrates the
feasibility of this approach. It delivers high-throughput, low-
latency firewalling with adaptive filtering depth and post-hoc
verification. This architecture enables software firewalls to
operate within deterministic networking environments, com-
bining real-time responsiveness with security enforcement.

II. RELATED WORK

Chomsiri et al. improved rule evaluation by organizing rules
into trees [2], enhancing session tables [3], and combining



stateless filtering with automatic rule reordering [4]. These
approaches focus on throughput but do not address latency
bounds. Rovniagin et al. integrated the GEM algorithm into
iptables for faster matching [5], but its complexity remains
unsuitable for real-time guarantees. Trabelsi et al. proposed a
single-hash session table [6] and later optimized rule and field
ordering to reduce processing for repeated traffic and early
drops [7]. El-Atawy et al. reduced operations using statistics-
based filters [8] and prefiltering based on boolean logic [9].
Wang et al. reordered rules dynamically to shorten matching
paths [10]. Unlike these works, our approach enforces strict
per-packet latency by limiting rule evaluation time and recov-
ering security through deferred filtering.

III. DESIGN

In this section, we present the architecture of the time-
limited firewall, detailing its core mechanisms for enforcing
latency bounds and preserving security.

A. Overview and Background

The duration of the filtering for a single packet depends
on the index of the rule a packet matches. Rules in the
front of the ruleset cause a smaller delay than rules in the
back of the ruleset. We introduce the mechanism for upper-
bounding the filter duration in Section III-B. To limit the attack
surface introduced by the early forwarding, we present the
deferred filtering in Section III-C. Software firewalls process
packets sequentially. Hence, consecutive packets will only be
filtered if the filtering of the previous packet is finished. As
a result, the duration of packet processing and filtering must
not exceed the time between the arrival of two packets. For
example, at 1 Gbit/s with 64-byte Ethernet frames, packets
arrive approximately every 0.67 µs. As the required bound for
the filter duration depends on the packet rate, we present the
dynamic time limit in Section III-D.

Class-based queues generally improve performance for crit-
ical traffic as well. However, the firewall stack VPP used in
this paper supports batch processing of up to 256 packets,
which is only applicable if a single queue is used.

B. Time-Limited Filtering

The core of the presented approach is a firewall design
that enforces deterministic latency by bounding the time
required for rule filtering. This is achieved by applying a fixed
time budget to the filtering of each packet and aborting rule
evaluation when the budget is exhausted.

The architecture consists of two stages. In the first stage,
a fast classification ruleset assigns each packet a time budget
and a default action (cf. Figure 2 A). The goal is to have
very coarse rules, e.g., based on VLAN Priority Code Point
(PCP), EtherType, or IP protocol fields. This mapping allows
administrators to express latency expectations for different
traffic classes without fine-grained differentiation between
packets. Hence, these classification rules are simple and fast
to evaluate, as there are only a few rules.

NIC
Time-limited

firewall NIC

Reaction upon
wrong decision

Queue state to
adjust time-limit Copy

meta-data

Deferred
Filtering

Set static
time-limit and
default action

A B

C

E

Packet Hash-based
firewall

D

Fig. 2. Design overview for the time-limited firewall.

In the second stage, the packet enters the main rule evalu-
ation pipeline, which performs conventional packet filtering
based on fields such as IP addresses, ports, and protocols
(cf. Figure 2 B). These rules are more granular and specific to
the traffic. Hence, rulesets can contain more than 1,000 rules
for firewalls in the backbone. To enforce time constraints, the
firewall checks if the time budget is exceeded every nth rule,
where n is configurable. Checking after every nth rule only
instead of after every rule reduces the slowdown of filtering,
as the costly time check is required less often. If the elapsed
processing time exceeds the assigned budget, rule evaluation
is aborted, and the configured default action is applied, i.e., the
packet is forwarded or dropped. This ensures that no packet
processing exceeds the allocated latency budget, regardless of
ruleset complexity or runtime load.

This mechanism guarantees that each packet is processed
within a strict upper latency bound, regardless of traffic
conditions or the size of the ruleset. It ensures compatibility
with TSN and DetNet latency guarantees.

C. Deferred Filtering

Time-limited filtering introduces the possibility of incom-
plete rule evaluation. Specifically, an attacker can send packets
matching a drop rule at the end of the ruleset. Due to the static
limit, the filtering is aborted, and the packet is forwarded. To
address this attack vector, the firewall includes a deferred fil-
tering mechanism that continues rule matching asynchronously
after stopping rule evaluation and forwarding the packet due to
the time budget being exceeded (cf. Figure 2 C). This deferred
path enables a secondary layer of inspection that catches, logs,
and reports mismatches without delaying real-time traffic.

When a packet exceeds its time budget, the firewall applies
the default action, i.e., forwards or drops the packet. In both
cases, the firewall creates a metadata record that includes:

• Header fields from the original packet (excluding payload
to reduce the required memory),

• The index of the next rule that would have been evaluated,
• The default action taken.

This metadata is passed to a deferred filtering unit, imple-
mented as a separate task, which runs on a dedicated CPU
core or a remote processor. This deferred filtering unit resumes
evaluation of the rule to the end of the ruleset.

Suppose the deferred filtering detects a mismatch between
the taken and configured action, for example, a malicious
packet was incorrectly accepted. In that case, the firewall
must react immediately and prohibit further packets of this
malicious traffic, e.g., by adding a rule to the beginning of the



ruleset. However, the firewall is required to continue filtering
with the configured time limits and filtering at least the most
important rules at the beginning of the ruleset. Hence, we
introduce a hash-based firewall (cf. Figure 2 D) in front of
the regular sequential filtering. If the deferred filter detects a
mismatch, the hash of the 5-tuple of the IP header is inserted
into the hash table, combined with the desired action, i.e.,
ACCEPT or DROP. For every incoming packet, the firewall
executes a lookup first and only enters the sequential filtering if
no entry in the hash table matches. This hash table introduces
a static delay for every packet, independent of the table size.

D. Dynamic Time Budgeting

In industrial networks, packet rates can vary, ranging from
high peak rates during backup phases to low rates during
regular control operations. Typically, a software firewall is
capable of filtering and forwarding packets quickly enough
to meet the timing requirements of industrial applications.
However, if the packets arrive faster than the firewall can
filter them, the queues fill, latency increases drastically, and
the firewall drops packets. The static limits ensure that a
specific rate of filtering is achievable. However, larger rates
also cause increased latencies and packet loss for the time
budget mechanism. An intuitive solution is to configure the
time limit to align with the maximum packet rate to be
expected, e.g., for 1 Gbit/s with 64-byte packets, to have a time
budget of 600 ns. However, during phases with a lower packet
rate, it would be sufficient for the firewall to use a larger time
budget and thus, filter more rules before forwarding the packet.
Therefore, we introduce the dynamic time budget, which uses
the length of the ingress queue to adjust the time budget
(cf. Figure 2 E). With this mechanism, the configuration of
the initial time limit (cf. Figure 2 A) can use larger time limits
and larger network loads reduce this limit dynamically to avoid
increased latencies and packet loss.

IV. SECURITY DISCUSSION

Enforcing deterministic latency in software firewalls intro-
duces a tradeoff between timely forwarding and comprehen-
sive rule evaluation. This tradeoff creates new attack vectors,
particularly during periods of high load when packets may be
forwarded based on default actions before full rule evaluation
completes. In this section, we discuss the protocol-aware
configuration to mitigate this security risk.

The impact of a misclassified packet depends on its transport
protocol and application context. UDP and industrial Layer 2
protocols such as PROFINET or OPC UA PubSub can carry
payloads for the control process in every packet. Hence, falsely
accepting a packet has a direct impact on the control appli-
cation. In contrast, TCP-based connections require a three-
way handshake, providing a natural barrier against immediate
misuse. Specifically, the deferred filtering has one complete
round-trip time to react to misclassified packets.

To mitigate protocol-dependent risks, the firewall supports
protocol-aware configuration of time budgets (cf. Figure 2 A).
Administrators can assign larger budgets to protocols that lack

Traffic
generator

Packet Timestamping
switch

FD.io VPP
firewall

t1

t2

Fig. 3. Testbed Architecture.

handshake mechanisms and can deliver data immediately. Pro-
tocols with a handshake can be forwarded more progressively,
using the deferred filtering during the handshake and the hash-
table (cf. Figure 2 D) as a security measure.

V. EVALUATION

In this section, we present the evaluation of the applicability
of the design to limit the filter duration.

A. Testbed for the Evaluation

We evaluate the time-limited software firewall on an off-
the-shelf industrial PC using a wired 1 Gbit/s Ethernet testbed.
The firewall runs on Ubuntu 24.04 LTS and is based on FD.io
VPP with the current version 25.02, which is built on top of
the DPDK. In baseline tests, VPP outperformed other firewall
stacks. We configure a constant CPU frequency and disable
all power-saving features to minimize jitter.

Figure 3 shows the testbed architecture. The traffic generator
sends UDP packets with a configurable data rate and packet
size. A timestamping switch between the traffic generator and
the firewall inserts egress (t1) and ingress (t2) timestamps into
each packet. This allows latency measurements with a preci-
sion of less than 20 ns by calculating the difference between
t1 and t2. The measured latency includes the complete packet
transmission, processing, and filtering. For this evaluation, we
use 64-byte packets at a constant 1 Gbit/s rate. This creates a
worst-case load for the filtering. We send two parallel streams
with different latency budgets per measurement:

• One critical stream with 10 Mbit/s.
• One best-effort stream that fills the remaining bandwidth.
We vary the number of firewall rules from 0 to 1,000, using

both static time budgets and dynamic budgeting that adapts
based on system load. Each configuration runs 100 times. We
measure end-to-end latency and packet loss.

B. Time Budget Granularity

Checking the remaining time budget on every rule evalua-
tion requires additional processing. Consequently, the firewall
evaluates fewer rules within the same time frame. In the
following, we report the rule evaluation speed of the firewall in
rules per µs where higher values indicate better performance.
The firewall used in this evaluation processes 243 rules per µs
in the unmodified state. We evaluated the impact of checking
the time budget when the firewall checks it every nth rule
evaluation. The overhead of evaluating the time budget de-
pends on the load on the system. For example, 64-byte packets
at 100 Mbit/s result in 44 rules per µs when checking after
every rule and 103 rules per µs after every 16th rule. With
this granularity, the firewall continues to filter for 15 rules,
even though the limit is completely consumed, resulting in a
weaker level of precision. At the same time, the forwarding of



0 100 500 1,000
Rule count

0

2,000

4,000

6,000

8,000

La
te

nc
y 

(µ
s)

Latency
Packet loss

Expected latency

0

25

50

75

100

Pa
ck

et
 lo

ss
 (%

)
(a) Unmodified FD.io VPP

0 100 500 1,000
Rule count

0

500

1,000

1,500

La
te

nc
y 

(µ
s)

Data rate (Mbit/s)
500 1,000

0

25

50

75

100

Pa
ck

et
 lo

ss
 (%

)

(b) High time limit: 400 ns

0 100 500 1,000
Rule count

0

15

30

45

La
te

nc
y 

(µ
s)

0

25

50

75

100

Pa
ck

et
 lo

ss
 (%

)

(c) Low time limit: 200 ns

0 100 500 1,000
Rule count

0

15

30

45
La

te
nc

y 
(µ

s)

0

25

50

75

100

Pa
ck

et
 lo

ss
 (%

)

(d) Adaptive time limit: < 2 µs

Fig. 4. Latency with different configurations (64-byte, 1 Gbit/s).

the firewall without rules has a jitter of 12.2 µs. As the filtering
of one rule costs 4.1 ns, the additional 15 rules cost 61.5 ns,
i.e., less than the forwarding jitter. Therefore, externally, this
timing granularity is not measurable.

C. Throughput and Packet Loss

In this section, we evaluate the latency and packet loss of
the firewall. Figure 4 shows the results in four configurations:
unmodified VPP, high time limits, low time limits, and adap-
tive time limit. Each subfigure combines latency (scale on
the left) and packet loss (scale on the right). For the latency
analysis, we use boxplots with the whiskers indicating the 99%
percentile. We vary the number of firewall rules from 0 to
1,000 and evaluate at two data rates: 500 Mbit/s and 1 Gbit/s.

The unmodified VPP setup (cf. Figure 4a) cannot handle
large rule sets, neither at 1 Gbit/s nor at 500 Mbit/s. Latency
remains low for a small number of rules, but exceeds 4,000 ms
at 500 rules. Packet loss approaches 100 percent.

In the high time limit configuration (cf. Figure 4b), filtering
is aborted if the filtering duration exceeds the configured time
limit of 400 ns. Hence, the firewall reduces the latency and
packet loss for 500 and 1,000 rules. However, for 100 rules
at 1 Gbit/s, the overhead of the modifications increases the
latency and packet loss compared to the unmodified version.
Specifically, due to the overhead checking for the time limit,
the evaluation of the rules takes longer than in the unmodified
version, and the overall processing time is larger than the time
between consecutive packets.

The low time limit configuration (cf. Figure 4c) ensures low
and stable latency across all rule counts and both data rates.
Packet loss remains zero. The firewall applies default actions
early for both data rates, after a mean of 41 rules, enforcing
a strict time budget, specifically for 500 Mbit/s. However, a
larger CPU load at 1 Gbit/s generates a static offset to the
expected latency and a jitter of up to 35.1 µs.

The adaptive configuration (cf. Figure 4d) begins with an
initial time budget of 2 µs and adjusts dynamically, i.e.,
reduces it with growing queue sizes. This results in low latency
and minimal packet loss, even at high rule counts. The load on
the CPU for many rules causes a jitter of 15 µs. Additionally,
the median latency consistently exceeds the expected latency
by up to 12.2 µs. For 500 Mbit/s, the firewall evaluates a mean
of 142 rules, using all available time compared to 39 rules
with the low time limit. For 1 Gbit/s, the firewall reduces the
evaluated rules to a mean of 33, also reducing the jitter.

In summary, the low and adaptive time limits effectively re-
duce the filter budget, enabling wire-speed forwarding without
packet loss. However, the load on the CPU causes a latency
jitter of 35.1 µs with a static time budget, compared to 16.5 µs
with the adaptive budget and 12.2 µs without the firewall.

VI. CONCLUSION

Deterministic latency is a key requirement in time-sensitive
networks. However, conventional software firewalls have a
variable rule evaluation time. We proposed a novel filtering
mechanism that introduces a tradeoff between security and
determinism by enforcing a fixed per-packet evaluation time
budget. To ensure correctness, we introduced deferred filtering,
which verifies and corrects earlier decisions while simulta-
neously improving rule coverage through learning. An adap-
tive timing mechanism dynamically adjusts the time budget
to system load, thereby increasing the filter duration while
preserving the time limit. The prototype demonstrates that
latency bounds can be upheld in software, even under high
traffic rates of 1 Gbit/s, with minimal compromise to security.

REFERENCES

[1] L. Wüsteney, M. Menth, R. Hummen, and T. Heer, “Impact of Packet
Filtering on Time-Sensitive Networking Traffic,” in IEEE International
Conference on Factory Communication Systems (WFCS), Linz, Austria,
Jun. 2021.

[2] X. He, T. Chomsiri, P. Nanda, and Z. Tan, “Improving cloud network
security using the Tree-Rule firewall,” Future Generation Computer
Systems, vol. 30, 2014.

[3] T. Chomsiri, X. He, P. Nanda, and Z. Tan, “A Stateful Mechanism for
the Tree-Rule Firewall,” in International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), 2014.

[4] ——, “Hybrid Tree-Rule Firewall for High Speed Data Transmission,”
IEEE Transactions on Cloud Computing (TCC), vol. 8, no. 4, 2020.

[5] D. Rovniagin and A. Wool, “The Geometric Efficient Matching Al-
gorithm for Firewalls,” IEEE Transactions on Dependable and Secure
Computing (TDSC), vol. 8, no. 1, 2011.

[6] Z. Trabelsi and S. Zeidan, “Enhanced Session Table Architecture for
Stateful Firewalls,” in IEEE International Conference on Communica-
tions (ICC), 2018.

[7] Z. Trabelsi, L. Zhang, S. Zeidan, and K. Ghoudi, “Dynamic traffic
awareness statistical model for firewall performance enhancement,”
Computers & Security, vol. 39, 2013.

[8] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li, “Using Online Traffic
Statistical Matching for Optimizing Packet Filtering Performance,” in
IEEE International Conference on Computer Communications (INFO-
COM), 2007.

[9] A. El-Atawy, E. Al-Shaer, T. Tran, and R. Boutaba, “Adaptive Early
Packet Filtering for Defending Firewalls Against DoS Attacks,” in IEEE
International Conference on Computer Communications (INFOCOM),
2009.

[10] W. Wang, H. Chen, J. Chen, and B. Liu, “Firewall Rule Ordering
Based on Statistical Model,” in International Conference on Computer
Engineering and Technology (ICCET), 2009.


